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[bookmark: _Ref111120162]Introduction
In this contribution, we continue the discussion of the evaluation of machine learning for CSI feedback from RAN1#112bis-e  and address open issues. We discuss both CSI feedback compression with autoencoders and CSI prediction.
[bookmark: _Hlk510705081]Discussion
CSI compression
Model Performance
[bookmark: _Hlk131491503]In this section, we discuss the performance of AI/ML models for compression of the eigenvectors of the transmit covariance matrix. Specifically, we report system level simulation results for the transformer-based model architecture shown in Figure 1.  These results were previously reported in our RAN1#112bis-e contribution [2] and are an extension of the intermediate KPI (SGCS) results reported in our RAN1#112 contribution [3]. Both the encoder and decoder contain three multi-head self-attention blocks.  For the results reported here, the model is trained using Type 1 joint training with embedded fixed scalar quantization (i.e., the training is quantization-aware using Case 2-1).  The training dataset contains 630K samples of which 126K samples are used for testing and the remaining samples are used for training.  The dataset is drawn from a dense urban scenario (Urban macro models) using the parameters shown in Table 1.  In addition, the hyperparameters are shown in Table 2.
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[bookmark: _Ref127450353]Figure 1:  Architecture of the transformer model for eigenvector compression.
[bookmark: _Ref127310935]

[bookmark: _Ref127496300][bookmark: _Ref127366054][bookmark: _Hlk134977842]Table 1:  SLS parameters for transformer model training data
	Parameter
	Value

	Simulation scenario
	UMa

	Carrier frequency
	4 GHz (30 kHz SCS)

	Bandwidth
	20 MHz

	Num. cell sites, sectors per site
	7 sites, 3 sectors per site

	BS antenna height
	25m

	Distribution of UEs (indoor %, outdoor %)
	(80, 20)

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m



[bookmark: _Ref127365775]Table 2:  Hyperparameters for the transformer model
	Parameter
	Value

	Number of training/testing samples
	504K/126K

	Learning Rate
	10-4

	Epochs
	500

	Batch size
	200

	Quantization
	Scalar (Uniform)

	Objective function
	GCS

	Total Trainable Parameters
	About 1.5 M



We report system level simulation results for models trained with the above architecture and compare the results to the baseline.  The simulations are performed using the agreed evaluation methodology with the system level assumptions given in Table 28 in the Appendix.  The baseline performance uses the Rel-16 eTypeII codebook with parameter combinations 1-8, in that order, as defined in TS 38.214.  Note that the feedback overhead for parameter combination 7 is somewhat lower than the overhead for parameter combination 6.  The transformer model is trained for the feedback overhead values shown in Table 3.  Five of the trained ML models (i.e., with overhead bits of 52, 104, 128, 208, and 312 for rank 1 eigenvectors) are used for system-level simulations, and the results are compared to the baseline Rel-16 eTypeII codebook results for maximum ranks of 1 and 2.  Figure 2 through Figure 5 contain the SGCS, mean user throughput, and cell-edge user throughput for MU-MIMO for both full buffer and bursty traffic at a target of 80% resource usage (FTP80) with ideal CSI-RS.  Note that the ML models used in the system level simulations were trained on the first rank eigenvectors of the transmit covariance matrix, and for rank > 1 inference the ML model takes the eigenvectors of each layer separately as the input (Option 3-1 of the RAN1#112 agreement on adapting to ranks greater than 1). For the Rel-16 eTypeII baseline results, the overhead is reported using the 95th percentile overhead for each parameter combination.  We see that the transformer model outperforms the baseline codebook across the range of feedback overhead, either yielding the same SGCS performance with reduced overhead or yielding better SGCS performance at constant overhead.  The gains seen in the SGCS performance translate into gains in the throughput performance as well.  The gains in mean user throughput are generally larger at higher maximum rank with gains as much as 13%.  
[bookmark: _Ref127471157]Table 3:  Feedback overhead dimensions for transformer-based compression model
	Compression Ratio
	Latent Variable Dimension
	Quantization (bits/latent variable)
	Feedback Overhead (bits)

	32
	26
	2
	52

	32
	26
	3
	78

	16
	52
	2
	104

	13
	64
	2
	128

	16
	52
	3
	156

	13
	64
	3
	192

	8
	104
	2
	208

	8
	104
	3
	312
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[bookmark: _Ref131506217]Figure 2:  Transformer model system-level performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 1 Full Buffer.
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(a)            			          (b)         		                 (c)
Figure 3.  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 2 Full Buffer.
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(a)            			          (b)         		                 (c)
Figure 4.  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 1 Bursty traffic with ~80% RU.
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[bookmark: _Ref134615092][bookmark: _Ref131768324]Figure 5:  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 2 Bursty traffic with ~80% RU.

Observation 1:  The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on both the SGCS metric and MU-MIMO throughput performance.  Gains up to the following are seen:
· 6.5%/2.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 1.
· 8.5%/3.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 2.
· 4.5%/10.0% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 1.
· 13.0%/22.5% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 2.
Generalizability and Scalability
In RAN1#111 [7], the following agreements were reached on generalizability and scalability of AI/ML models for CSI compression.  These agreements define various cases primarily for studying the scalability of CSI compression models across the input and output dimensions of the CSI generation part, plus the number of CSI generation or reconstruction parts used to achieve scalability.  The agreements are:

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions

Generalizability
Generalization is the testing of items not included in the training and testing data set with the purpose of assessing the performance of the model when new data is encountered.  Since it is difficult for the data set used to develop the model to cover all possible situations that the model may encounter when used for inference, it is important in this study item to test the performance of models when presented with situations not included in the training dataset.  Such testing can include both additional examples from the same types of scenarios used to create the dataset as well as other scenarios.  In this section, we present results which explore the generalizability of AI/ML-based CSI compression across the following parameters:
· Carrier frequency:  We consider carrier frequencies of 2GHz and 4GHz.
· UE distribution:  We vary the distribution of UE’s between indoors and outdoors, considering 0%, 20%, 80%, and 100% indoor UEs.
· TxRU mapping:  While maintaining a constant number of gNB antenna ports, we vary the port configuration.  We consider two 32-port configurations with (2,8,2) and (4,4,2) configurations (rows, columns, polarizations).
[bookmark: _Hlk134983337]For all of these parameters, we train models using datasets created using a single parameter value as well as at least one dataset containing of mixture of data from two parameter values.  Type 1 joint training is used throughout the generalization study.  Each model is tested using data from all datasets using eigenvectors derived from the ideal channel and both training and testing are limited to rank 1.  All of the models use a transformer-based architecture similar to the architecture shown in Figure 1, except that the encoder and decoder each have seven multi-head self-attention blocks (i.e., seven layers).  Table 4 contains additional information about the models and the training parameters used in the generalization study.  The models are also trained and tested using multiple feedback overhead sizes.  For each case, models are obtained to feed back 52, 128, 208, and 312 bits with the details for these cases shown earlier in Table 3.
[bookmark: _Ref134978646]Table 4:  Training parameters for all models used in the generalization study
	Parameter
	Value

	Model architecture
	7-layer transformer

	Total Trainable Parameters
	About 2.5 M

	Number of training/testing samples
	504K/126K

	Learning Rate
	10-4

	Epochs
	200

	Batch size
	200

	Quantization
	Scalar (Uniform)

	Objective function
	GCS






Carrier Frequency Generalizability
For generalization over carrier frequencies, we consider frequencies of 2GHz and 4GHz.  The datasets used to train the models each contain 630K samples, created using the SLS parameters shown in Table 5.  The 4 GHz parameters are identical to those shown in Table 1.  For 2 GHz, the bandwidth is reduced to 10 MHz and the subcarrier spacing (SCS) is reduced to 15 kHz.  Note that while the antenna spacing at both carrier frequencies is constant in terms of wavelength fractions, the physical spacing between antenna elements varies due to the change in wavelength.  Two models are trained as carrier-frequency-specific models using data from only one carrier frequency (“2GHz Train” and “4GHz Train”).  In addition, a third model (“Mixed Frequency Train”) is trained using a mixture of data from the two carrier frequency datasets, one half from each dataset.  All three models are tested separately using the 2 GHz and 4 GHz data (“2GHz Test” and “4GHz Test”, respectively).  The SGCS results of these tests are shown in Table 6 and plotted in Figure 6.  In the plot, each color identifies models trained on a single (or mixed) carrier frequency, with solid lines indicating tests using 2 GHz data and dashed lines indicating tests using 4 GHz data.  For both 2 GHz and 4 GHz testing, the mixed-dataset-trained model yields performance between the carrier-frequency-specific models, as expected.  Interestingly, the performance of all three models is best at 2 GHz.  The model trained at 4 GHz generalizes quite well with little degradation in performance when used at 2 GHz.
Observation 2:  When generalizing over carrier frequency (2 and 4 GHz), the model trained at higher frequency was found to generalize better than the model trained at a lower carrier frequency and performed close to or better than the mixed dataset-trained model at both frequencies.
Observation 3:  When generalizing over carrier frequency (2 and 4 GHz), carrier-frequency-specific models and mixed-dataset models both performed best at the lower carrier frequency.
[bookmark: _Ref134978844]Table 5:  SLS parameters for carrier frequency generalization training datasets
	Parameter
	Value (4 GHz)
	Value (2 GHz)

