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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
[bookmark: _Ref129681832]During RAN1#112bis-e, the major conclusions/agreements and working assumptions reached among companies are related to the attributes/performance KPIs and their corresponding definitions to be collected by companies when reporting evaluation results [1][2]. Those attributes/KPIs were thus captured in different templates as working assumptions. Different templates are to be used for different training types and separate evaluation templates are to be used to collect results without model generalization vs. results from model generalization cases.  
In RAN1#112bis-e, our contribution [3] introduced look-up-table (LUT) based CSI compression approach.  In this contribution, we further discuss additional evaluations using LUT-based approach in the following areas:
· Performance evaluation / comparison between LUT-based and typical autoencoder based CSI compression and reconstruction approach using intermediate KPI.
· System level performance evaluation for max rank > 1 cases
In the study, we use eigenvectors of the channel matrices as input to CSI generation part and as the output from the CSI reconstruction part.

Performance evaluation and comparison between look-up-table based and typical autoencoder-based CSI compression approaches
Description of look-up-table based CSI compression
From RAN1#112bis-e discussions, we received some good feedbacks and questions during the offline discussions [2]. We understand there may be some questions and concerns regarding how the look-up-table based approach would work in CSI compression sub use case. In this sub section, we explain more details on how the vector quantization codebook is learned and how the corresponding CSI codebook or look-up-table is derived by using the vector quantization codebook and CSI decoder/reconstruction part.  
In CSI compression sub use case, a typical autoencoder-based approach is depicted in Figure 2.1-1. Figure 2.1-1: Typical autoencoder-based CSI compression and reconstruction


As shown in Figure 2.1-1, typical autoencoder-based approach includes a CSI encoder and a quantizer, e.g., vector quantizer at the UE side, and the corresponding de-quantizer and CSI decoder at the gNB side. This high-level structure is the same across all 3 training collaboration types. In quantization aware training, the quantizer and de-quantizer can be learned/trained as part of the end-2-end training procedure, i.e., optimized together with the encoder and decoder through backward propagation, or the quantizer and de-quantizer can be learned after the encoder/decoder training procedure has finished. 
We explain the look-up-table based CSI compression assuming the vector quantizer and/or vector quantization codebook is learned after the encoder/decoder training has finished for simplicity while it is also feasible when the vector quantization codebook is jointly optimized together with the encoder/decoder via end-2-end training.Figure 2.1-2: Vector quantization codebook learning

After the encoder/decoder training has finished, clustering is performed on encoded CSI training samples. Each encoded CSI output from the encoder is a vector and all the output vectors from training samples are grouped into k groups/clusters of vectors. The centroid vector from each group/cluster is then integrated together to form the VQ codebook. Each entry in the VQ codebook is a vector of real/floating numbers with the size of the encoder output. This procedure is depicted in Figure 2.1-2.
To generate the look-up-table, each entry of the VQ codebook is used as input to the trained CSI decoder/reconstruction part. Each output is a predicted CSI (e.g., the eigenvector of a CSI channel matrix). The look-up-table has the same number of entries (and the same indices) as the VQ codebook, and each entry is a predicted CSI.
Once the look-up-table (LUT) or CSI codebook is generated, it can be transferred to the UE side if the look-up-table is learned/trained in the other entity. A more overhead-conscious approach is to transfer the CSI reconstruction part and the VQ codebook to the UE side, then let UE derive the look-up-table.Figure 2.1-3: gNB operation upon receiving the selected CSI codebook index from UE


