
[bookmark: _Hlk47552872][bookmark: _Hlk127520618]3GPP TSG RAN WG1 #113 R1-2304470
Incheon, Korea, May 22nd – May 26th, 2023

Source:	vivo
[bookmark: _GoBack]Title:	Discussions on AI/ML framework
Agenda Item:	9.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]At RAN1 #112bis-e, some agreements and conclusions have been made as in appendix D [1].
In this contribution, we further discuss the general aspects of AI/ML framework.

Functionality/model/applicability identification
In the last meeting, the following agreement was achieved.
	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.

In the following, we provide our considerations on the listed FFSs.
Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level?
It has agreed that functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), while model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets). There is no need to define two procedure with nearly the same function. It is more suitable to keep the functionality procedure static and let the model procedure deal with dynamic additional conditions.
In model based LCM, additional conditions can be used for dynamic model (de)activation/switching and performance monitoring. Model ID could be associated with applicable additional conditions, or applicability ID can be used in LCM instead of model ID.
It is not needed to address additional conditions in functionality based LCM. Functionality is used to handle the case where the AI/ML capabilities are statically implemented in UEs, while for the case with dynamic additional conditions, model identification is more appropriate.

The content of Applicable conditions
The details of applicable conditions are suitable to be discussed in each sub-use-case agenda. This contribution focuses on the high-level analysis of applicable conditions.
There are mainly two types of applicable conditions, which will be discussed in the following.
· Static applicable conditions. The static applicable conditions would be specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG. Use legacy UE capability framework, some example static applicable conditions can be listed in the following table.
· Additional conditions. To fight against the generalization problem, it is beneficial to train a model in a site/scenario/area specific way. The information of scenario(s) or dataset(s) of AI/ML models should be aligned between two sides. When entering new scenarios, dynamic model (de)activation/switching or performance monitoring could be triggered. Based on current studies of sub use cases, some possible additional conditions are listed in the following table. For beam management, the detailed gNB beam pattern information is private information and would be likely not to be shared to UE. However, if the gNB beam pattern has been changed or not aligned by two sides, the AI/ML model would not work well. Then dataset ID or implicit beam pattern ID could be used to solve this problem.
Table 2-1: Example static applicable conditions and addition conditions.
	
		Static applicable conditions
		Additional conditions

	General
	· Maximum number of gNB antenna ports
	· Supported SNR/SINR/RSRP region

	CSI
	· Supported CSI feedback methods, including CSI compression and CSI prediction
· Supported model input types, including full channel information or SVD
· Maximum number of CSI-RS ports
· Maximum number of RBs
· Maximum number of ranks
· Maximum UE speed
· Supported CSI-RS periods
	· Training dataset information: Site information, timestamp information, implicit identification information e.g. IDs labeled for specific gNB/UE implementation information.
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.

	Positioning
	· Supported positioning method, including direct AI/ML positioning, AI/ML assisted positioning
· Supported model input types
· Supported model output types
· Maximum number of TRPs
· Supported PRS periods
	· Training dataset information: Site information, timestamp information, implicit identification information e.g. IDs labeled for specific gNB/UE implementation information.
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.

	Beam
	· Supported beam prediction method, including spatial domain beam prediction and temporal domain beam prediction
· Supported model input types
· Supported model output types
· Maximum number of reported beams
· Maximum number of temporal prediction period
	· Training dataset information: Site information, timestamp information, implicit identification information, e.g. IDs labeled for specific gNB/UE implementation information, such as implicit beam pattern ID.
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.

Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
It has been agreed that network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). Similar to legacy UE capability framework, the details of signalling can be discussed in each sub use cases and should be studied in WI.
Signaling to support functionality-based LCM operations can be discussed in each sub use cases and should be studied in WI.

Relationship between functionality-based LCM and model-ID-based LCM
To reduce the redundant work and make the specification concise, functionality-based LCM and model-ID-based LCM should be designed to follow one general framework and use same aspects as many as possible. It would be waste of work to design two totally different procedures for functionality-based LCM and model-ID-based LCM.
Functionality-based LCM and model-ID-based LCM should be designed to follow one general framework and use same aspects as many as possible.

The report of updates on applicable functionality(s)
In the last meeting, the following agreement is achieved.
	Agreement
· Study necessity, mechanisms, after functionality identification, for UE to report updates on applicable functionality(es) among [configured/identified] functionality(es), where the applicable functionalities may be a subset of all [configured/identified] functionalities.
· Study necessity, mechanisms, after model identification, for UE to report updates on applicable UE part/UE-side model(s), where the applicable models may be a subset of all identified models.

In the following, we focus on the report of updates on applicable functionality(s). There are mainly three scenarios to report the updates on applicable functionality(s).
· Previous applicable functionality(s) may be not suitable for current scenario, due to the change of wireless conditions. Since functionality-based LCM is based on AI/ML-enabled feature/FG and works in a static manner, the generalization problem of the fast changes of wireless conditions should be solved before usage. Some significant but slow changes of wireless conditions, e. g., the increasing or decreasing of the constructions, would change the applicable conditions of functionality(s). However, these changes are usually slow and of very low frequency, and then fast report of updates on applicable functionality(s) may be not needed. This case should be discussed in performance monitoring framework and studied in each sub-use-case agenda. And this has already been agreed as the performance monitoring for applicable conditions.
· New functionality(s) may be sent by OTT server to UE through OTA upgrade. Since functionality-based LCM is based on AI/ML-enabled feature/FG, the dynamic updating of new functionality(s) would not be suitable. For model-based LCM, the dynamic updating of new model(s) is welcome and the procedures of model identification/re-identification/updating would be used here.
· UE may need to report the current workable functionality(s) due to UE power consumption or available computing resources. If all applicable functionalities are activated in the same time, there may be not enough computing resources and the UE power consumption may be too high.
The scenarios where updates on applicable functionality(s) may be needed should be clarified among companies to study the necessity.
Study updates on applicable model(s) for the case where UE power consumption or computation resources are dynamically varying.
[bookmark: _Hlk135037093]Based on the above analysis, the procedures of functionality/model/applicability -based LCM are shown in the below figure. The details of each identification category would be discussed separately in the following.
[image:]
Figure 2-1. The generally procedure of the functionality/model/applicability -based LCM.

Functionality identification for UE sided model developed by UE
Functionality-based LCM can be divided into two steps, which is based on UE capability report and typical RRC configuration framework.
· Step 1: UE AI/ML-enabled feature report to network. In functionality-based LCM, functionality is the target object for AI/ML operations. Network does not need to touch the actually working AI/ML model, and UE does not need to report the model description to network, such as model structure. Using AI/ML-enabled feature report, the supported functionality of UE can be reported to network. UE may have one or multiple AI/ML models for one functionality, and then UE selects the suitable AI/ML model according to current wireless conditions transparently from network. Necessary information for UE side operation can be exchanged based on request from both sides.
· Step 2: Based on UE report and continuously monitored wireless conditions, network controls LCM of the AI/ML based functionality. After receiving the UE report, network has the list of the supported AI/ML based functionality of UE. It has been agreed that typical RRC/MAC-CE/DCI signalling may be used to enable/disable the functionalities. Since there is no model ID model selection and model switching are not supported in the functionality-based LCM. The AI/ML functionality can be turned on/off based on monitoring procedures.
Functionality-based LCM contains two steps as legacy UE features, UE capability report and RRC/MAC-CE/DCI enabling/disabling procedures.