	Simulation scenario
	UMa

	Carrier frequency
	4 GHz (30 kHz SCS)
	2 GHz (15 kHz SCS)

	Bandwidth
	20 MHz
	10 MHz

	Num. cell sites, sectors per site
	7 sites, 3 sectors per site

	BS antenna height
	25m

	Distribution of UEs (indoor %, outdoor %)
	(80, 20)

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m

	BS antenna array
	(8,8,2,1,1,2,8) (32 ports), (dH, dV) = (0.5λ, 0.8λ)

	UE antenna array
	(1,2,2,1,1,1,2) (4 ports), dH = 0.5λ



[bookmark: _Ref134979330]Table 6:  Generalizability performance (SGCS) over carrier frequencies
	Overhead (bits)
	2GHz Train
	4GHz Train
	Mixed Frequency Train

	
	2GHz Test
	4GHz Test
	2GHz Test
	4GHz Test
	2GHz Test
	4GHz Test

	52
	0.715
	0.692
	0.709
	0.691
	0.714
	0.693

	128
	0.763
	0.743
	0.800
	0.796
	0.771
	0.757

	208
	0.851
	0.836
	0.856
	0.850
	0.851
	0.840

	312
	0.886
	0.872
	0.887
	0.880
	0.887
	0.877
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[bookmark: _Ref134979352]Figure 6:  Generalizability performance over 2GHz and 4GHz carrier frequencies

UE Indoor/Outdoor Distribution Generalizability
For generalization over UE indoor/outdoor distributions, we consider datasets for a single scenario, the UMa scenario, and vary the percentage of indoor and outdoor users.  As in previous results in this contribution, the datasets used to train the models each contain 630K samples, created using the SLS parameters shown in Table 7.  The parameters are identical to the 2GHz parameters in Table 5, except that UE (indoor, outdoor) percentages are expanded to four different distributions: (0, 100), (20, 80), (80, 20), and (100, 0).  As in the carrier frequency generalization study, models are trained for each of the UE distributions for feedback overheads of 52, 128, 208, and 312 bits.  Each model is tested separately using data from each of the four distributions.  The SGCS performance results are shown in Table 8 through 

Table 11.  The results are also plotted in Figure 7 through Figure 10, where each figure contains performance results for testing on one distribution for all models.  First, we note that no matter which indoor/outdoor mixture the model is trained on, it always obtains the best performance on 100% outdoor UEs.  In addition, the model trained using 100% indoor UEs always achieves the best performance in any of the UE distributions.  Finally, we note that SGCS performance drops for each model as the percentage of indoor users increases, indicating that the indoor models are the most difficult to fit.  This observation ties directly to the previous observation where the model trained using 100% indoor UEs performs best on all UE distributions.
Observation 4:  When generalizing over UE indoor/outdoor distributions, models trained on one UE distribution always achieves the best performance on the distribution with 100% outdoor UEs.
Observation 5:  When generalizing over UE indoor/outdoor distributions, models trained with 100% indoor UEs always achieve the best performance in every UE distribution.
Observation 6:  When generalizing over UE indoor/outdoor distributions, for models trained on one UE distribution, the performance of the model drops as the percentage of indoor users in the test distribution increases.


[bookmark: _Ref134983049]Table 7:  SLS parameters for generalization training datasets over UE indoor/outdoor distribution
	Parameter
	Value

	Simulation scenario
	UMa

	Carrier frequency
	2 GHz (15 kHz SCS)

	Bandwidth
	10 MHz

	Num. cell sites
	7 sites, 3 sectors per site

	BS antenna height
	25m

	[bookmark: _Hlk134977743]Distribution of UEs (indoor %, outdoor %)
	(0, 100), (20, 80), (80, 20), (100, 0)

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m

	BS antenna array
	(8,8,2,1,1,2,8) (32 ports), (dH, dV) = (0.5λ, 0.8λ)

	UE antenna array
	(1,2,2,1,1,1,2) (4 ports), dH = 0.5λ



[bookmark: _Ref134983493]Table 8:  Generalizability performance (SGCS) over UE indoor/outdoor distribution (training with 0% indoor UEs)
	Overhead (bits)
	0% Indoor Train

	
	0% Test
	20% Test
	80% Test
	100% Test

	52
	0.837
	0.800
	0.699
	0.665

	128
	0.854
	0.822
	0.731
	0.700

	208
	0.878
	0.850
	0.773
	0.748

	312
	0.926
	0.910
	0.866
	0.851



Table 9:  Generalizability performance (SGCS) over UE indoor/outdoor distribution (training with 20% indoor UEs)
	Overhead (bits)
	20% Indoor Train

	
	0% Test
	20% Test
	80% Test
	100% Test

	52
	0.836
	0.805
	0.707
	0.674

	128
	0.855
	0.827
	0.738
	0.708

	208
	0.896
	0.878
	0.814
	0.793

	312
	0.929
	0.918
	0.876
	0.863



Table 10:  Generalizability performance (SGCS) over UE indoor/outdoor distribution (training with 80% indoor UEs)
	Overhead (bits)
	80% Indoor Train

	
	0% Test
	20% Test
	80% Test
	100% Test

	52
	0.835
	0.805
	0.715
	0.682

	128
	0.855
	0.827
	0.763
	0.712

	208
	0.908
	0.893
	0.851
	0.833

	312
	0.930
	0.918
	0.886
	0.872



[bookmark: _Ref134983503]

Table 11:  Generalizability performance (SGCS) over UE indoor/outdoor distribution (training with 100% indoor UEs)
	Overhead (bits)
	100% Indoor Train

	
	0% Test
	20% Test
	80% Test
	100% Test

	52
	0.831
	0.802
	0.713
	0.685

	128
	0.864
	0.839
	0.765
	0.741

	208
	0.909
	0.895
	0.854
	0.842

	312
	0.931
	0.921
	0.890
	0.881
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[bookmark: _Ref134983551]Figure 7:  Generalizability performance (SGCS) over UE indoor/outdoor distribution – all models tested with 0% indoor UEs.
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Figure 8:  Generalizability performance (SGCS) over UE indoor/outdoor distribution – all models tested with 20% indoor UEs.
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Figure 9:  Generalizability performance (SGCS) over UE indoor/outdoor distribution – all models tested with 80% indoor UEs.
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[bookmark: _Ref134983565]Figure 10:  Generalizability performance (SGCS) over UE indoor/outdoor distribution – all models tested with 100% indoor UEs.

