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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS
 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, 
validation
 and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated 
implications
Consider agreed-upon base AI model(s) for 
calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking 
purposes
KPIs
: 
Determine the common 
KPIs
 and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific 
KPIs
 and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art 
baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for beam management.
2	Methodology
NR can operate at a wide range of frequencies, ranging from sub-6 GHz to millimeter wave frequencies. To support operation over such a wide range of carrier frequencies, NR has been designed to utilize beam-based operation, where gNB and UE may use transmit and receive beamforming for all channels and signals. 
Beam management procedures include beam determination, beam measurement and reporting, beam indication and switching, and beam recovery. In beam determination, the gNB and UE find suitable transmit and receive beam directions for communication. In beam measurement and reporting, the UE measures the link quality of multiple beam pairs and reports the measurement results to the gNB. In beam indication and switching, the gNB can indicate to the UE which beam to use for the communication, including switching to a beam different from the current beam. In beam recovery, the UE can attempt to re-establish a transmit-receive beam pair with the gNB from beam failure by using a L1 procedure without declaring radio link failure.
In general, the downlink beam management procedures consist of three steps: Procedure 1 (P-1): SSB-based beam sweeping; Procedure 2 (P-2): CSI-RS based transmit-end beam refinement; Procedure 3 (P-3): CSI-RS based receive-end beam refinement. There are also uplink beam management procedures. 
AI/ML based algorithms may find applications in many steps of beam management. It is worthwhile discussing which of the steps should be the focal point for evaluation. Beam prediction in time and/or spatial domain can help reduce overhead and latency, as well as improving beam selection accuracy. They are good candidates for evaluating AI/ML based algorithms for beam management.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
3GPP has established simulation methodology (see, e.g., TR 38.901 [2]), which can be used to generate synthetic data for the study of AI/ML based algorithms for beam management. Beam management is particularly relevant for NR operation in millimeter wave frequencies. The typical millimeter wave deployment is in urban scenarios where there is high-capacity demand. Therefore, the evaluation could focus on UMi-street canyon and UMa scenarios.
However, the simulation layout for UMi-street canyon and UMa scenarios described in TR 38.901 is much simplified compared to real-world urban scenarios. Additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
While synthetic data can be the baseline for evaluating AI/ML based algorithms for beam management, it would be beneficial to identify existing sets of real data and/or build up new sets of real data, as part of the 3GPP Rel-18 AI/ML study for NR air interface. Such efforts would pay off as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
It was agreed to support BM-Case 1 and BM-Case 2 for characterization and baseline performance evaluations for AI/ML-based beam management:
· BM-Case 1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams.
· BM-Case 2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams.
A key aspect in BM-Case 1 and BM-Case 2 is how to select the Set B of beams. A straightforward option is to fix Set B across training and inference. Alternatively, Set B can be variable in the sense that different beam patterns may be used in each time instance/report/measurement and the patterns may change across training and inference as well. In a first option, Set B can be changed by following a set of pre-configured patterns. In a second option, Set B can be randomly changed among pre-configured patterns. In a third option, Set B can be randomly changed among Set A beams. In a fourth option, Set B is a subset of Set C of measured beams, e.g. Top-K beams of Set C. In these options for variable beam patterns in Set B, the number of beams in Set B can be fixed or variable.
Input for the AI/ML-based beam management has been discussed. It was agreed to consider the following options for Rx beam the evaluation on the performance of DL Tx beam prediction:
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample.
· Option 2: Measurements of specific Rx beam(s). This option includes two sub-options, including Option 2a - Measurements of specific Rx beam(s) per model input sample and Option 2b - Measurements of specific Rx beam(s) for all model input sample. 
· Option 3: Measurements of random Rx beam(s) per model input sample.
Model generalization measures the ability of an AI/ML model to perform in new and unseen situations that do not form part of its training experience. It is natural that there is performance difference between how the AI/ML model performs in the training experiences it has seen and in the new unseen situations it is evaluated on. The smaller the performance difference, the better the AI/ML model’s generalization ability.
There are many different types of “unseen situations.” In AI/ML community, the type of generalization commonly investigated is the case where the distribution of the training samples is the same as that of the test samples. This type of generalization is referred to as “in-distribution generalization.”