Logical model/Applicability identification for single sided model at UE side and developed by UE
The following is the procedure of logical model/applicability identification for single sided model at UE side and developed by UE. This procedure provides more flexibility than the functionality-based LCM and is expected to have better generalization performance, but does not touch the concept of “physical model”.
· Step 0: UE collects the data needed for training and UE trains the model. Alignment of necessary information. In this AI/ML-enabled feature with applicability identification, functionality and applicability are the basic unit of AI/ML operations. The “physical model” is not touched here. UE can collect the training data and then train the model. To ensure that the UE-sided model can work well at UE, network and UE or UE side server may need to align some necessary information, e.g., additional information can be provided from network side to facilitate UE training. Online alignment and offline alignment may both be needed.
· Step1: UE AI/ML-enabled feature report to network. AI/ML-enabled feature is reported by UE to network.
· [bookmark: _Hlk135037150]Step2: Alignment of additional conditions between network and UE. Unlike functionality-based LCM, additional conditions are used in this procedure to improve the generalization performance. The additional conditions could be sent from network to UE, during the model parameters delivery. Also, UE could report the additional conditions of the received model, since UE may do some device specific optimization based on its own hardware environment and collected data.
· Step3: Using applicability ID or logical model ID, network can indicate or assist LCM, including model selection or switching, model activation/deactivation. Instead of functionality ID or model ID, applicability ID can be used for two sides to indicate the right “logical model”. Take performance monitoring as an example. The configuration or indication of performance monitoring measurement resource or report resource would include applicability ID, so that UE can measure and report the performance KPIs of the right “logical model”.
· Step4: Additional conditions may be updated during usage. Due to the change of wireless channel conditions, the performance monitoring results, the new model or new model parameters and the assistance information from UE server, additional conditions may be updated to facilitate the LCM of two-sided model.

Logical/Physical Model identification/Applicability Identification for UE sided model developed by network & Logical Model identification/Applicability Identification for two-sided model
Firstly, the following is the procedure of model/applicability identification for Type 1 training two-sided model and one-sided model transferred from network to UE.
· Step 0: Alignment of model structure. Network trains the model parameters based on collected data. Since UE chipset is designed and optimized for certain model structures, it is important of network to know the supported model structures at UE. Other necessary information may include quantization supported by the UE and inference latency for a specific model etc. Based on the aligned model structure or other restrictions, the model parameters can be trained by network using the collected data.
· Step1: UE AI/ML-enabled feature report to network. AI/ML-enabled feature is reported by UE to network.
· Step2a: Network delivers the UE-sided model parameters to UE, with other necessary information. After alignment and model training, the UE-sided model can be delivered to UE. Model ID may be also delivered to UE as one part of model description information.
· Step2b: Alignment of additional conditions between network and UE. Additional conditions may contain the information of the suitable scenario/configuration/site of AI/ML model, to overcome the generalization problem and facilitate LCM. The additional conditions could be sent from network to UE, and UE could report the additional conditions of the received model if adjustment is needed.
· Step3: Using model ID or applicability ID, network controls LCM of the UE sided part of two sided models. One or both of model ID and applicability ID can be used for two sides to indicate the right model. Physical model ID or logical model ID or applicability ID can all be used for LCM.
· Step4: Additional conditions may be updated during usage. Due to the change of wireless channel feature, the performance monitoring results, the new model or new model parameters and the assistance information from UE server, additional conditions may be updated to facilitate the LCM of two-sided model.
Then the following is the procedure of model/applicability identification for Type 3 training two-sided model (separate training at two sides).
· Step0: Alignment of model structure, quantization. Network/UE exchange data needed, trains the two-sided model and align on model/applicability ID. As discussed above, to ensure the performance of separate training, network and UE or UE side server would also need to align some necessary model information, including model structure and quantization. After collecting enough training data samples, network/UE can train a two-sided model at one side and this side can generate the needed training data for other side, based on the aligned model structure, quantization or other restrictions. Applicable conditions may be sent along with the needed training data. Then the other side can train its part of the two-sided model. Model ID or applicability ID should be assigned to the exchanged training data, so that two sides can have alignment on the two-sided model.
· Step1: UE AI/ML-enabled feature report to network. AI/ML-enabled feature is reported by UE to network.
· Step2: Alignment of additional conditions between network and UE. Both UE and network already have dataset ID list based on separating training in Step0. Different dataset IDs refer to different AI/ML models. Applicability ID or logical model ID can be used here for two sides to indicate the same dataset ID, so that the network-sided part and UE-side part could match each other. Moreover, since UE may do some device specific optimization based on its own hardware environment and new collected data, the additional conditions may be exchanged or updated in this step.
· Step3: Using model ID or applicability ID, network can indicate or assist LCM, including model selection or switching. Model ID or applicability ID can be used for two sides to indicate the same two-sided model, and the LCM of this two-sided model can work correctly.
· Step4: Additional conditions may be updated during usage. Due to the change of wireless channel, the performance monitoring results, the new model or new model parameters and the assistance information from UE server, additional conditions may be updated to facilitate the LCM of two-sided model.
Consider to define the procedures as in Figure 2-1 for model/applicability -based LCM, which contains the following four steps:
· Step1: UE AI/ML-enabled feature report to network;
· Step2: Alignment of additional conditions between network and UE;
· Step3: LCM control or assistance by network using model ID or applicability ID, including model selection or switching;
· Step4: Additional conditions updating during usage.

Consideration on model identification types
As discussed in email discussion, we see the possibility of using all three procedures together to identify a model, e.g., Type A identifies the model structure offline, Type B reports the supported model structure, Type C identifies new model after model transfer.
· Type A: Model is identified offline to network (if applicable) and/or UE (if applicable). In Step0 in Figure 2-1 is belonging to this type. This is potentially air-interface transparent but not necessarily 3GPP transparent.
· Type B: Model is identified via signaling from UE to network. In Step1, UE AI/ML-enabled feature is report from UE to network. In Step2b and Step4, UE could report applicable conditions to network.
· Type C: Model is identified via signaling from network to UE. In Step2a, the model is delivered and identified from network to UE. In Step2b and Step4, applicable conditions could be sent from network to UE.
Consider the following model identification types.
· Type A (Step0 in Figure 2-1): Model is identified offline to network (if applicable) and/or UE (if applicable).
· Type B (Step1, Step2b and Step4 in Figure 2-1): Model is identified via signaling from UE to network.
· Type C (Step2a, Step2b and Step4 in Figure 2-1): Model is identified via signaling from network to UE.

Reference model structure and RAN4 related aspects
It has been agreed in RAN4 to study reference model [2]. The two-sided model test framework is considered as starting point.
	Agreement
· RAN4 to study the following issues for the 2-sided model test framework
· Common assumptions for proposals of the reference decoder / encoder (and the paired encoder/ decoder) for tester
· Definition and derivation procedure of intermediate KPI for decoder evaluation and selection
· Data collection/generation for decoder evaluation, and the common assumptions/environment needed for data collection/generation
· How to minimize the impact of possible variations/differences in the reference decoder/ reference encoder design/implementation on UE/ gNB performance verification
· The impact of reference decoder/ encoder for testing complexity to UE/gNB performance verification, and the advantage/disadvantage analysis of high/low complexity decoders.
· Other aspects are not precluded, companies are invited to bring contribution detailing any other aspects that should be considered
· FFS whether any reference for the encoder/ decoder needs to be considered given that the encoder/decoder performance is to be tested
· Take into account RAN1 discussions and conclusions on interoperability and training for 2-sided
· Reference Decoder for test implementation for 2-sided models in the UE performance tests
· Following options should be studied for the reference decoder for test implementation in the UE performance tests
· [bookmark: _Hlk133244825]Option 1: reference decoder is provided by the vendor of the encoder under test so that the encoder and decoder are jointly designed and trained
· Option 2: reference decoder is provided by the vendor of the decoder so that the encoder and decoder are jointly designed and trained
· Option 3: The reference decoder(s) are fully specified and captured in RAN4 spec to ensure identical implementation across equipment vendors without additional training procedure needed.
· Option 4: The reference decoder(s) are partially specified and captured in RAN4 spec.
· Option 5: Option 1, 2, 3 or 4 depending on the test
· Option 6: Test decoder is specified and captured in RAN4 and is provided by test environment vendor. The encoder and decoder can be jointly trained.
· Other options can be discussed depending on companies’ inputs
· Reference decoder defined for the tester in the UE performance tests should not limit the implementation of different models at the network side
· Reference Encoder for test implementation for 2-sided models in the gNB performance tests
· Following options should be studied for the reference encoder for test implementation in the gNB performance tests
· Option 1: reference encoder is provided by the vendor of the decoder under test so that the encoder and decoder are jointly designed and trained
· Option 2: reference encoder is provided by the vendor of the encoder so that the encoder and decoder are jointly designed and trained
· Option 3: The reference encoders are fully specified and captured in RAN4 spec to ensure identical implementation across equipment vendors without additional training procedure needed.
· Option 4: The reference encoders are partially specified and captured in RAN4 spec.
· Option 5: Option 1, 2, 3 or 4 depending on the test
· Option 6: Test encoder is specified and captured in RAN4 and is provided by test environment vendor. The encoder and decoder can be jointly trained.
· Other options can be discussed depending on companies’ inputs
· Reference decoder defined for the tester in the gNB performance tests should not limit the implementation of different models at the UE side. Further discuss the difference between reference encoder/decoder and test encoder/decoder.