TxRU Mapping Generalizability
For generalization over gNB TxRU mapping, we vary the configuration of the antenna ports at the gNB while maintaining the same overall number of transmit ports.  For this study we consider two configurations of 32 antenna ports at the gNB.  The first configuration is an array with 128 antenna elements aggregated into 2 rows and 8 columns of ports for each of the two polarizations.  The second array consists of 64 antenna elements aggregated into 4 rows and 4 columns of ports for each of the two polarizations.  The configurations are given as (8,8,2,1,1,2,8) and (8,4,2,1,1,4,4) where the elements of the configuration are the number of antenna element rows per polarization, the number of antenna element columns per polarization, the number of polarizations, the number of panel rows, the number of panel columns, the number of antenna port rows per polarization, and the number of antenna port columns per polarization.  The SLS parameters used to create these datasets are shown in Table 12.  The parameters are identical to the 4 GHz parameters in Table 5, except for the additional gNB array configuration.  Similar to the approach in the carrier frequency generalization study, array-specific models are trained on each of the datasets individually plus models are trained on a mixed dataset consisting of half of each of the individual array datasets.  As before, we train models for feedback overheads of 52, 128, 208, and 312 bits, as defined in Table 3.  SGCS performance results are shown in Table 13 and plotted in Figure 11.  In the figure, each color represents models trained on a single dataset (one array configuration or a mixed dataset) and the line style (solid, dashed, dash-dot) indicates which dataset is used for testing.  For TxRU mapping, we observe that each array-specific model performs best on the dataset on which it was trained, and performance is significantly degraded on the other datasets.  However, the performance of the models trained on the mixed dataset  is very close on all three datasets and is only slightly below the best performance for all of the models.  Therefore, the mixed dataset provides good generalization performance over TxRU mapping.
Observation 7:  When generalizing over TxRU mapping, array-specific models perform best on the array on which they were trained and exhibit significant performance reduction on other TxRU mappings.
Observation 8:  Mixed dataset training is a good compromise for generalization over TxRU mapping yielding SGCS performance near the best array-specific model performance.
[bookmark: _Ref134988843]Table 12:  SLS parameters for generalization training datasets over gNB TxRU mapping
	Parameter
	Value

	Simulation scenario
	UMa

	Carrier frequency
	4 GHz (30 kHz SCS)

	Bandwidth
	20 MHz

	Num. cell sites
	7 sites, 3 sectors per site

	BS antenna height
	25m

	Distribution of UEs (indoor %, outdoor %)
	(80, 20)

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m

	BS antenna arrays
	1. (8,8,2,1,1,2,8) (32 ports), (dH, dV) = (0.5λ, 0.8λ)
2. (8,4,2,1,1,4,4) (32 ports), (dH, dV) = (0.5λ, 0.8λ)

	UE antenna array
	(1,2,2,1,1,1,2) (4 ports), dH = 0.5λ



[bookmark: _Ref134989256]Table 13:  Generalizability performance (SGCS) over TxRU mapping with 32 ports
	Overhead
	(2,8,2)-Trained
	(4,4,2)-Trained
	Mixed Data Trained

	
	(2,8,2)
	(4,4,2)
	Mixed
	(2,8,2)
	(4,4,2)
	Mixed
	(2,8,2)
	(4,4,2)
	Mixed

	52
	0.691
	0.494
	0.593
	0.528
	0.750
	0.639
	0.685
	0.717
	0.702

	128
	0.796
	0.542
	0.669
	0.578
	0.848
	0.714
	0.788
	0.831
	0.812

	208
	0.850
	0.660
	0.755
	0.633
	0.889
	0.761
	0.839
	0.870
	0.856

	312
	0.880
	0.692
	0.786
	0.681
	0.919
	0.800
	0.870
	0.896
	0.884
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[bookmark: _Ref134989285]Figure 11:  Generalizability performance (SGCS) over TxRU mapping with (2,8,2) and (4,4,2) port configurations.

Scalability
Scalability is the ability of an AI/ML model to be used for multiple system configurations.  It is important to assess scalability for CSI compression models to better understand the circumstances in which the gNB and UE would need to switch models as well as to understand the features to standardize to support model operation in different circumstances.  System configuration variables which are important to consider for scalability include:
· Feedback overhead configuration: The includes varying the compression ratio with the effect of changing the feedback overhead.
· Bandwidth, subcarrier spacing, number of subbands: The variability of bandwidth due to bandwidth part configuration should be considered.
· gNB antenna array configuration: For scalability, this primarily includes the ability of a model to support different numbers of transmit ports.  We have covered variation in the shape of the transmit antenna array (e.g., (2,8,2) vs. (4,4,2), both with 32 ports) in the generalizability section.
One final area which we consider is the possibility that a decoder can be constructed in a manner which can support both scalar and vector quantization.  We present our performance results for each of these four areas:  Feedback overhead, bandwidth, number of antenna ports, and support for multiple quantization types.
[bookmark: _Hlk127512645]Scalability across Feedback Overhead (Payload)
Figure 12 shows a sketch of the universal AI/ML model architecture designed to achieve scalability across different output codeword lengths or compression ratios (CR). In the universal model architecture, CSI data are input into a common encoder after pre-processing.  Several sub-NNs are used for compression with various compression ratios to obtain the feedback codewords of different lengths.  The related sub-NNs decompress the feedback codeword of diverse lengths and the common decoder reconstructs the CSI data.
The experiments are conducted when CR=1/8, 1/16, 1/32, and 1/64 using 80K training samples and 20K testing samples.  The dataset is created using the Urban Macro scenario at a carrier frequency of 4 GHz, a bandwidth of 20 MHz, and a subcarrier spacing of 30 kHz, where the SLS parameters are given in Table 1.  The base station has 32 transmit ports using the antenna configuration given in Table 28.  In the dataset, there are 52 PRBs across the frequency band.  The model is trained to accommodate different CRs with the dataset of the single CSI input configuration using Type 1 joint training.  Note that the training for this case does not fit into any of the three cases in the second agreement listed above since the dataset does not vary in its output dimension as the CR changes.  In addition to the universal model trained for different CRs, payload-specific models are trained for each compression ratio for comparison with the universal model.  With these payload-specific models, the universal model is a Case 3 model in the agreement above on scalability (the second agreement) and the payload-specific models constitute the Case 1 models.  In these experiments, the latent variables are quantized with scalar quantization (uniform quantization, 2 bits/element) and the number of latent variables depends on the CR.  Since there are 832 floating point inputs, the number of latent variables changes from 104 to 13 as the CR varies from 1/8 to 1/64, and the corresponding quantized feedback codeword lengths vary from 26 bits to 208 bits.  The simulation results in Table 14 illustrate that the universal model of scalable CRs can achieve similar results to the payload-specific models across a wide range of CRs.  The simulation results validate that the universal model can generate CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.
[image: ]
[bookmark: _Ref131506246][bookmark: _Ref131436061][bookmark: _Ref131452125]Figure 12:  Scalability across Compression Ratios (CR)
[bookmark: _Ref131677143][bookmark: _Ref131436144]Table 14.  Scalability performance (SGCS) over different CRs
	
	CR=1/8 
208bits
	CR=1/16
104bits
	CR=1/32 
52bits
	CR=1/64
26bits

	Payload-specific models
	0.818
	0.750
	0.706
	0.642

	Unified model for different payloads 
	0.794
(-0.023)
	0.737
(-0.013)
	0.679
(-0.027)
	0.623
(-0.019)



Observation 9:  The universal model is capable of generating CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.


Scalability across Bandwidths
Figure 13 shows a sketch of the universal AI/ML model architecture to achieve scalability across input configurations (bandwidths, ports, and antenna array configurations). In the universal model, original CSI data of various configurations are first input into a pre-processing module, which splits the CSI matrices into CSI patches as the intermediate results. Then, the CSI patches are input into a common encoder for compression without distinction. Sub-NNs are used for compression and decompression. Then, the common decoder reconstructs the CSI data of the diverse configurations. 
The scalability experiments over different bandwidths are conducted over 52 and 48 PRB datasets.  The same dataset used in the payload scaling experiments is used here where the 48 PRB data is constructed by using only 48 of the 52 PRBs.  The number of base station TX port for both datasets is 32, again using the antenna configuration in Table 28.  Type 1 joint training is used for the encoder and decoder where a Case 3 mixed dataset is used (see the first agreement above on scalable input dimensions).  The unified model is a Case 3 scalability model according to the third agreement above on scalability since the encoder/decoder have scalable input/output dimensions.  The Case 1 results consist of bandwidth-specific models, where the model is trained based on 160K training dataset from a fixed PRB number and then the AI/ML model performs inference/test on a 20K dataset from the same PRB number.  CR=1/8, 1/16, 1/32, and 1/64 cases are tested with scalar quantization (uniform quantization, 2 bits/element).  The simulation results in Table 15 illustrate that the universal transformer scheme can achieve similar results to the bandwidth-specific model. The simulation results validate that the universal model is capable of compressing and decompressing the CSI matrices of different input configurations without a significant loss in CSI reconstruction accuracy.
[image: ]
[bookmark: _Ref131436068]Figure 13:  Scalability across Bandwidths
[bookmark: _Ref131680342][bookmark: _Ref131436180]Table 15:  Scalability performance (SGCS) over different bandwidths
	Training
	Test
	CR=1/8
(208/196 bits)
	CR=1/16
(104/96 bits)
	CR=1/32
(52/48 bits)
	CR=1/64
(26/24 bits)