In practise, there are often distribution shifts between training samples and test samples. Therefore, it is of practical relevance to study out-of-distribution generalization, which refers to generalization that is not in-distribution generalization. Certainly, one cannot expect the AI/ML model to generalize to test data that is arbitrary or unrelated to the training data. Therefore, specific assumptions are needed to address the out-of-distribution generalization for the problem in question.
To investigate the model generalization capability, as discussed in the previous RAN1 meetings, the following aspects can be considered for the evaluation for AI/ML in beam management:
· Scenarios: various deployment scenarios (e.g., (a) UMa, UMi and others, (b) 200m ISD or 500m ISD and others, (c) same deployment, different cells with different configuration/assumption, (d) gNB height and UE height, and (f) carrier frequencies), various outdoor/indoor UE distributions, (e.g., 100%/0%, 20%/80%, and others), and various UE mobility (e.g., 3km/h, 30km/h, 60km/h and others).
· Configurations (parameters and settings): various UE parameters (e.g., number of UE Rx beams, including number of panels and UE antenna array dimensions), various gNB settings (e.g., DL Tx beam codebook, including various Set A of beam (pairs) and gNB antenna array dimensions), various Set B of beam (pairs), and T1 for measurement /T2 for prediction for BM-Case 2.
Also, for BM Case-1 and BM Case 2, it is necessary to verify the generalization performance of an AI/ML model over various Set B of beam (pairs).
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From beam management perspective, overhead reduction, latency reduction, and accuracy improvement are highlighted in the study item description.
· Overhead may include reference signal overhead and measurement reporting overhead. With beam prediction, less frequent reference signal transmission and/or less measurement reporting may be needed.
· Latency may include reference signal transmission time, UE measurement time, UE measurement reporting time, among others. With beam prediction, the latency may be reduced.
· Beam management based on UE measurement and reporting may not be accurate due to UE measurement error and the feedback delay in UE measurement reporting. Beam prediction may improve the accuracy.
For BM-Case 1 (beam prediction in spatial domain), two options were agreed for reference signal overhead reduction:
· Option 1: RS overhead reduction = 1-N/M, where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, and M is the total number of beams (pairs) to be predicted 
· Option 2: RS overhead reduction = 1-N/M, where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable, and M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable.
For BM-Case 2 (beam prediction in time domain), one option was agreed for reference signal overhead reduction:
· Option 2: RS overhead reduction = 1-N/M, where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable, and M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme.
Many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
It was discussed that complexity should be evaluated as a KPI, where complexity include model complexity and computational complexity. For evaluation of AI/ML based beam management, the computational complexity can be reported via the metric of floating point operations (FLOPs), and the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high performance computing applications.
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
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Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [3])
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Figure 2: Single GPU performance scaling. (Source: Ref. [3])
4	Evaluation results
In this section, we provide initial evaluation results on beam management using AI/ML based algorithms. The system-level simulation assumption and scenarios are built on the basis of the RAN1#109-e agreements.
4.1	Beam prediction in spatial domain
For AI/ML-based beam prediction in spatial domain, we study BM-Case 1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams. In the evaluation, Set A consists of 64 beams, while Set B consists of 16 beams, which is a subset of Set A.
The AI/ML-based beam prediction utilizes a convolutional neural network (CNN). The input to the CNN is the RSRP values of the 16 beams in Set B. The output of the CNN is the predicted best beams in the full Set A. 
As a benchmark, we use exhaustive beam sweeping, where the best beam within Set A of 64 beams is determined based on the RSRP values of all the 64 beams in Set A.
Figure 3 shows the beam prediction accuracy (%) for Top-K/1 beams, where K ranges from 1 to 8. The beam prediction accuracy is the percentage of the Top-1 genie-aided beam (e.g., from the exhaustive beam sweeping) being one of the Top-K predicted beams. It can be seen that the prediction accuracy for Top-4/1 beams exceeds 95%.
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Figure 3:Beam prediction accuracy for Top-K beams in spatial domain.
Figure 4 shows the CDF of RSRP difference for Top-1 predicted beam, where the RSRP difference is the difference between the RSRP of Top-1 predicted beam and the RSRP of the Top-1 beam from the exhaustive beam sweeping. The mean of the RSRP difference for Top-1 predicted beam is 0.27 dB.
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Figure 4: CDF of RSRP difference for Top-1 predicted beam in spatial domain.
In summary, the results in Figure 3 and Figure 4 show that the AI/ML-based beam prediction in spatial domain, which measures a subset of 16 beams from a full set of 64 beams, can achieve performance (in terms of RSRP) comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced as only 16 beams out of the total of 64 beams need to be measured and reported.
Observation 2: AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced.
We summarize the evaluation results in Table 1 for BM-Case1 without model generalization for DL Tx beam prediction.
Table 1: Evaluation results for BM-Case1 without model generalization for DL Tx beam prediction.
	