During the inference/testing phase, for each testing sample/input (e.g., eigenvectors of channel matrix), instead of using the CSI generation part and the quantizer to generate the CSI feedback at the UE side, UE selects an entry from the LUT (derived during the training phase described above) based on the estimated CSI and a selection criterion, e.g., SGCS used in our study. The LUT entry that has the highest SGCS will be selected as the CSI feedback, and the index of the selected LUT entry will be reported to gNB. gNB recovers the CSI/eigenvectors using the same quantization codebook and the CSI reconstruction part and performs precoding (and MIMO transmission) based on the reconstructed CSI, then UPT will be determined accordingly in the simulation case. Figure 2.1-3 describes the procedures at the gNB side after receiving the LUT index from the UE side at the inference phase.
The major difference between typical autoencoder with vector quantization-based approach and LUT based approach is that the CSI feedback is predicted/generated from the CSI encoder and a (vector) quantizer (CSI feedback is one of vectors/entries in the VQ codebook) in typical autoencoder-based approach which may or may not be the best entry in the VQ codebook while in the LUT-based approach, the best vector/entry in the VQ codebook is selected based on a selection criterion, e.g., SGCS as the CSI feedback. 
Observation 1: For spatial-frequency domain CSI compression, using vector quantization (by quantizing vectors of the encoder outputs) has the potential of significantly reducing the air interface CSI overhead compared to using scalar quantization.
Observation 2: For spatial-frequency domain CSI compression, when using vector quantization, the CSI feedback generated based on the encoder and VQ quantizer may NOT be the best entry in the VQ codebook.

Evaluation results of typical autoencoder-based vs. LUT-based CSI compression approaches
During RAN1#112bis-e, our contribution discussed initial result of LUT-based CSI compression and the performance was promising compared to typical autoencoder-based approach. To further understand the performance and robustness of LUT-based approach vs. typical autoencoder-based approach. In this section, we discuss the results of our study for the following: 
· Performance comparison (using SGCS) between typical autoencoder-based and LUT-based CSI compression across:
· Various CSI encoder output sizes (before quantization step)
· 32, 64 and 128 (floating numbers) 
· Various VQ codebook sizes
· 1024, 2048, 4096, 8192 and 16384 (corresponding to CSI overhead sizes 10 – 14 bits/layer)
Figure 2.2-1 shows the SGCS performance comparison between LUT-based approach and typical autoencoder-based approach across various codebook sizes when encoder output size is 32. Figure 2.2-2 is the performance comparison between the two approaches when encoder output size is 64 and Figure 2.2-3 is the performance comparison between the two approaches when encoder output size is 128.






Figure 2.2-3: SGCS comparison between typical autoencoder-based and LUT-based approaches with encoder output size = 128
Figure 2.2-2: SGCS comparison between typical autoencoder-based and LUT-based approaches with encoder output size = 64
Figure 2.2-1: SGCS comparison between typical autoencoder-based and LUT-based approaches with encoder output size = 32



From Figure 2.2-1, Figure 2.2-2, and Figure 2.2-3 we can clearly observe that the LUT-based approach outperforms the typical autoencoder-based approach that predicts the CSI feedback using the CSI generation part and vector quantizer; improved performance can be observed in ~50% of the samples. The performance improvement is more noticeable for those samples that have poor SGCS scores.
Figure 2.2-4 shows SGCS performance comparison across Type II codebook, typical autoencoder-based and LUT-based approaches (using code size 128 and codebook size 8192 (13 bits). We can observe that the LUT-based approach, which selects the best entry from the VQ codebook as CSI feedback, outperforms Rel-16 Type II codebook-based approach for > 80% of the data samples.  Figure 2.2-4: SGCS comparison CDF across various CSI feedback approaches 