	Bandwidth-specific models
	52 RB
	0.808
	0.727
	0.660
	0.618

	
	48 RB
	0.806
	0.728
	0.677
	0.619

	Unified model for 2 bandwidths
	52 RB
	0.794
(-0.014)
	0.736
(+0.009)
	0.659
(-0.001)
	0.633
(+0.014)

	
	48 RB
	0.793
(-0.013)
	0.735
(+0.007)
	0.662
(-0.017)
	0.637
(+0.017)



Observation 10:  The universal model is capable of compressing and decompressing the CSI matrices of different bandwidth configurations without a significant loss of CSI reconstruction accuracy.
Scalability across Antenna Ports
As aforementioned, the sketch in Figure 13 can also achieve scalability across different antenna ports. The experiments are conducted over 16 ports and 32 ports when CR=1/16 and 2 bits/element scalar quantization are applied. The dataset is of 52 PRBs data and again using the antenna configuration in Table 28. Type 1 joint training is used for the encoder and decoder where a Case 3 mixed dataset is used (see the first agreement above on scalable input dimensions).  The unified model is a Case 3 scalability model according to the third agreement above on scalability since the encoder/decoder have scalable input/output dimensions. The port-specific model is of Case 1, where the model is trained based on a 160K training dataset from a fixed number of ports and then the AI/ML model performs inference/test on a 20K dataset from the same number of ports. The simulation results in Table 16 illustrate that the universal transformer scheme can achieve results similar to the port-specific model. The simulation results again validate that the universal model is capable of compressing and decompressing the CSI matrices of different input configurations without a significant loss in CSI reconstruction accuracy.


[bookmark: _Ref134996726]Table 16:  Scalability performance (SGCS) over different numbers of ports
	Ports
	Port-specific model 
	Unified model

	16 ports (52 bits)
	0.768
	0.737 (-0.031)

	32 ports (104 bits)
	0.754
	0.727 (-0.027)



Observation 11:  The universal model is capable of compressing and decompressing the CSI matrices of different port configurations without a significant loss of CSI reconstruction accuracy.
Proposal 1:  Continue to study the universal model approach to scalability for support of wider variation in bandwidth and antenna port counts as well as for other scalability parameters and combinations of parameters.

Scalability across Quantization Type
Scalar quantization (SQ) and vector quantization (VQ) respectively have their own advantages in terms of either performance or computational simplicity from an implementation perspective. We are herein investigating the feasibility of coexistence of heterogeneous encoder-decoders, such as an encoder with SQ in the UE and a decoder with VQ in the gNB, or vice versa. As depicted in Figure 8, UE-1 with SQ in the encoder was previously cooperating with gNB-1 with a corresponding SQ decoder.  Once it roams to the service area of gNB-2 equipped with a VQ-type decoder, options for gNB-2 are that it either use a new dedicated SQ-decoder to serve UE-1 which might exacerbate model storage challenges, or use the VQ decoder to offer simultaneous service for native UE-2 with a VQ encoder and UE-1 with a SQ encoder. Obviously, there has been research and feasibility evaluation of the second option.
[image: ]
[bookmark: _Ref134580902][bookmark: _Ref134580893]Figure 14:  Scalability across Quantization Type (SQ/VQ)
The dataset used for evaluation of heterogeneous SQ-VQ quantization remains consistent with the one described in Section 2.1.1. As for the UE1-encoder with SQ and gNB-1-decoder with SQ configuration, both of them employ the transformer-based architecture with 4 multi-head self-attention blocks (each block with 8 heads), 128 embedding dimensions  and  forward dimensions. Regarding the SQ on the UE encoder, the dimension of the encoder output (i.e. latent vector) is set as 63 and each latent vector element is quantized to 4 levels (i.e. 2 bits), so the number of overhead bits is . The UE-2 encoder with VQ and gNB-2 decoder with VQ also use the transformer-based architecture but with distinct configurations in terms of the number of attention layers and forward dimensions. Both VQ encoder and decoder employ 6 multi-head self-attention blocks, 128 embedding dimensions  and  forward dimensions. As for the VQ configuration, the number of code vectors in the codebook and the number of segments is 64 and 21, respectively, so the number of overhead bits is also .
Table 17 presents the evaluation results for demonstrating the cooperation between an SQ-type encoder and a VQ-type decoder. The SGCS for 4 layer transformer based SQ-encoder with 4 layer transformer based SQ-decoder is 0.8025; SGCS for 6 layer transformer based VQ-encoder with 6 layer transformer based VQ-decoder is 0.8167; SGCS for the heterogeneous scheme of 4 layer transformer based SQ-encoder with 6 layer transformer based SQ-decoder is 0.8132. The SQ-VQ scheme slightly outperforms the SQ-SQ scheme for the stronger VQ decoder, and slightly underperforms the VQ-VQ scheme for the weaker SQ encoder. The evaluation results here indicate that a common NW-side decoder can accommodate encoders with heterogeneous types of quantization schemes at the same time. 
[bookmark: _Ref135005243]Table 17:  Simulation results for scalability across quantization type
	Training Type
	Encoder
	Decoder
	SGCS

	Encoder-decoder jointly trained on UE side
	UE-encoder trained with SQ
(Transformer with 4 attention layers)
	UE-decoder trained with SQ
(Transformer with 4 attention layers)
	0.8025

	Encoder-decoder jointly trained on NW side
	NW-encoder trained with VQ
(Transformer with 6 attention layers)
	Common NW-side decoder trained with VQ
(Transformer with 6 attention layers)

	0.8167

	Encoder-decoder independently trained on UE and NW side in different sessions
	UE-encoder trained with SQ
(Transformer with 4 attention layers)
	
	0.8132



Observation 12:  It is technically feasible for a single decoder model to accommodate UE encoders employing scalar or vector quantization.
Proposal 2:  Companies are encouraged to study collaboration feasibility between encoders and decoders with heterogeneous quantization schemes.
Quantization
In RAN1#111 [7], the agreement below was reached identifying three different cases to consider for evaluation of quantization aware and quantization non-aware training:

Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.