In the next step, reference model structure could be defined for each use case to benefit RAN4 test design. Reference model structure may consider the model structure that is widely used in the industry and RAN1 evaluation discussion, e.g., fully connected, CNN and/or transformer.
· Reference model structure can benefit RAN4 test design due to the following aspects:
· With reference model structure, multiple vendors could be easily involved for both training type 1 and type 3. With training type1, both network vendor and TE vendor can update the model parameters of UE vendors and test the corresponding performance of paired models. For type 3 training, TE vendors could also take into account of reference model structure of the other side to properly train its own models.
· With reference model structure, performance requirement can be defined based on the agreed structure. The issues regarding different models having different performance can be resolved. Based on RAN1 evaluations and future RAN4 defined testing conditions, the corresponding performance of the reference model structure can be defined.
· The generalization performance of reference model structure can also be resolved for two sided case: for type 1 training, the parameters of the reference model can be updated to fit into local environments. For type 3 training, different data sets can be used to separately train different models for use considering the reference model structure. For one sided case, the generalization issue can also be resolved with update of model parameters from the other side. The only exception is UE sided model without parameters from the other side, discussion is needed on whether and how to test generalization for this case.
· Without reference model structure:
· It would be difficult to define performance requirement which can justify AI/ML gains.
· It would be difficult for TE vendors to involve in type 1 and type 3 training procedure.
Base on above analysis, we have the following proposal
Send LS to RAN4 on recommendations on reference model structure for each use case.

Zone/site specific model v.s. generic model development for two sided cases
As agreed, there are three methods to fight against the AI/ML generalization problem across different scenarios/configurations/sites, i.e., model generalization, model switching and model update. Generic model development is corresponding to model generalization where one model is deployed for different zones/scenarios, while model switching and model update is corresponding to development of zone-specific model with different models or parameters used in different zones.
In generic model development, network or UE collects a large number of training data from various scenarios/configurations/sites. Post-processing of the collected data is needed, such as noise filtering. According to our contribution [3], the ratio of the collected data from different scenarios/configurations/sites has considerable impacts on the AI/ML performance, and then this ratio may be adjusted to match the practical wireless environment. And then the AI/ML model is trained and deployed to network or UE. The generic model would be of high complexity and large storage overhead, to fit the different channel characteristic of various scenarios/configurations/sites. This generic model development can be based on either level y or level z. In level y, joint training or separate training can be used for two-sided model. In joint training or separate training, if there is no data sharing between the network vendor and UE vendor, the AI/ML model is trained by the data collected from one side, and then the AI/ML performance may be decreased. In level z, the trained model can be transferred from network to UE, since network can collect data from various UEs all the time and the AI/ML model is likely to be well trained.
 In zone specific model deployment, network or UE collects training data from the target zone. Since the wireless channel condition is much simpler in this case, the number of collected training data would be much smaller and the AI/ML model may be simple and small, which has been verified in the following subsections. Also, the ratio adjustment of the collected data from different scenarios/configurations/sites would be not needed.
Compared with zone/site specific models, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead.
In collaboration level y, UE needs to store a large number of AI/ML models. When the scenario/configuration/sites change, UE can select the proper AI/ML model among a group of models. If there are N1 scenarios, N2 configurations and N3 sites, UE needs to store N1*N2*N3 AI/ML models for just one functionality. The storage overhead may be unaffordable. Model updating is another option to improve the AI/ML generalization performance. If the AI/ML model is not suitable for current scenario/configuration/site, UE can collect training data by itself or network. Using the collected data, UE can update its AI/ML model. It is clear that the data collecting needs extra time and storage. The training procedure needs extra computation resource and time.
In collaboration level z, using model transfer, UE only needs to use the AI/ML model transferred from network. When current AI/ML model is no longer suitable, for both the new zone case and the channel condition changing case, the new model can be transferred to UE.
Collaboration level z can be used to facilitate zone specific model deploy.
Previously it has already been agreed to study zone/site specific model performance. In this section, we had more study on data collected from field and ray tracing to evaluate the performance of zone/site specific model.
	Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.
Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in Table 4.1-1.
Table 4.1-1: Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload

Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image:]
Figure 4.1-1: The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 4.1-2 and 4.1-3, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used in Table 4.1-2 and 58 bits overhead is used in Table 4.1-3. In Table 4.1-4 and 4.1-5 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas, with 167 bits overhead and 58 bits overhead separately.
It is seen that the performance gaps between different AI/ML models are small. Even one layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 4.1-2: The SGCS results of multiple AI/ML models trained by the data in each area separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423

Table 4.1-3: The SGCS results of multiple AI/ML models trained by the data in each area separately, with 58 bits overhead.
	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873

Table 4.1-4: The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 167 bits overhead.
	167 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~67kB
	0.9055
	0.905
	0.8799
	0.8959

Table 4.1-5: The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 58 bits overhead.
	58 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~30kB
	0.8184
	0.8201
	0.7592
	0.7958

[bookmark: _Hlk131499002]From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
[image:]
Figure 4.1-2: The map of data collecting cells.
For cell 1, data samples are collected by different days. The data collection routes in different days have some differences, which results in the different wireless channel features in different days.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In below tables, the AI/ML models are trained by the data in each cell separately, and multiple AI/ML models are used. For cell 1, A large combination of data collected on different days has been used. 167 bits overhead is used. One layer MLP encoder is used in Table 4.1-6, small CNN encoder is used in Table 4.1-7 and Transformer encoder is used Table 4.1-8.
It is seen that using the data collected on various days or routes, the generalization problem of different days or routes could be solved. For example, using Cell 1 data collected on 2.28 as the test data set, the AI model trained using Cell 1 data collected on various day except 2.28 and 2.16, has the nearly the same performance as the AI model trained using Cell 1 data collected on 2.28.
In addition, the AI model trained by Cell 1 data has poor performance on Cell 2 data, which is even worse than eType II.
Table 4.1-6: The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and one layer MLP encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8546
	0.8680
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8746
	\
	0.8952
	\

	Cell 2 data
	0.8145
	0.7832
	\
	\
	0.8974

Table 4.1-7: The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and small CNN encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.870
	0.876
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.888
	\
	0.907
	\

	Cell 2 data
	0.8145
	0.8099
	\
	\
	0.9044

Table 4.1-8: The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and Transformer encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8847
	0.8934
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8998
	\
	0.9160
	\

	Cell 2 data
	0.8145
	0.8404
	\
	\
	0.9172

From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
Field test shows that model developed for Cell 1 does not perform well for Cell 2.
Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.

Some initial results for spatial consistency data
Here we consider using data where the channel has spatial consistency characteristics. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, both the cluster specific random variables and the correlation distance for spatial consistency procedure a follow 38.901. The detailed parameters are provided in Table 4.2-1.
Table 4.2-1: Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]

Cell specific model is considered and then different AI/ML models are used for different cells. Simple AI/ML model, which is a one layer MLP encoder, and complex transformer encoder are evaluated in this simulation. It is seen that the performance of simple AI/ML model is similar to that of complex AI/ML model, similar as observed in field test results. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 4.2-2: The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with a cell specific model (One layer MLP encoder) ~285kB
	AI with a cell specific model (Transformer encoder) ~4.08MB

	Cell 0
	0.8345
	0.8895

	Cell 1
	0.8815
	0.9168

	Cell 2
	0.9132
	0.9412

	Cell 3
	0.9148
	0.9439

	Cell 4
	0.8718
	0.9049

	Cell 5
	0.9076
	0.9380

	Cell 6
	0.8698
	0.9072

From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.