	NVIDIA

	Assumptions
	Number of [beams/beam pairs] in Set A
	64 Tx beams

	
	Number of [beams/beam pairs] in Set B
	16 Tx beams

	
	Baseline scheme
	Best beam within Set A via exhaustive beam search

	AI/ML model
input/output
	Model input
	16 L1-RSRPs

	
	Model output
	Top-K Tx beams

	Data Size
	Training
	~16000

	
	Testing
	~4000

	AI/ML model
	[Short model description]
	CNN

	
	Model complexity
	[bookmark: OLE_LINK1]~1.8 M trainable parameters 

	
	Computational complexity
	~8.4 M FLOPs

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	KPI: Top-K/1
68.04% Top-1/1
86.58% Top-2/1
95.53% Top-4/1
98.70% Top-8/1

	
	
	[KPI B]
…
	N/A

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	0.27 dB for Top-1 predicted beam

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	75% (= 1 – 16/64)

	
	
	[UCI report]
	N/A

	
	
	[UPT]
…
	N/A



4.2	Beam prediction in time domain
For AI/ML-based beam prediction in time domain, we study BM-Case 2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams. In the evaluation, Set A consists of 64 beams, and Set B is the same as Set A.
The AI/ML-based beam prediction utilizes a long short term memory (LSTM) network which is a special kind of recurrent neural network (RNN). 
· The optimal beam indices of K=8 latest measurement instances are used for AI/ML model input, where each input of optimal beam index is for each measurement instance.
· The AI/ML model output is up to F=8 predictions for F=8 future time instances, where each prediction of the optimal beam index is for each time instance.
· The sampling interval (i.e., the time interval between two consecutive time instances) is 40 ms.
· The UE speed is 120 km/h. With this high speed, all UEs are assumed to be outdoor.
Figure 5 shows the beam prediction accuracy (%) for Top-K/1 beams, where K ranges from 1 to 8. The beam prediction accuracy is the percentage of the ground-truth (i.e., genie-aided) Top-1 beam being one of the Top-K predicted beams. It can be seen that the prediction accuracy for Top-8/1 beams is close to 90% for the farthest future instance of 8 x 40 ms.
Figure 6 shows the average RSRP difference for Top-K predicted beam, where the RSRP difference is the difference between the maximum of RSRPs of Top-K predicted beams and the RSRP of the ground-truth Top-1 beam. It can be seen that the average RSRP difference for Top-2 predicted beam is smaller than 1 dB for the farthest future instance of 8 x 40 ms.
[image: ]
Figure 5: Beam prediction accuracy for Top-K beams in time domain.
[image: ]
Figure 6: Average RSRP difference for Top-K predicted beam in time domain.
The evaluation results show that using a history of the best beam index, the AI/ML model can predict the best beam for future time instances. Such temporal beam prediction can help lower reference signal overhead and reduce UE’s measurement requirement as the prediction can help narrow down candidate beams for UE to measure.
In the evaluation, we use only a history of the best beam index to perform the prediction. Temporal prediction performance may be further improved with additional input of information such as the corresponding RSRP, UE position, etc.
Observation 3: AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction. 
Observation 4: AI/ML-based algorithms for beam prediction in time domain can help lower reference signal overhead and reduce UE’s measurement requirement.
Table 2: Evaluation results for BM-Case2 without model generalization for DL Tx beam prediction.
	
	NVIDIA

	Assumptions
	Number of [beams/beam pairs] in Set A
	64 Tx beams

	
	Number of [beams/beam pairs] in Set B
	64 Tx beams

	
	Observation window
	8 time instances with 40 ms periodicity

	
	Prediction window
	8 time instances with 40 ms periodicity

	
	UE speed
	120 km/h

	
	Baseline scheme
	Best beam within Set A via exhaustive beam search

	AI/ML model
input/output
	Model input
	Optimal Tx beam ID for each observation time instant

	
	Model output
	Top-K Tx beams for each prediction time instant

	Data Size
	Training
	~12000

	
	Testing
	~3000

	AI/ML model
	[Short model description]
	LSTM

	
	Model complexity
	~0.2 M trainable parameters 

	
	Computational complexity
	~0.41 M FLOPs

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	1 step ahead
	4 steps ahead
	6 steps ahead
	8 steps ahead

	
	
	
	Top-1/1
	68.80%
	66.49%
	55.25%
	23.72%

	
	
	
	Top-2/1
	81.48%
	76.05%
	68.05%
	63.63%

	
	
	
	Top-4/1
	90.19%
	86.29%
	84.04%
	81.25%

	
	
	
	Top-8/1
	95.52%
	93.21%
	91.97%
	90.02%

	
	
	[KPI B]
…
	N/A

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	1 step ahead
	4 steps ahead
	6 steps ahead
	8 steps ahead

	
	
	
	Top-1/1
	0.41
	0.77
	3.51
	8.24

	
	
	
	Top-2/1
	0.20
	0.25
	0.43
	0.62

	
	
	
	Top-4/1
	0.08
	0.10
	0.15
	0.15

	
	
	
	Top-8/1
	0.03
	0.03
	0.05
	0.05

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	50%

	
	
	[UCI report]
	N/A

	
	
	[UPT]
…
	N/A



Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced.
Observation 3: AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction. 
Observation 4: AI/ML-based algorithms for beam prediction in time domain can help lower reference signal overhead and reduce UE’s measurement requirement.
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