Quantization non-aware training assumes there is no quantization in the training phase while the quantizer and potential de-quantizer, respectively, are added to the encoder and decoder in the inference phase. Therefore, the encoder/decoder parameters do not consider the quantization properties in the training of their parameters. One advantage of this scheme is that we can decouple the AI encoder/decoder training and quantizer formulation, at the cost of possible end-to-end performance degradation. This allows the selection of various quantization schemes without needing to load a new model. This scheme consists of 3 major steps:
1. AI encoder/decoder is trained without any intermediate quantization procedure between the CSI generation and reconstruction parts. The latent feature vector is directly fed into the AI decoder for training. At the conclusion of training, a quantization training dataset of the latent feature vector samples collected during the final epoch can be provided for subsequent quantization formulation, as well as the trained AI encoder/decoder parameters.
2. The quantization procedure is formulated. Either scalar quantization or vector quantization can be adopted. For this operation, a certain distance metric should be used to measure distance between input scalar/vector and output quantized value/codeword. Quantization parameters can be designed to minimize the quantization loss and degradation of the reconstructed CSI due to the quantization. Note that it may be challenging to find the distance metric which can lead to the solution minimizing loss at Step1.
3. The formulated quantizer and potential de-quantizer, respectively, can be plugged into the overall AI encoder and decoder to check end-to-end performance. Optionally, the AI encoder/decoder can be fine-tuned with the quantizer in the chain to calibrate AI encoder/decoder parameters. Here, the quantizer operation is considered to be frozen (not subject to updates).
In quantization-aware training, the quantization procedure is determined prior to training and is incorporated into the training process.  In this contribution, we consider both sub-cases of quantization-aware training:  Case 2-1 where the quantizer is fixed prior to training and Case 2-2 where the quantizer type is determined prior to training but parameters of the quantizer are adapted during the training process.
To evaluate the performance degradation caused by a quantization block, we propose to define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from testing the model trained without quantization and the reconstruction metric obtained from a model including quantization.  For the case of quantization unaware training, the quantization loss is determined using the same trained AI/ML model but comparing the unquantized output performance (in inference) with the performance when quantization of the output has been added to the model.  For the case of quantization aware training, the quantization loss is determined by comparing the reconstruction metric obtained from the model trained without quantization to the metric obtained from the model trained with quantization (whether fixed as in Case 2-1 or adapted as part of the training process as in Case 2-2).  In all cases, the performance metric is obtained through inference testing of the AI/ML model and associated quantization.  The quantization loss is reported in dB scale.
The motivation for defining the quantization loss is, as Xiaomi observed in their response to Issue 3-18 of the feature lead summary in RAN1#112 [8], is to provide a concrete upper bound for performance for assessing quantization schemes and determining the available gain which could be achieved with an improved quantization scheme.  While any implementation of an AI/ML model would use quantization, the standard will likely need to specify different feedback payloads.  This metric will provide information to aid in determining the set of allowed feedback payloads by providing information on the tradeoff between performance and overhead by assessing how near the payloads are to the achievable limit.
Proposal 3:  Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
In a previous contribution [5], we presented the results of a study of quantization methods using a CSI compression model based on a convolutional neural network (CNN).  In this contribution, we extend the study to a CSI compression model using the transformer architecture.  The transformer model is similar to the model shown in Figure 1, except that the model has 6 attention layers.  As in the previous study, we compare the unquantized model performance with the quantized model performance. We use both scalar quantization (SQ) and vector quantization and cover both quantization unaware training (Case 1) and quantization aware training with fixed (Case 2-1) and variable (Case 2-2) quantization.  For scalar quantization, we only consider uniform 2-bit quantization.  For vector quantization, the dimension of each segment is given by S, and B is the number of bits allocated to the VQ codebook, where B = S × Feedback bits/element.  For Case 1, the K-means algorithm is used to determine the VQ codebook. For Case 2-2, the VQ codebook elements are jointly adapted with the encoder and decoder parameters by incorporating the VQ performance into the loss function.  The training dataset is described by the parameters in Table 1 and contains a total of 630K samples.  The antenna configurations are those given in Table 28.  In all cases, the latent variable dimension is 64 for a compression ratio of 13.  
The results of the quantization study are shown in Table 18. The 6-layer transformer model yields an SGCS of 0.8702 (‑8.87 dB) without any quantization, which is significantly better than the comparable CNN performance in the previous study (0.78). In quantization aware training (Case 2-1), the same architecture transformer model can provide a SGCS of 0.8089 (-7.19 dB) with 2 bits scalar quantization (128 bits overhead).  The SGCS performance is further improved by less than 0.5 dB (0.12-0.3 dB improvement observed) with vector quantization (Quantization-aware training Case2-2), which aligns our observation with results from the CNN-based model.  However, in quantization non-aware training (Case 1), with vector quantization the same transformer model can achieve a SGCS of 0.8143 (-7.31 dB) which is slightly below the quantization aware training with vector quantization. Further SGCS improvement is expected with a better vector quantization codebook design.  Our observations from this study are mostly similar to those made with the original study.  Since only one quantization payload was considered in this study, some additional study would be required to assess the trade-offs between payload scalability using quantization-unaware training and quantization-aware training, including the application of the universal model approach to payload scaling, which was discussed earlier in this contribution.
Observation 13:  Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 14:  Vector quantization is found to have a smaller quantization loss than uniform scalar quantization.
Observation 15:  Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AI model.
Proposal 4:  Continue to study quantization unaware and quantization aware training to assess the different approaches to payload scalability.
[bookmark: _Ref131682724]Table 18:  Vector Quantization with Transformer based model (with 6 attention layers, containing about 8 M trainable parameters in total)- SQ: Scalar quantization, VQ: Vector quantization
	Transformer
	Description
	Training 
Scheme
	Quantization (bits/element)
	Feedback 
Overhead (bits)
	SGCS
	Quantization Loss
	Codebook Size

	
	
	
	
	
	linear
	dB
	
	

	
	Unquantized
	
	32
	2048
	0.8702
	-8.87
	-
	-

	
	SQ – Uniform
	Case 2-1
	2
	128
	0.8089
	-7.19
	1.68 dB
	-

	
	VQ
	Case 1
	2 bits (S=4, B=8)
	128
	0.8143
	-7.31
	1.56 dB
	256

	
	
	Case 2-2
	2 bits (S=1, B=2)
	128
	0.8147
	-7.32
	1.55 dB
	4

	
	
	
	2 bits (S=2, B=4)
	128
	0.8176
	-7.39
	1.48 dB
	16

	
	
	
	2 bits (S=4, B=8)
	128
	0.8216
	-7.49
	1.38 dB
	256



[bookmark: _Hlk134799031]The results of non-uniform scalar quantization using mu-law with CNN-based AE are presented in Table 4 and Table 5 of our previous contribution [5]. For quantization non-aware training, even though the non-uniform scalar quantizer provided superior performance to uniform scalar quantizer, vector quantization has offered the best performance. In addition, for quantization-aware training, using non-uniform scalar quantization degrades the reconstruction performance compared to a uniform scalar quantizer. Therefore, to remove the useless possibilities for quantization and de-quantization blocks, we propose to deprioritize the non-uniform scalar quantization (using mu-law or A-law). It is important to clarify that we support codebook-based scalar quantization, but we categorize this option under a VQ scheme with the segment size of 1.
Proposal 5: In CSI compression using the two-sided model use case, RAN1 should deprioritize non-uniform scalar quantization using mu-law or A-law of CSI-feedback for quantization-aware and quantization non-aware training. However, we support codebook-based scalar quantization, which may lead to non-uniform scalar quantization.
Case 1 (Quantization non-aware training): In this case, it is most likely that the distribution of encoder outputs is not uniform. Therefore, in quantization non-aware training, considering a uniform scalar quantizer results in severe performance degradation in CSI reconstruction, i.e., a high quantization loss compared to no-quantization scheme. Therefore, we propose to focus on VQ which provides the ability to adapt the quantization levels/codewords based on the distribution of the encoder outputs. Our results in Table 4 and Table 5 of our previous contribution [5] confirms this proposal.
Proposal 6: In CSI compression using two-sided model use case, RAN1 should deprioritize uniform scalar quantization of CSI-feedback for quantization non-aware training of auto-encoder based CSI-compression.
Case 2 (Quantization aware training): Our system level simulations (Figure 15) show that, under quantization aware training, the performance of transformer models using vector quantization is very close to uniform scalar quantization. Thus, it is necessary to study more the potential performance gain of using VQ compared to uniform SQ. Due to easier quantization alignment of scalar quantization, VQ should offer a significant performance gain to justify considering VQ for quantization aware training. 

[image: ]
(a)            			          (b)         		                 (c)
[bookmark: _Ref134995034]Figure 15:  Transformer model performance with quantization aware training using SQ and VQ compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 2.

Proposal 7: In CSI compression using the two-sided model use case, RAN1 should continue studying uniform scalar quantization and vector quantization of CSI-feedback for quantization-aware training of auto-encoder based CSI-compression.

Training Types
In RAN1#111 [7], the following agreements were reached regarding the evaluation of separate training (Type 3):

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.