Some initial results for ray tracing data
To better compare the performance of AI/ML model in level y and level z, we utilize a typical ray-tracing channel model [3] in our experiment. The outdoor scenario map [3] is plotted in Figure 4.3-1.
[image:]
Figure 4.3-1: Ray tracing map.
Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [3]. The initial results are presented in Table 4.3-1.
Table 4.3-1: Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99

*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model.
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antennas ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
[bookmark: _Hlk118745925]From initial results for ray tracing based data generated with the map provided in [3], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.

Summary for comparison between zone/site specific models and generic models
In this section, various evaluation results and analysis have been done for zone/site specific models and generic models, including field test, spatial consistency data and ray tracing data. To fight against the AI/ML generalization problem across different scenarios/configurations/sites, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size. For example, one hidden layer full-connected encoder is good enough for typical zone/site specific optimization.
Using the model transfer aided model switching, UE can achieve the benefits of zone/site specific models and does not need to store so many AI/ML models. If UE enters into a new scenario/configuration/site and does not have a proper AI/ML model, network can transfer a suitable AI/ML model to UE, which may be small and simple. The cost of storage, computation resource and time would be acceptable.
For separate training based operations, the model is also expected be updated in a long term which have similar shortcomings as mentioned above for generic models. Another issue is related to performance degradation due to single (multiple) reconstruction part paired with multiple (single) construction parts.
To fight against the AI/ML generalization problem, generic model would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size.

Model transfer considerations and specification impact
In RAN1#110b, the following agreement was achieved.
	Working Assumption
· Define Level y-z boundary based on whether model delivery is transparent to 3gpp signalling over the air interface or not.
· Note: other procedures than model transfer/delivery are decoupled with collaboration level y-z
Clarifying note: Level y includes cases without model delivery.

In this section, we will introduce model transfer considerations and specification impact.

Comparison between Cases y, z1 to z5 for model delivery/transfer
In RAN1#112, the following agreement was achieved.
	Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models.

	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side

Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary

The below figure illustrates the procedures of Cases y, z1 to z5 for model delivery/transfer. Comparison between Cases y, z1 to z5 will be analyzed in the following.
[image:]
Figure 5.1-1: The procedures of Cases y, z1 to z5 for model delivery/transfer.

Comparison between level y and level z
In this subsection, the comparison between level y and level z is analyzed.
Flexibility for model update
Model update is needed since AI/ML model would be outdated for various reasons.
· The change of UE hardware. For example, the phone case is widely used and different types of phone case would have different impacts on the UE signal reception. During the usage of UE device, the performance of UE antenna module would also change over time.
· Updated AI/ML model with better performance. Network and UE would collect data samples during daily usage. With the newly collected data samples, the parameters of the AI/ML model would be finetuned to achieve better performance. Moreover, new model structure would be designed to reduce the complexity and improve the performance.
· New AI/ML functionality. The original AI/ML models on the device may not cover all the AI/ML functionalities. New AI/ML functionalities would be needed to improve the system performance, such as channel prediction for higher speed, channel compression for larger PMI overhead, beam prediction for new beam pattern.
· The change of wireless conditions. The AI/ML model is trained based on the data samples from certain areas and certain time. As time goes by, the environment is always changing, such as the increasing or decreasing of the buildings, or the change of weather.
Model delivery/transfer can update the AI/ML model flexibly with small overhead and delay. Model updating or finetuning may be also used, but it would need extra computation resource and large delay due to the training procedure, extra time and storage due to data collecting.
Per cell or area optimization
As shown in Section 3, different cells or areas have different wireless channel characteristics. Per cell or area model is able to achieve good performance, with simple model structures, such as one hidden layer full-connected model or small CNN model. With model delivery/transfer, network can store the AI/ML model optimized for certain cells or areas and deliver it to UE.
Model switching or model updating is hard to achieve the gain of per cell or area optimization. If model switching is used, UE needs to store a large number of AI/ML models. Since there would be large number of cells or areas, the storage overhead may be unaffordable. Then consider model updating. If the AI/ML model is not suitable for current scenario/configuration/site, UE can collect training data by itself or network and then update its AI/ML model. It is clear that the data collecting needs extra time and storage, and the training procedure needs extra computation resource and time.
Without per cell or area optimization, the generic model is needed, which is generalizable to different cells or areas. The generic model would be of high complexity and large storage overhead, to fit the different channel characteristic of various scenarios/configurations/sites.
Future proof design
Model delivery/transfer is necessary for the future proof design in AI/ML framework for various reasons.
· Model delivery/transfer would be needed in new AI/ML technology. Current R18 AI/ML study in RAN1 mainly focused on the supervised learning. There are so many other AI/ML technologies beyond current RAN1 scope, e.g., federated learning and reinforcement learning. Note that federated learning is being studied in SA. In federated learning, center node collects large number of AI/ML models trained by different UEs and then merge these models to one model, which will be sent to UEs to replace the local models of UEs. Model transfer/delivery is needed in both the model upload from UEs to center node and the model download from center node to UEs.
· Model delivery/transfer is important in future wireless network with high automation and high evolution. In some use cases, the data needed by the AI/ML models working in one side may be only collected in the other side. Take PA non-linearity improvement as an example, in which UE needs to do some post-processing but the data is only available at network. Then it is better that network develops the AI/ML model and then delivers/transfers the AI/ML model to UE. Another reason is that AI/ML framework in future wireless network is supposed to work well in various wireless conditions, functionalities and hardware types, which needs model delivery/transfer. When new hardwires with existing types or new hardware types are connected to future wireless network, model delivery/transfer makes sure that these hardwires can obtain the suitable models for the needed functionalities with small latency. As discussed above, model delivery/transfer can easily solve the outdated model problem and obtain the gain of Per cell or area optimization.
Model delivery/transfer is necessary due to flexibility for model update, per cell or area optimization and future proof design.