In RAN1#112 [3], the following was also agreed regarding separate training (Type 3):
Agreement
For the evaluation of training Type 3 under CSI compression, besides the 3 cases considered for multi-vendors, add one new Case (1-on-1 training with joint training) as benchmark/upper bound for performance comparison.
· FFS the relationship between the pair(s) of models for Type 3 and the pair(s) of models for new Case
UE-first separate training
[bookmark: _Hlk127488474]Figure 16 depicts the procedure for UE-first separate training. On the left side of the figure, Step 1 involves simultaneously training the encoder at the UE and a hypothetical decoder on the network side.  Once the encoder/hypothetical decoder pair has been trained, a dataset is determined by running the pair in inference mode, collecting the eigenvectors prior to compression (), the unquantized encoder output (), and the quantized encoder output ().  This dataset is used in Step 2 to train the decoder at the network (NW) side, shown at the right size of the figure.  The pairs  are used to train the decoder without quantization and the pairs  are used to train the decoder with quantization.
[image: ]
[bookmark: _Ref127487822][bookmark: _Ref127487816]Figure 16:  UE-first separate training procedure
In a previous contribution [5], we presented performance results for UE-first separate training using a matched CNN-based model architecture.  In this contribution, we present performance results for both network-first (NW-first) and UE-first separate training using the transformer model architecture, but with mismatched architectures at the NW and UE.  The NW-first training is performed using two different approaches, which are shown in Figure 17 and Figure 18.  In Method 1 (Figure 17), the network first jointly trains the hypothetical encoder (ENC1) and the decoder (DEC1) using the training dataset .  The network then collects and shares an appended dataset containing the channel eigenvectors and the corresponding feedback elements  with the UE vendor.  In the third step, the UE vendor trains its encoder (ENC2) using the dataset shared by the network.  One possible issue with this method is that the optimization in Step 3 based on the objective function  is suboptimal.  Method 2 addresses this issue.  The first step is the same as in Method 1, but in the second step the network also saves the decoder output in the dataset.  The appended dataset is now .  In the third step, the UE vendor trains a hypothetical decoder (DEC2) using the appended dataset.  Finally, the UE vendor freezes the hypothetical decoder (DEC2) and trains its encoder (ENC2).
[image: ]
[bookmark: _Ref131709447]Figure 17:  Method 1 for NW-first separate training.
[image: ]
[bookmark: _Ref131709454]Figure 18:  Method 2 for NW-first separate training.
These NW-first methods for separate (Type 3) training are used with transformer-based models to explore the performance of separate training with mismatched models at the network and UE.  In the first case, the 3-layer transformer model in Figure 1 is used as the network-side model.  An independently designed 5-layer transformer model is used as the UE-side model, where there are significant differences in the layer designs of the two models.  The hypothetical decoder (DEC2) trained in Method 2 is designed to match the architecture of the independently designed model since its architecture is not known by the UE.  In the second case, the roles of the two models are reversed so that the independently designed model is now the 5-layer network-side model and the 3-layer model in Figure 1 is the UE-side model.  Finally, UE-first training is performed using the two models utilizing the procedure shown in Figure 16.  Again, two cases are simulated where each model serves in turn as the UE-side model while the other model serves as the network-side model.  For ease of identification, we will refer to the 3-layer transformer model in Figure 1 as TF1 and the independently designed model as TF2. In all cases, there are 64 latent variables at the bottleneck and the quantization scheme is 2 bits per latent variable using uniform scalar quantization for a total feedback overhead of 128 bits.
The SGCS results of the network-first and UE-first training are shown in Table 19 and Table 20, respectively.  Results are shown for the performance after the initial end-to-end training at the first now and for the final performance of the models trained at each end.  For the NW-first case, this means the performance of ENC1-DEC1 in the end-to-end step and ENC2-DEC1 in the encoder training step.  In all cases, we observe a small, if any, performance loss due to the separate training.  We also note that the performance loss is reduced when using NW-First Method 2 compared to NW-First Method 1.
Observation 16:  The performance loss due to separate training with mismatched transformer-based models is small compared to joint training.
Observation 17:  For NW-first training, the performance loss due to separate training is reduced when a hypothetical decoder is trained by the UE and used in the encoder training.
[bookmark: _Ref131718898]Table 19:  Network-first training results
	Training Method
	Model Roles
	End-to-End Step
	Encoder Training Step

	NW-First, Method 1
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.770

	NW-First, Method 2
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.774

	NW-First, Method 1
	Network-side model: TF2
UE-side model: TF1
	0.791
	0.776

	NW-First, Method 2
	Network-side model: TF2
UE-side model: TF1
	0.791
	0.781



[bookmark: _Ref131718900]Table 20:  UE-first training results
	Training Method
	Model Roles
	End-to-End Step
	Decoder Training Step

	UE-first
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.787

	UE-first
	Network-side model: TF2
UE-side model: TF1
	0.791
	0.789



Network-first separate training with vector quantization
For vector quantization (VQ), the codebook acts as the anchor bridging the encoder and decoder, which has significant impact on the overall performance. To adhere to the principle of separate training, in addition to guaranteeing that the model is proprietary, a proprietary VQ codebook should also be considered. Sharing the unquantized encoder output  necessitates greater effort to align the quantizer at the UE and the dequantizer at the NW. Alternatively, if the quantized latent vector  is shared with the UE, there is a potential risk of exposing the codebook to other parties. Moreover, regardless of whether the quantized or unquantized latent vector is shared, the UE-side entity would have the capability to recreate a decoder that performs similarly to the NW. To address this issue, we devise and compare several approaches for training the UE-side model with or without disclosing the NW-proprietary codebook as shown in Table 21Table 21:  NW-first separate training with vector quantization. To remove the ambiguity, the quantized latent vector derived based on the codebook is represented as , while the corresponding codewords that identify the closest codebook vectors associated with  are denoted as  (i.e., the codebook indices).
Approach 1: NW shares the dataset  and the finalized codebook . The UE-side entity can retrieve the quantized latent representation  by referring to the shared codebook and . The UE-proprietary encoder is trained to output a latent vector that closely matches .
Approach 2: NW only shares the dataset . The UE-proprietary encoder is trained to output the codeword  that closely matches the shared .
Approach 3: NW only shares the dataset . The UE creates a hypothetical codebook and a hypothetical decoder to facilitate the UE-side encoder training with an end-to-end KPI (e.g., SGCS).
[bookmark: _Ref131721690][bookmark: _Ref131721682]Table 21:  NW-first separate training with vector quantization
	UE-side encoder
	Common NW-side decoder
	Type-1 joint training 
	Approach 1
	Approach 2
	Approach 3

	Encoder 1
	TF decoder with 6 attention layers
	0.7974
	0.7882
	0.7812
	0.7951

	Encoder 2
	
	0.8168
	0.7968
	0.792
	0.7993

	Encoder 3
	
	0.8196
	0.8011
	0.7949
	0.801



In Table 21, we also verified the impact of different NN structures at UE side. Each of these encoders utilizes the transformer architecture, but with distinct configurations. Specifically, they vary in terms of their layer sizes and number of layers. Encoder 1 consists of 4 attention layers and has forward dimensions that are 3 times the size of the embedding dimensions (). Encoder 2 has 6 attention layers and  forward dimensions. Finally, Encoder 3 contains 8 attention layers and  forward dimensions. We found that all three separate training approaches yield comparable performance to the type-1 approach. The performance of approaches 2 and 3 reveal that the UE-side encoder can be effectively trained even without knowledge of the NW-side codebook or quantized latent vector. Approach 3 trained with an end-to-end KPI slightly outperforms Approach 2. Moreover, the common NW-side decoder can accommodate all newly trained encoders with different structures.
Observation 18:  For NW-first separate training with VQ, a common NW-side decoder can accommodate multiple UEs with different NN structures.
[bookmark: _Hlk135002607]Observation 19:  For NW-first separate training with VQ, Approach 2 & 3 demonstrate that the UE, without the knowledge of NW-side codebook for mapping codeword to latent vector, can still be effectively trained without performance degradation.
Proposal 8:  For NW-first separate training with vector quantization, the UE does not need to have access to the codebook for retrieval of the quantized latent representations. The codebook for mapping the codeword to quantized latent representation can be NW-proprietary.
Evaluation of Multi-Vendor Training
For simplicity, we evaluated only the case with multiple UE vendors and a single Network vendor and the case with multiple network vendors with a single UE vendor.  If multiple UE models with a single network model are trained first by the network, the experiment would be equivalent to the sequential training experiments in section 2.1.4. Similarly, the multiple network model case with UE-first training is equivalent to the UE-first experiment in section 2.1.4. Therefore, we experimented with multiple UE models with UE-first training and multiple network models with network-first training in this section.
UE-first training with Multiple UE Vendors
Two independently developed transformer models representing UEs are trained end-to-end on a 504k sample training set (TF1 has 5 transformation blocks with 16-head attention, TF2 has 3 layers with 8-head attention). A common decoder (5 transformation blocks with 16-head attention) representing the network vendor was trained from scratch using the code and channel values (q(W), W) assumed to be shared by each of the UEs. The training set for the common decoder was also 504k samples achieved by combining two datasets {(q_1(W), W), (q_2(W), W)} by down-sampling and shuffling.  SGCS results for this case are shown in Table 22.  We observe that when the encoders from the UE-side models are run with the common decoder the performance decreases only slightly.
[bookmark: _Ref135002182]Table 22:  Two-vendor UE-first common decoder training Squared Cosine Similarity results on the test set
	Overhead (bits)
	TF1
End-to-end
	TF2
End-to-end
	TF1 with
common decoder
	TF2 with
common decoder

	52
	0.680
	0.677
	0.676 (-0.004)
	0.668 (-0.009)

	128
	0.788
	0.771
	0.779 (-0.009)
	0.757 (-0.014)

	302
	0.859
	0.846
	0.855 (-0.004)
	0.841 (-0.005)



The experiment was repeated with the addition of a third UE model using a CNN-based architecture.  The SGCS results for this case are shown in Table 23.  While the performance drop in this case is somewhat larger than the performance drop in the two-vendor case, the drop is still quite small.
[bookmark: _Ref135002331]Table 23:  Three-vendor UE first common decoder training Squared Cosine Similarity results on the test set
	Overhead (bits)
	TF-1 End-to-end
	TF-2 End-to-end
	CNN End-to-end
	TF-1 encoder with common decoder
	TF-2 encoder with common decoder
	CNN encoder with common decoder

	128
	0.788
	0.771
	0.747
	0.761 (-0.027)
	0.748 (-0.023)
	0.733 (-0.014)



Observation 20:  For UE-first training with multiple UE vendors, the SGCS performance loss with both 2 and 3 UE vendors compared to jointly trained end-to-end models is quite small (a drop of 0.027 or less is observed).


Network-first training with Multiple Network Vendors
In the network-first training experiment, the same two independently developed transformer models are used to represent the network vendor models.  A common encoder (5 transformation block with 16-head attention) representing the UE vendor was trained from scratch using the code and channel values (W, q(W)) assumed to be shared by each of the networks.  The training set for the common encoder was also 504k samples achieved by combining two datasets {(W, q_1(W)), (W, q_2(W))}by down-sampling and shuffling.  The SGCS performance results for this case are shown in Table 24.  We observe that when the encoders from the UE side models are run with the common decoder the squared cosine similarity decreases only slightly.
[bookmark: _Ref135002954]Table 24:  Two-vendor network-first common encoder training Squared Cosine Similarity results on the test set
	Overhead size
	TF-1 End-to-end
	TF-2 End-to-end
	TF-1 decoder with
the common encoder
	TF-2 decoder with
the common encoder

	52 bits
	0.680
	0.677
	0.676 (-0.004)
	0.677 (0.000)

	128 bits
	0.788
	0.771
	0.780 (-0.008)
	0.759 (-0.012)

	302 bits
	0.859
	0.846
	0.838 (-0.021)
	0.830 (-0.016)



Observation 21:  For network-first training with multiple network vendors, the SGCS performance loss with two network vendors compared to jointly trained end-to-end models is quite small (a drop of 0.021 or less is observed).
CSI prediction
Model Performance
In RAN1#112, the following working assumption on the performance baseline for CSI prediction was confirmed:
Agreement
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction
Here, we report performance results for our CSI prediction model including both intermediate KPI results using the squared generalized cosine similarity (SGCS) and system level simulation performance results.  The results are reported relative to the baseline performance of the nearest historical CSI without prediction as indicated in the agreement.  The baseline performance uses the Rel-16 eType II codebook without prediction – i.e., a zero-order hold (ZOH).
We designed three different models for CSI prediction. The first predictor model is named 4-LSTM where a convolutional LSTM model using 4 time-domain input samples is adopted, as previously described in [5]. The 4-LSTM model has 3 layers – a convolution LSTM followed by 2 common convolutional layers, with a total of 4368 trainable parameters.  A block diagram of the model is shown in Figure 19.  The second predictor model is named 8-LSTM where 8 time-domain input samples are used as input for the convolutional LSTM model shown in Figure 20.  The 8-LSTM model consists of a total of 7824 trainable parameters.  The third predictor model is named 8-BiLSTM where 8 time-domain input samples are used as input to a bidirectional convolutional LSTM architecture, as in Figure 21.  The 8-BiLSTM model has a total of 12048 trainable parameters. 
The model is trained using 60 UE tracks 500ms long, sampled at 5ms intervals, where 100 tracks are used for testing.  All UEs are moving at a speed of 30 km/h in an urban macro environment with all UEs in cars. The base station antenna array consists of 32 ports at a carrier frequency of 2 GHz. For all the evaluated models, the CSI can be predicted up to 5ms ahead which corresponds to the next CSI-RS measurement. This 5ms prediction is used to evaluate the SGCS as an intermediate KPI, see Table 25.  However, for system level results, the prediction is taken 4ms ahead.  The system level simulations are performed using the assumptions given in Table 29 in the Appendix. 
[image: ]
[bookmark: _Ref131645614]Figure 19:  The 4-LSTM architecture for channel prediction to support predicted CSI feedback.

[image: ]
[bookmark: _Ref135003672]Figure 20:  The 8-LSTM model architecture for channel prediction.
[image: ]
[bookmark: _Ref135003741]Figure 21:  The 8-BiLSTM model architecture for channel prediction.

[bookmark: _Ref135003852]Table 25:  Intermediate KPIs for the three different CSI predictor models.
	Model
	ZoH SGCS
	AI/ML SGCS

	4-LSTM
	0.5091
	0.6568 (29.01%)

	8-LSTM
	
	0.6677 (31.15%)

	8-BiLSTM
	
	0.6899 (35.51%)



Since the 8-BiLSTM is the best performing architecture, the system level simulation uses this model for CSI prediction and the results are shown in Table 26.  With AI/ML-based CSI prediction, the CSI is predicted 4ms ahead of the measured CSI-RS.  The prediction is performed by predicting the channel matrix and then forming the CSI feedback from the predicted channel using the Rel-16 eType II codebook.  For both the baseline feedback and the predicted CSI feedback, the Rel-16 eType II codebook is configured with parameter combination 4 (L=4,  ), which has a maximum feedback overhead of 315 bits for the simulated antenna array configuration.  The actual feedback overhead for the AI/ML-based predicted CSI is 303 bits on average while the baseline overhead with ZOH is also 303 bits. With non-ideal CSI-RS, we find that AI/ML-based CSI prediction has gains of about 2% and 0% over the ZOH baseline in mean user throughput and cell edge throughput, respectively.  Performance in bursty traffic and with MU-MIMO is still to be evaluated.
[bookmark: _Hlk134561676]Observation 22:  System level simulations of AI/ML-based CSI prediction show gains of somewhat less than 5% in mean user throughput with SU-MIMO in full buffer traffic.
[bookmark: _Ref135004475]Table 26:  CSI Prediction Performance Results
	 
	 
	Source 1: Nokia 

	AI/ML model description 
	AL/ML model backbone 
	8-BiLSTM

	
	[Pre-processing] 
	time domain interpolation / oversample factor 5 

	
	[Post-processing] 
	Type II Release 16 

	
	FLOPs/M 
	0.8459 M FLOPs

	
	Parameters/M 
	0.012048

	
	[Storage /Mbytes] 
	

	
	Input type 
	complex CSI, 50 PRBs, 32 AP 

	
	Output type 
	complex CSI, 50 PRBs, 32 AP 

	Assumption 
	UE speed 
	30 kmph 

	
	CSI feedback periodicity 
	5 ms 

	
	Observation window (number/distance) 
	8 / 5 ms 

	
	Prediction window (number/distance) 
	1 / 4 ms 

	
	Whether/how to adopt spatial consistency 
	Track over 500 ms 

	Dataset size 
	Train/k 
	60 UE tracks 

	
	Test/k 
	100 UE tracks 

	Benchmark 1 
	ZOH 

	Intermediate KPI #1 of Benchmark 1 
	 
	0.5091 SGCS  [non-ideal CSI-RS]

	Gain for intermediate KPI#1 over Benchmark 1 
	 
	35.51% [non-ideal CSI-RS]

	Intermediate KPI #2 of Benchmark 1 
	 
	 

	Gain for intermediate KPI#2 over Benchmark 1 
	 
	 

	Intermediate KPI #1 of Benchmark 1 
	 
	 

	Gain for eventual KPI (Benchmark 1) 
	Mean UPT 
	1.73% [non-ideal CSI-RS]

	
	5% UPT 
	0% [non-ideal CSI-RS]