Comparison between open format and proprietary format
In the following, we share our further views on the comparison between open format and proprietary format.
Proprietary information disclosure across vendors
Little proprietary information is disclosed across vendors when proprietary format is used. The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
Flexibility for model update and per cell or area optimization
Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
If open format is used, network can collect the data from nearby cells, optimize its AI/ML model and deliver the optimized AI/ML model to UE. It has been shown in Section 4 that per cell or area model could achieve good performance with simple model structures. It is noted that the same AI/ML model in open format can be optimized by network for multiple UE vendors. Moreover, UE only needs to store small number of models, since the AI/ML model can be easily delivered from network with small deliver delay.
If proprietary format is used, the AI/ML model is non-recognizable image file for network and network could not optimize the AI/ML model for UE. UE would need to store large number of image files to achieve the gain from per cell or area optimization. Moreover, different UE vendors would use different proprietary formats, and then network needs to store all these non-recognizable image files.
Offline co-engineering efforts and feasibility for deployment involving multiple vendors
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. The performance of AI/ML model with proprietary format needs be tested offline across multiple vendors, to ensure that the AI/ML performance meet requirements.
For open format, such offline co-engineering may not be needed since the vendors responsible for the development are well aware of how to use the developed models. As long as the other side can conduct the corresponding operation required by the open format model, the corresponding functionality would be achieved without any offline efforts.
For proprietary format, multiple UE vendors use their own AI/ML models, and network delivers the corresponding AI/ML model to the UE according to its vendor. For open format, multiple UE vendors can use different AI/ML models or same AI/ML model. The storage overhead of open format would be lower than that of proprietary format. Moreover, as discussed above, for cases involving testing equipment vendors, it would not be feasible to design test cases with proprietary format thus non-feasible for deployment involving multiple vendors.
Device capability and delay for compiling, updating and running the model
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure updating is also involved, it would lead to extra delay or extra device capability.
For executable images in proprietary format, UE does not need to compile the model format. For parameter-only updating, it is also not needed for the device to compile the model with properly aligned information, and then the overhead will be smaller than proprietary format. If the updated model parameters are float-point, UE would need to transform the model parameters into fixed-point. Moreover, UE may compress the AI/ML model into a smaller and simpler model. If network tries its best to optimize the AI/ML model using simple model structures, UE would not need to do the further compression. Model structure updating of open format may need the compiling of the updated AI/ML model, and the overhead will be large than proprietary format and parameter-only updating.
Another aspect is related whether additional offline effort is needed for model updating. For cases where the model is developed at the network side and then deployed at the UE side, the network can deliver the updated model to UE flexibly. For proprietary format, the model delivery would need additional offline effort to change it to executable images.
AI/ML model with proprietary format is usually optimized according to UE hardware implementation. UE hardware would optimize part of AI/ML model structures, such as full-connected layers and convolutional layers. If AI/ML model with open format contains some other AI/ML model structures which are not optimized in UE hardware, the UE hardware efficiency for AI/ML model with open format would be lower than that with proprietary format. However, if AI/ML model with open format only contains simple model structures or with parameter-only update, its hardware efficiency would be the same as to proprietary format.
The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
One advantage of open format is flexibility for model update and per cell or area optimization. Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. Moreover, for proprietary format, network has to prepare multiple models for different UE vendors.
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure update is also involved, it would lead to extra delay or extra device capability.
Study open format with widely-used model structures and parameter-only updating, which can obtain the most gain of open format and proprietary format.
· Using widely-used model structures to avoid the concern of disclosing model structure.
· Using parameter-only updating to avoid additional compiling at UE side.
In the following, our considerations on model delivery format and model structures for open format have been provided to address the mentioned concerns.
Considerations on model delivery format for open format
Another important spec impact of open format is the model delivery format. There are many options for public format, some of which are listed in the following.
· AI/ML model public format coordinated by the two sides：Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model. Interoperability token defined by SA2 is a good solution. The interoperability token implicitly maps to an interoperable model information, e.g., file format and platform. The encoding, format and value of the interoperability token is up to vendors’ implementation.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. However, 3GPP public format will take great efforts and may not be considered in this release.
It may not be easy for 3GPP to align on a single public format such as ONNX. Due to the great efforts for 3GPP to define new format for model description, this may be not considered in this release. Interoperability token defined by SA2 is simple and effective, and does not have the listed problems. Then interoperability token would be a good solution for two sides to coordinate.
Support to reuse the mechanism defined in SA2 (interoperability token) for aligning model description format for model transfer.
Considerations on model structures in open format
It is agreed in last meeting that 3GPP signaling is used for model transfer. There are two options of 3GPP signaling for model transfer. One is control plane based solution, and the other is user plane based solution. In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
If arbitrary AI/ML is transferred from network to UE, there is possibility that UE can not compile this AI/ML model into executable format, since some complexity AI/ML structures or new AI/ML techniques may be not supported by UE. UE can only compile certain AI/ML structures. It is mentioned above that update of model parameters is already supported by current typical chipset implementations. Model structure can be aligned between companies to update parameters only.
From current simulation results and field test results in Section 4 and our other contributions [4], it is seen that simple model structures, such as full-connected network or CNN, are good enough for typical per single cell or multiple cell operations.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Another concern in model transfer is the model proprietorship. There are two key aspects of AI/ML models, where one aspect is model structure and the other aspect is model parameters. If full-connected layers or convolutional layers are used, the privacy of the model structure is not so important since these models have been widely used for a lot of areas. Thus, simple model structures also have low proprietorship risk for model transfer.
The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.

Summary of comparison between Cases y, z1 to z5
The pros and cons of all cases are summarized in the following.
· [bookmark: _Hlk131759203]Flexibility for model update and per cell or area optimization: To flexible update the AI/ML model and optimize the AI/ML per cell or area, the AI/ML model should be stored at network side. Then, when UE enters a new cell or area, network can flexibly deliver/transfer the model to UE. Only in Case y, the AI/ML model is stored at UE and can not be flexibly updated.
· Offline co-engineering efforts and feasibility for deployment involving multiple vendors: Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. Then Case y, z1 and z2 need large offline co-engineering efforts. For open format, such offline co-engineering may not be needed since the vendors responsible for the development are well aware of how to use the developed models. For Case z4, the model structure would be aligned offline and then medium offline co-engineering efforts are needed. For Case z3 and z5, small offline co-engineering efforts are needed.
· Device capability and delay for compiling, updating and running the model: The model with proprietary format has been compiled before delivery/transfer. For parameter-only updating with known model structure, it is also not needed for the device to compile the model with properly aligned information. Low device capability and small delay are needed for Case y, z1, z2 and z4. For other cases, high device capability and large delay would be needed.
· Participation in model optimization: If the model is trained and compiled in one side with proprietary format, only the one side can participate in model optimization. Otherwise, both two sides have the possibility to optimize the AI/ML model. Since the data samples and AI/ML technology of one side would be limited, it is beneficial to involve both two sides in model optimization.
In sum, the following table shows the pros and cons of Cases y, z1 to z5 for model delivery/transfer.
Table 5.1.3-1: The pros and cons of Cases y, z1 to z5 for model delivery/transfer.
	
	Flexibility for model update and per cell or area optimization
	Offline co-engineering efforts and feasibility for deployment involving multiple vendors
	Device capability and delay for compiling, updating and running the model
	Participation in model optimization

	Case y
	Low
	Large offline co-engineering efforts
	Low device capability,
small delay
	Only UE side

	Case z1
	High
	Large offline co-engineering efforts
	Low device capability,
small delay
	Only UE side

	Case z2
	High
	Large offline co-engineering efforts
	Low device capability,
small delay
	Both UE side and network side

	Case z3
	High
	Small offline co-engineering efforts
	Dependent on whether the model structure is known at UE
	Both UE side and network side

	Case z4
	High
	Small offline co-engineering efforts
	Low device capability,
small delay
	Both UE side and network side

	Case z5
	High
	Small offline co-engineering efforts
	High device capability,
large delay
	Both UE side and network side

Then we have the following proposal.
Use pros and cons in Table 5.1.3-1 for the model transfer/delivery discussion.

Typical Model sizes
The following potential options of model transfer/delivery were considered in RAN2 post-meeting email discussion.
	-	Solution 1a: gNB can transfer/deliver AI/ML model(s) to UE via RRC signalling.
-	Solution 2a: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via NAS signalling.
-	Solution 3a: LMF can transfer/deliver AI/ML model(s) to UE via LPP signalling.
-	Solution 1b: gNB can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 2b: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 3b: LMF can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 4: Server can transfer/delivery AI/ML model(s) to UE (transparent to 3GPP).

When analyzing the pros/cons of the potential solutions, the following evaluation metrics can be considered:
	Capability to transfer/delivery models for the following model characteristics (RAN1/RAN2 may discuss it):
-	AI/ML model size (e.g. individual model size, cumulative model size). It may have some categories, e.g. large size, small size
-	Model transmission/update frequency. It may have some categories, e.g. frequent/infrequent transmission/update
-	Latency. It may have some categories, e.g. low-latency/high-latency
-	Robustness
-	Signalling overhead
-	Support of delta configuration
-	Impacts due to handover
-	Impacts due to failures (e.g. radio link failure)
-	Possible specification impacts (e.g. RAN2, SA2, and etc)
-	Inter-operability impacts

To facilitate the discussion of solutions for the model transfer, further specific requirements on model transfer, such as typical model size, frequency of model transfer/update, latency, ciphering and integrity protection requirements, etc. may be required.
RAN1 concludes typical model size, frequency of model transfer/update and latency requirement and send LS to RAN2 to facilitate the discussion of solutions for the model transfer.