Generalization
In order to evaluate generalization performance, we have trained 8-BiLSTM CSI predictor models using datasets at two different speeds, 30kmph and 60 kmph.  The intermediate SGCS results for these speed-specific models are presented in Table 27, including performance tests at both speeds with comparison to the zero-order hold results.  In these initial results, we see that the speed-specific models exhibit gains when used with the speed for which they are trained but exhibit significant performance loss when tested with the other speed.  The next step is to consider models trained with a mixture of data at different speeds to gauge whether reasonable performance can be obtained with a single model designed for multiple speeds.
Observation 23:  Initial results for the generalization of CSI prediction models over speed indicate that speed-specific models do not generalize well to other speeds.
[bookmark: _Ref134614459]Table 27:  SGCS results for model generalization
	Train
	Test
	SGCS ZoH
	SGCS AI/ML

	30kmph
	30kmph
	0.5091
	0.6899 (+0.1808)

	30kmph
	60kmph
	0.4590
	0.4410 (-0.0180)

	60 kmph
	30kmph
	0.5091
	0.3602 (-0.1489)

	60kmph
	60kmph
	0.4590
	0.5115 (+0.0525)



Conclusion
In this contribution, we have addressed evaluation issues for both CSI feedback with autoencoders and CSI prediction with AI/ML
For CSI feedback with autoencoders, our observations and proposals are:
Observation 1:  The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on both the SGCS metric and MU-MIMO throughput performance.  Gains up to the following are seen:
· 6.5%/2.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 1.
· 8.5%/3.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 2.
· 4.5%/10.0% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 1.
· 13.0%/22.5% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 2.
Observation 2:  When generalizing over carrier frequency (2 and 4 GHz), the model trained at higher frequency was found to generalize better than the model trained at a lower carrier frequency and performed close to or better than the mixed dataset-trained model at both frequencies.
Observation 3:  When generalizing over carrier frequency (2 and 4 GHz), carrier-frequency-specific models and mixed-dataset models both performed best at the lower carrier frequency.
Observation 4:  When generalizing over UE indoor/outdoor distributions, models trained on one UE distribution always achieves the best performance on the distribution with 100% outdoor UEs.
Observation 5:  When generalizing over UE indoor/outdoor distributions, models trained with 100% indoor UEs always achieve the best performance in every UE distribution.
Observation 6:  When generalizing over UE indoor/outdoor distributions, for models trained on one UE distribution, the performance of the model drops as the percentage of indoor users in the test distribution increases.
Observation 7:  When generalizing over TxRU mapping, array-specific models perform best on the array on which they were trained and exhibit significant performance reduction on other TxRU mappings.
Observation 8:  Mixed dataset training is a good compromise for generalization over TxRU mapping yielding SGCS performance near the best array-specific model performance.
Observation 9:  The universal model is capable of generating CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.
Observation 10:  The universal model is capable of compressing and decompressing the CSI matrices of different bandwidth configurations without a significant loss of CSI reconstruction accuracy.
Observation 11:  The universal model is capable of compressing and decompressing the CSI matrices of different port configurations without a significant loss of CSI reconstruction accuracy.
Proposal 1:  Continue to study the universal model approach to scalability for support of wider variation in bandwidth and antenna port counts as well as for other scalability parameters and combinations of parameters.
Observation 12:  It is technically feasible for a single decoder model to accommodate UE encoders employing scalar or vector quantization.
Proposal 2:  Companies are encouraged to study collaboration feasibility between encoders and decoders with heterogeneous quantization schemes.
Proposal 3:  Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
Observation 13:  Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 14:  Vector quantization is found to have a smaller quantization loss than uniform scalar quantization.
Observation 15:  Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AI model.
Proposal 4:  Continue to study quantization unaware and quantization aware training to assess the different approaches to payload scalability.
Proposal 5: In CSI compression using the two-sided model use case, RAN1 should deprioritize non-uniform scalar quantization using mu-law or A-law of CSI-feedback for quantization-aware and quantization non-aware training. However, we support codebook-based scalar quantization, which may lead to non-uniform scalar quantization.
Proposal 6: In CSI compression using two-sided model use case, RAN1 should deprioritize uniform scalar quantization of CSI-feedback for quantization non-aware training of auto-encoder based CSI-compression.
Proposal 7: In CSI compression using the two-sided model use case, RAN1 should continue studying uniform scalar quantization and vector quantization of CSI-feedback for quantization-aware training of auto-encoder based CSI-compression.
Observation 16:  The performance loss due to separate training with mismatched transformer-based models is small compared to joint training.
Observation 17:  For NW-first training, the performance loss due to separate training is reduced when a hypothetical decoder is trained by the UE and used in the encoder training.
Observation 18:  For NW-first separate training with VQ, a common NW-side decoder can accommodate multiple UEs with different NN structures.
Observation 19:  For NW-first separate training with VQ, Approach 2 & 3 demonstrate that the UE, without the knowledge of NW-side codebook for mapping codeword to latent vector, can still be effectively trained without performance degradation.
Proposal 8:  For NW-first separate training with vector quantization, the UE does not need to have access to the codebook for retrieval of the quantized latent representations. The codebook for mapping the codeword to quantized latent representation can be NW-proprietary.
Observation 20:  For UE-first training with multiple UE vendors, the SGCS performance loss with both 2 and 3 UE vendors compared to jointly trained end-to-end models is quite small (a drop of 0.027 or less is observed).
Observation 21:  For network-first training with multiple network vendors, the SGCS performance loss with two network vendors compared to jointly trained end-to-end models is quite small (a drop of 0.021 or less is observed).
For CSI prediction, our observations are:
Observation 22:  System level simulations of AI/ML-based CSI prediction show gains of somewhat less than 5% in mean user throughput with SU-MIMO in full buffer traffic.
Observation 23:  Initial results for the generalization of CSI prediction models over speed indicate that speed-specific models do not generalize well to other speeds.
References
[1] [bookmark: _Ref111120193][bookmark: _Ref101872208][bookmark: _Hlk131658240]“Draft Report of 3GPP TSG RAN WG1 #112bis-e v0.1.0,” RAN1#112bis-e, Online, 17-26 April 2023.
[2] [bookmark: _Ref134752852]R1-2302628, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, RAN1#112bis-e, Online, 17-26 April 2023.
[3] [bookmark: _Ref134737445]“Draft Report of 3GPP TSG RAN WG1 #112 v0.4.0,” RAN1#112, Athens, Greece, 27 February – 3 March 2023. 
[4] [bookmark: _Ref127364025]R1-2212327, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#111, Toulouse, France, 14-18 November 2022.
[5] [bookmark: _Ref131506560]R1-2300604, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#112, Athens, Greece, 27 February – 3 March 2023.
[6] [bookmark: _Ref101906828][bookmark: _Hlk118680629]R1-2209366, “Further discussion on the general aspects of ML for Air-interface,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#110bis-e, 10-19 October 2022.
[7] [bookmark: _Ref131658383]“Final Report of 3GPP TSG RAN WG1 #111 v1.0.0,” RAN1#111, Toulouse, France, 14-18 November 2022.
[8] [bookmark: _Ref131686549]R1-2301940, “Summary#5 for CSI evaluation of [112-R18-AI/ML],” Moderator (Huawei), 3GPP RAN1#112, Athens, Greece, 27 February – 3 March 2023.
Appendix
[bookmark: _Ref131537366]Table 28:  System Level Simulation Assumptions for CSI Compression
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	4 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	44 dBm (20 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	30kHz

	Simulation bandwidth
	20 MHz

	MIMO scheme
	MU-MIMO

	CSI Feedback
	Baseline: Rel-16 Type II codebook
Scheduling delay: 4 ms

	Traffic model
	FTP 1, 2MB file size

	Traffic load (Resource utilization target)
	20/50/70 %

	UE distribution
	80% indoor (3km/h), 20% outdoor (3 km/h)

	Channel estimation
	Ideal



[bookmark: _Ref131641878]Table 29:  System Level Simulation Assumptions for CSI Prediction
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	2 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	41 dBm (10 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to  TR 38.901

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	15kHz

	Simulation bandwidth
	10 MHz

	MIMO scheme
	SU-MIMO

	CSI Feedback
	Baseline: Rel-16 Type II codebook, parameter combination 4
Scheduling delay: 4 ms

	Traffic model
	Full buffer

	Traffic load (Resource utilization target)
	NA

	UE distribution
	100% outdoor (30 km/h)

	Channel estimation
	Non-ideal DM-RS, ideal/non-ideal CSI-RS
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