Model transfer related capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP.
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation may be not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure offline or online before usage.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, we have the following proposal on model transfer capability.
Model transfer capability may consider the alignment between UE and network on supported structures, quantization and processing.

General AI/ML framework
The General framework for RAN intelligence is illustrated in Figure 6-1.

Figure 6-1: Functional Framework for RAN Intelligence in RAN3.
For the general framework on the network side, model management is mainly an internal implementation, such as model transfer, model performance feedback. In comparison, the AI/ML for air interface involves massive interactions between the UE and the network, which are related to model management, e.g., model monitoring, activation/deactivation. Therefore, reusing the framework for RAN directly is not suitable and it is beneficial to introduce more components in on top of the framework for RAN.
To our understanding, the updated framework is shown in Figure 6-2.

Figure 6-2: Updated general framework of AI for air interface.
Based on the Framework for RAN intelligence, RAN1 to introduce an updated general framework that can reflect the key components of AI for air interface.

Data collection
Some assistance information would be needed for data collection. First, general description of collected data can be reported, such as purpose, size and configuration. Different purposes result in different types and format of collected data. For example, the beam qualities are collected for beam management and the estimation of CSI-RS channels are collected for CSI compression or CSI prediction.
Second, UE hardware information can be reported, such as antenna information, so that network can further split the collected data. For example, the beam qualities of one UE panel containing 16 antenna elements can be separated from data of one UE panel containing 8 antenna elements.
Third, additional conditions can be reported, such as cell ID, scenario ID and SNR. UE may report the data collected in a long period, which may contain the data of multiple cells, different scenarios and large range of SNRs. With the cell ID or scenario ID, AI/ML model for a small area or certain scenario can be trained, and then flexible model selection or model switching can be used to improve the generalization performance. SNR information can also be used for model selection or model switching, if AI/ML model per SNR range has been trained. Also, SNR information can be used as assistance information for model inference.
In each sub-use-case, the data collection method, content and used RS would be different. For example, PRS is used in positioning, CSI-RS for PMI/CQI/RI is used in CSI compression and prediction, while CSI-RS/SSB for L1-RSRP/L1-SINR is used in beam management. The contents, type and format of data for different use cases are totally different and then should be studied in each sub-use-case agenda. In general framework, we can focus on the study of signaling of assistance information.
Study the following assistance information for data collection:
· Assistance information for categorizing the data/dataset;
· Additional conditions, such as cell ID, timestamp and SNR.
In legacy CSI framework, only one sample is reported in one time. A lot of work has been done to compress the information of one sample. However, there may be multiple samples in one report. How to compress the information of multiple samples has not been studied before. It is clear that there is more redundancy in the report containing multiple samples, compared with the report having one sample. Then this topic is worth of studying.
Study the data compression for multiple samples in collected data reporting.
Different UE capabilities would be needed for the expected pre-processing, data storage, feature extraction and report for data collection. Some UEs may have the ability to collect a large amount of data while others would be limited. Depending on the reference point definition, some UEs may leave some interfaces for collection in the corresponding reference point while others may not. These should also be discussed in UE capability.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.

Model inference
In the study of CSI compression, beam and location, assistance information can be used to improve the model inference performance. For example, the network transmit beam pattern can be used to improve the model inference at UE in the beam management. Also, the speed is useful for model inference in both channel prediction and beam prediction in time domain.
Computation power at the UE side is growing fast in recent years. Figure 8-1 shows the AI capability of NPU in mobile phones in recent years. The capacity of one typical NPU used in current mobile phone is 22.5T operations (OPs) per second. One OP denotes one addition or one multiplication. From 2017Q1, the capacity of typical NPU in mobile phone is growing very fast year by year. This trend is expected to continue for the coming years.
[image:]
Figure 8-1: The growing capacity of NPU in mobile phone.
Typical physical layer modules have strict requirements for latency. The latency of AI/ML operation should be within several milliseconds, otherwise, the AI model would not be applicable for air interface use cases. Since latency is highly correlated with complexity, they are discussed together in this subsection. For this important issue, we have collected some latency information from the area of image processing. Figure 8-2 shows the inference performance of typical AI models for image and video in typical chipsets. The latency of the AI models in Figure 8-2 is about 0.9ms~5.1ms. The AI models for air interface would be much simpler than the listed AI models and the latency of AI models for air interface will be much smaller. Then AI models for air interface would be likely to meet the latency requirement.

Figure 8-2: The latency of typical AI models for image and video in typical chipsets.
[bookmark: _Hlk118746353]Initial test of typical models for latency on typical chipsets in Figure 8-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Float point is usually used in study and initial evaluation. Fixed point is usually used in implementation, where the parameters of AI model are transformed to integer value and the complexity could be reduced. Some kinds of hardware only support fixed point.
For float point or fixed point, there are also different levels of bits used for one number. It is clear that the overhead of 32 bits is twice of 16 bits, and 4 times of 8 bits. Considering the overhead reduction of model transfer, low quantization level would be better than high quantization level. The actual complexities of different quantization levels would be slightly different from the overhead, due to the practical hardware design and AI model structure.

Figure 8-3: The latency ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.

Figure 8-4: The power consumption ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.
Some evaluation results of different quantization levels are shown in Figure 8-3 and 8-4. INT8 denotes integer value with 8 bits, FP16 denotes float point value with 16 bits. The performance of NPU-INT8 is about 1.8 times of NPU-FP16, 4.8~17 times of GPU-FP32, and 4.5~17 times of CPU-FP32. INT8 is suitable for service with high complexity and power consumption, such as photographing and video. FP16 is suitable for service with high accuracy and low power consumption, such as pixel-wise image processing.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.

Model training/updating
Model training or model updating is another key tool to fight against the AI/ML generalization problem, in addition to model transfer. It is known that AI/ML is a technology of data and the AI/ML model is memorizing the features of the training set. For some unseen samples with new features, the performance of AI/ML model is unpredictable. By collecting or transferring the unseen samples, the AI/ML model can be updated to adapt to the new environment.
Online training has been attracted a lot of attentions, since AI/ML models could be updated when UE enters unseen scenario/site/area with totally different wireless conditions and channel characteristics. However, Online training requires high UE capability, and needs extra considerable computation resource and power consumption. Then there is no consensus on the study of online training in RAN1.
In RAN2#121bis-e [5], it has been agreed to deprioritize aspects of on-line/real-time training for the whole SI.
	Agreement
R2 will deprioritize aspects of on-line/real-time training for the whole SI (unless R1 identifies that it is needed for one of the studied use cases).

RAN2 has agreed to deprioritize aspects of on-line/real-time training for the whole SI.

Discussion on SA related aspects
In this section, the impacts of the AI/ML aspects on SA will be discussed.
Model transfer/deliver
As discussed in Section 5, Cases y, z1 to z5 for model delivery/transfer have been agreed to facilitating discussion in the last meeting. These cases consider different model delivery/transfer, model storage location and training location, and provide different representative scenarios for detailed study. These different scenarios are highly related to SA2 and corresponding feasibility need to be assessed by SA2 .
To facilitate the study of model transfer/deliver in SA, it is suggested to send the agreed Cases y, z1 to z5 for model delivery/transfer to SA.
Model training
Type 3 training for two sided CSI may need the involvement of SA. As shown in the below figure, SA may need to study Step3, in which the exchange dataset is transmitted between two sides. One possible solution is the UP based dataset exchanging between UE and network. Another possible solution is the dataset exchanging between UE side servers and network entities. It is seen that both possible solutions need to be studied by SA.
[image:]
Figure 10-1: An illustration of separate training procedure.
Data collection
There are two main solutions of collected data report. One solution is the CP based reporting mainly for small number of data samples. Legacy CSI framework may be largely reused for this solution. The other solution is the UP based reporting mainly for large number of data samples. In the existing framework of the UP based solution, data would be collected from UE Application(s) and Event Exposure (EVEX) mechanism. The detailed UP based solution is worthy of study by SA.
Model/Applicability Identification
For model and applicability identification, there is also work related to SA. The information needed for alignment of model ID and applicability ID would need signaling exchange between network sided servers and UE sided servers.
In sum, we have the following proposal.
Send LS to SA2 and SA4 to study the potential specification impact of at least model transfer/deliver, model training, data collection and model identification.

Conclusions
1. It is not needed to address additional conditions in functionality based LCM. Functionality is used to handle the case where the AI/ML capabilities are statically implemented in UEs, while for the case with dynamic additional conditions, model identification is more appropriate.
Signaling to support functionality-based LCM operations can be discussed in each sub use cases and should be studied in WI.
Functionality-based LCM and model-ID-based LCM should be designed to follow one general framework and use same aspects as many as possible.
The scenarios where updates on applicable functionality(s) may be needed should be clarified among companies to study the necessity.
Study updates on applicable model(s) for the case where UE power consumption or computation resources are dynamically varying.
Functionality-based LCM contains two steps as legacy UE features, UE capability report and RRC/MAC-CE/DCI enabling/disabling procedures.
Consider to define the procedures as in Figure 2-1 for model/applicability -based LCM, which contains the following four steps:
· Step1: UE AI/ML-enabled feature report to network;
· Step2: Alignment of additional conditions between network and UE;
· Step3: LCM control or assistance by network using model ID or applicability ID, including model selection or switching;
· Step4: Additional conditions updating during usage.
Consider the following model identification types.
· Type A (Step0 in Figure 2-1): Model is identified offline to network (if applicable) and/or UE (if applicable).
· Type B (Step1, Step2b and Step4 in Figure 2-1): Model is identified via signaling from UE to network.
· Type C (Step2a, Step2b and Step4 in Figure 2-1): Model is identified via signaling from network to UE.
Send LS to RAN4 on recommendations on reference model structure for each use case.
1. Compared with zone/site specific models, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead.
Collaboration level z can be used to facilitate zone specific model deploy.
From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
Field test shows that model developed for Cell 1 does not perform well for Cell 2.
Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.
From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
From initial results for ray tracing based data generated with the map provided in [3], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
To fight against the AI/ML generalization problem, generic model would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size.
Model delivery/transfer is necessary due to flexibility for model update, per cell or area optimization and future proof design.
The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
One advantage of open format is flexibility for model update and per cell or area optimization. Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. Moreover, for proprietary format, network has to prepare multiple models for different UE vendors.
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure update is also involved, it would lead to extra delay or extra device capability.
Study open format with widely-used model structures and parameter-only updating, which can obtain the most gain of open format and proprietary format.
· Using widely-used model structures to avoid the concern of disclosing model structure.
· Using parameter-only updating to avoid additional compiling at UE side.
Support to reuse the mechanism defined in SA2 (interoperability token) for aligning model description format for model transfer.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.
Use pros and cons in Table 5.1.3-1 for the model transfer/delivery discussion.
RAN1 concludes typical model size, frequency of model transfer/update and latency requirement and send LS to RAN2 to facilitate the discussion of solutions for the model transfer.
Model transfer capability may consider the alignment between UE and network on supported structures, quantization and processing.
Based on the Framework for RAN intelligence, RAN1 to introduce an updated general framework that can reflect the key components of AI for air interface.
Study the following assistance information for data collection:
· Assistance information for categorizing the data/dataset;
· Additional conditions, such as cell ID, timestamp and SNR.
Study the data compression for multiple samples in collected data reporting.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.
Initial test of typical models for latency on typical chipsets in Figure 8-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.
RAN2 has agreed to deprioritize aspects of on-line/real-time training for the whole SI.
Send LS to SA2 and SA4 to study the potential specification impact of at least model transfer/deliver, model training, data collection and model identification.

References
[bookmark: _Ref101427648]Chair's notes of RAN1#112, February 27th – March 3rd, 2023.
Qualcomm Incorporated, R4-2306299, “WF on AI/ML RAN4 studies”, RAN4#106-bis-e, April 17th – April 26th, 2023.
A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available at ‘https://deepmimo.net/’.
vivo, R1-2304470, “Evaluation on AI/ML for CSI feedback enhancement”, RAN1 #113, May 22nd – May 26th, 2023.
Chair's notes of RAN2#121bis-e, April 17th – April 26th, 2023.
[bookmark: _Ref102033778]vivo, “Dataset for AI CSI feedback”, https://commonbox.vivo.xyz/s/VkhgUFG2hhd.
[bookmark: _Ref102074620]vivo, “Dataset For AI CSI Prediction”, https://commonbox.vivo.xyz/s/1qv4tjQ5efk.
vivo, “Dataset for beam management”, https://commonbox.vivo.xyz/s/gMEadbdyFtd.
vivo, “Dataset for AI Positioning”, https://commonbox.vivo.xyz/s/UQnWAcqp2DL.

Appendix A: Analysis for zone/site specific model update
One of the key issues for lifecycle management is how often the model needs to be updated. In this section, we have some preliminary analysis on the granularities of model update.
In most cases, the parametric model defines a distribution and we simply use the principle of maximum likelihood. This means we use the cross-entropy between the training data and the model’s predictions as the cost function, as described

where is the input data vector, is the known data vector (or label), is the coefficient vector or the weight vector, acquired by the training procedure, all in a given AI neural network.
It is worthwhile noting that, the training set associated with any input pair of can be expressed as

In such a procedure, accordingly, the AI model can be trained by means of the off-line training manner under the condition of the statistic wireless channel model and can be considered as a universal AI model for any UE or gNB uses.
However, the channel factors influenced by gNB are comparatively stable, while the channel factors influenced by UE are unpredictable, with respect to the antenna direction and location. In addition, the channel model utilized for performance evaluation mainly refers to TR 38.901, where the long-term channel factors such as receive antenna field patterns (i.e., AoA and ZoA), receive antenna location vector, transmit antenna field patterns (i.e., AoD and ZoD), and transmit antenna location vector update statically, while the short-term channel factors such as Doppler frequency update dynamically. Consequently, therefore, a universal AI model purely trained by a statistic wireless channel model may be not feasible in terms of the complexity of neural network and the overall AI-based system performance. Somewhat UE assistance mechanism in addition to cell-based training model may be necessary.
Thanks to the unique wireless channel behaviors, we believe that the training set can be possibly divided into training subsets relying on the long-term statistic channel parameters. If we assume that the -th subset is associated with the parameter of , the training set can be represented as

where can be seen as the assisted parameter vector, , and the -th training subset can be expressed as
;			for	 .
If the subset and subset are completely independent, i.e., , for , and the distribution associated with the parameter of is approximated as

Then, the cross-entropy between the training data and the model’s predictions can be

If the parameter vector of is given, the cross-entropy in the training procedure for the parametric model with the pre-known can be individually represented as
 Eq. 1
where , and is the total number of training models.
It is worthwhile noting that, the AI models can be trained by means of offline manner and utilized by each UE accordingly. This does imply that each AI-model can be seen as a sub model, and the K sub models form a cell-specific AI model which can be operated by all the UEs if connected with the corresponding gNB.
As one specific example, by geographically dividing the network area, AI models associated with different areas can be distinguished and the related tasks associated with AI models would be limited. This results in the improvement of the accuracy and effectiveness of the AI model, and the reduction of the complexity of AI neural networks. To achieve the above purpose, the network may perform regional division of geographic coordinates through a zone identification (i.e., Zone-ID). The network determines the network coverage area related to the maximum communication range according to the geographic location of the gNB, which is further divided into multi-zones represented by Zone-ID. As illustrated in Figure B-1, the size of each zone with is configurable according to the use-cases and the deployed scenarios, where is the zone length and is the zone width. During the AI model training procedure, the training dataset can be distinguished by the Zone-ID in the network coverage area. Therefore, the trained AI model behaves the characteristics of the zone indicated by Zone-ID.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the Zone-ID within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network.
[image:]
Figure A-1: Schematic diagram of distinguishing AI models based on geographic information
By dividing different orientations of the network, alternatively, AI models associated with different orientations from gNB can be distinguished and the related tasks associated with AI models can be limited. This also results in the improvement of the accuracy and effectiveness of the AI model and the reduction of the complexity of AI neural networks.
As illustrated in Figure B-1, the area covered by the network is divided into orientations (or azimuths), and each orientation forms a pie-shaped directional sub area, denoted by , where is the ID of the gNB and is the subregion-orientated index. Optionally, the widths of the pie-shaped sub regions formed by the orientation of each sub region could be the same or different and determined by high-level configuration. More specifically, each sub region orientation can be regarded as an orientated beam (i.e., directional beamforming), where the orientated beam width is . During the AI model training procedure, if the gNB or UE can roughly acquire the geographic location of the UE or the AoA/DoA associated with the gNB, the AI training dataset can be distinguished by the orientation of each sub region. In such a case, the gNB or UE only uses the data related to the orientation of the sub region to train the AI model, which behaves the orientation features.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the subregion-orientated index within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network as well.
[image:]
Figure A-2: Schematic diagram of distinguishing AI models based on direction information

Appendix B: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwires officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.

Appendix C: Power consumption
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal.
The actual power consumptions of typical AI models are listed in Table C-1. From the discussion of power saving, the UE power consumption model for FR1 is shown in Table C-2, in which the basic unit would be assumed as 5 mA. It is seen that the power consumptions of complex AI models are comparable with typical physical layer operations. Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Table C-1: The actual power consumptions of typical AI models in typical chipsets.
	
	Electron current (mA)

	AI Model 2 (1.14 GTOPs)
	291

	AI Model 4 (11.5 GTOPs)
	420

Table C-2: UE power consumption model for FR1 from the discussion of power saving.
	Power state
	Relative power (mA)

	Deep sleep
	1*5 (Optional: 0.5)

	Light sleep
	20*5

	Micro sleep
	45*5

	PDCCH-only
	100*5

	SSB or CSI-RS proc
	100*5

	PDCCH+PDSCH
	300*5

	UL
	250*5 (0dBm)
700*5 (23dBm)

Performance of model is not directly related to FLOPs, but specifically tuned for models. Even with the similar FLOPs, the performance may be drastically different. For example, as shown in Figure C-1, the complexity of AI model 1 is 77.2% of AI model 2, and then the expected latency of AI model 1 is 77.2% of AI model 2. However, the actual latency of AI model 1 is 152% of AI model 2 in Chipset 2. For another example, the complexity of AI model 2 is 9.9% of AI model 4, while the power consumption of AI model 2 is 69.3% of AI model 4.

Figure C-1: The complexity and latency comparison between AI models.

Appendix D: Agreement from previous meeting
Some agreements and conclusions have been made in previous meeting.
	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.

Conclusion
From RAN1 perspective, it is clarified that an AI/ML model identified by a model ID may be logical, and how it maps to physical AI/ML model(s) may be up to implementation.
· When distinction is necessary for discussion purposes, companies may use the term a logical AI/ML model to refer to a model that is identified and assigned a model ID, and physical AI/ML model(s) to refer to an actual implementation of such a model.

Agreement
· Study necessity, mechanisms, after functionality identification, for UE to report updates on applicable functionality(es) among [configured/identified] functionality(es), where the applicable functionalities may be a subset of all [configured/identified] functionalities.
· Study necessity, mechanisms, after model identification, for UE to report updates on applicable UE part/UE-side model(s), where the applicable models may be a subset of all identified models.

The latency (ms) of typical AI models for image and video in typical chipsets

Chipset 1	
AI Model 1
(0.88 GTOPs)	AI Model 2
(1.14 GTOPs)	AI Model 3
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.1001100110011	1.1299435028248588	2.0491803278688527	1.8214936247723132	Chipset 2	
AI Model 1
(0.88 GTOPs)	AI Model 2
(1.14 GTOPs)	AI Model 3
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.3698630136986301	0.90009000900090008	3.3003300330033003	2.6315789473684208	Chipset 3	
AI Model 1
(0.88 GTOPs)	AI Model 2
(1.14 GTOPs)	AI Model 3
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.5105740181268883	1.5105740181268883	3.3670033670033668	5.1020408163265305	
The latency (ms)

The latency ratio of typical AI models of different quantization levels

NPU-INT8	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	0.02	5.9171597633136092E-2	NPU-FP16	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	3.2051282051282048E-2	0.11764705882352941	GPU-FP32	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	9.6153846153846159E-2	1	CPU-FP32	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	9.0090090090090086E-2	1	
The latency ratio

The power consumption ratio of typical AI models of different quantization

NPU-INT8	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	2.0593080724876441E-3	1.029654036243822E-2	NPU-FP16	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	6.1779242174629318E-3	3.130148270181219E-2	GPU-FP32	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	1.9769357495881382E-2	0.23929159802306421	CPU-FP32	
AI Model 2
(1.14 GTOPs)	AI Model 4
(11.5 GTOPs)	0.10378912685337727	1	
The power consumption ratio

The complexity and latency comparison between AI models

AI Model 1 (0.88 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	0.77200000000000002	1.522	1	AI Model 2 (1.14 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	1	1	1	

image1.png
Model identification for Type 1 training Model identification for Type 3 training Logical model/applicability identification Functionality identification
two-sided model and one-sided model two-sided model (separate training at for single sided model at UE side and
transferred from network to UE two sides) developed by UE

image2.png

image3.png

image4.png
30m

22m

0m 26m 12m 18m ! I
(o &

2

34m

an

€ pup 195

-
)

E
(5 OE

! 22m
(=g

image5.png
NW side Neutral site UE side
Training
\ Compiling
v
Storage

Model delivery

NW side Neutral site UE side NW side Neutral site UE side
Training Training
Compiling \ Compiling
Storage / Storage /
(inside NW) (inside NW)

Model transfer i
proprietary format

Inference Inference
(inside UE) (inside UE)
Case y Case z1

NW side Neutral site UE side NW side Neutral site UE side

Training Training
¥
Storage . Storage
(inside NW) (inside NW)

Model transfer in
open format

Conversion
(inside UE)

v

Case z3

Inference
(inside UE)

Model transfer in open format
of a known model structure at
UE

Model transfer in
proprietary format

Inference
(inside UE)

Cases z4

Inference
(inside UE)
Case 72
NW side Neutral site UE side
Training
¥
Storage
(inside NW)
Model transfer in open format Compiling
of an unknown model (inside UE)
structure at UE 7
Inference
(inside UE)

Cases z5

image6.emf
Data

Collection

Model Training

Model Inference

Actor

Training Data

Inference Data Output

Model

Deployment/

Update

Model

Performance

Feedback

Feedback

Microsoft_Visio_Drawing.vsdx
Data Collection
Model Training
Model Inference
Actor
Training Data
Inference Data
Output
Model Deployment/
Update
Model Performance
Feedback
Feedback

image7.emf
Data

Collection

Model Training

Training Data

Monitoring Data

Trained/updated Model

Model Management

Model Inference

Monitoring

Output

Model selection/

(de)activation/

switching/

fallback

Performance

feedback/

Retraining request

Inference Data

Model Storage

Model transfer/delivery

Model transfer/

delivery request

Microsoft_Visio_Drawing1.vsdx
Data Collection
Model Training
Training Data
Monitoring Data
Trained/updated Model
Model Management
Model Inference
Monitoring Output
Model selection/ (de)activation/
switching/
fallback
Performance feedback/
Retraining request
Inference Data
Model Storage
Model transfer/delivery
Model transfer/
delivery request

image8.png
NPU Capacity (TOPs)
= o8

[

The growing capacity of NPU in mobile phone

2017Q4 2018Q4 2019Q4 2020Q4 2021Q4
Date

image9.emf
 Figure 1 An illustration of separate training procedur e.

image10.emf
Training

Zone

gNB-n

UE

image11.emf
gNB-n

Directional

Sub-area,