Figure 2.2-5: UPT comparison CDF across various CSI feedback approaches 

When consider UPT performance, Figure 2.2-5 shows the UPT comparison CDF across Rel-16 Type II codebook-based approach, typical autoencoder-based approach, and LUT-based approach for PAR=1.2. From the figure, LUT-based approach can achieve comparable (or better) UPT performance than Rel-16 Type II codebook-based approach with much less CSI overhead bits, i.e., 13 bits (max rank =1) for LUT-based approach vs. 242 bits for Rel-16 Type II codebook-based approach.
Observation 3: For CSI feedback compression sub use case, determining CSI feedback by selecting the best entry from a CSI look-up-table constructed using the CSI reconstruction part and a vector quantization codebook outperforms (evaluated using SGCS) both typical autoencoder-based approach that uses the CSI generation part and vector quantization codebook to predict the CSI feedback and Rel-16 Type II codebook-based approach. 
Observation 4: For CSI feedback compression sub use case, when using LUT-based approach (by selecting the best VQ codebook entry as CSI feedback), AI/ML-based approach with 13 CSI overhead bits (max rank = 1) achieves comparable UPT performance as Rel-16 Type II codebook-based approach with 242 CSI overhead bits. 
Proposal 1: For spatial-frequency domain CSI compression, when using vector quantization, study the feasibility and gains by selecting the best VQ codebook entry as the final output of the CSI generation part.
Note: Companies are encouraged to evaluate the performance between selecting the best VQ entry from the codebook as CSI feedback and the results using the typical approach based on the CSI generation part of the two-sided model with quantization to generate the CSI feedback. 
Proposal 2: For spatial-frequency domain CSI compression, the per layer CSI payload size X/Y/Z in the templates, add a separate CSI feedback overhead range, e.g., X0 is <=bits, considering the significantly low(er) overhead aspect in the per layer CSI feedback when quantizing the entire encoder output vectors.
Note: the existing “X is <= bits” needs to be updated to “X is bits-bits”.

System level performance evaluation result for max rank = 2
Study description
In our contribution to RAN1#112bis-e, we discussed our system level performance evaluation results for max rank = 1. We compared the performance between AI/ML based CSI compression and Rel-16 Type II codebook-based approach. For max rank = 1, we observed the following:
· AI/ML-based approach outperforms Rel-16 Type II codebook-based approach in all 3 overhead categories, X (<= 80 bits), Y (100bits – 140 bits) and Z (>= 230 bits) with ~13.1% average Mean UPT gain and ~33.7% average 5% UPT gain. (Note: overhead categories have been updated per agreement reached in RAN1#112bis-e.)
In this section, we discuss our system level performance evaluation results for max rank = 2.
During RAN1#112bis-e meeting, companies reached an agreement on using the following working assumption to update the values of CSI feedback overhead for the mean UPT and 5% UPT and group the CSI payload sizes into three range categories A, B and C and their ranges are determined according to max rank to facilitate discussion and result comparisons. The working assumption is captured below. Working Assumption
For the template of Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, the CSI feedback overhead for the metric of eventual KPI (e.g., mean/5% UPT) is re-determined as:
· CSI feedback overhead A: <=β* 80 bits.
· CSI feedback overhead B: β* (100bits – 140 bits).
· CSI feedback overhead C: >=β* 230 bits.
· Note: β=1 for max rank = 1, andβ=1.5 for max rank = 2/3/4.
· FFS for rank 2/3/4, whether to add an additional CSI feedback overhead D: >=γ* 230 bits, γ= [1.9], and limit the range of CSI feedback overhead C as: β* 230 bits-γ* 230 bits.
· Note: companies additionally report the exact CSI feedback overhead they considered


Based on the above categorization of CSI feedback overhead, we constructed our study in the following areas:
· Rel-16 Type II codebook-based approach
· For each overhead range (A, B and C), select a configuration combination that generates CSI feedback overhead bits in that range.
· Calculate average UPT and 5% UPT based on system level simulation.
· AI/ML based approach
· For each overhead range (A, B and C), identify a combination of code size (output size of the encoder in the CSI generation part) and quantization level that generates CSI feedback overhead bits in that range.
· Based on the identified combination, train the AI/ML model (including the CSI generation part and CSI reconstruction part) and the quantizer/quantization codebook accordingly.
· Integrate the trained AI/ML model into system level simulation environment to perform scheduling and MCS selection and calculate average UPT and 5% UPT based on the system level simulation result. 
· AI/ML model was trained using samples from the same set of UEs/distribution as in the baseline approach.
· Layer common and rank common model is used in our study.
According to the agreement on CSI payload sizes for max rank = 2, we first select CSI payload size for each range category (i.e., A, B and C) for both Rel-16 Type II codebook-based approach and AI/ML-based approach. Table 3.1-1 describes the identified CSI overhead sizes we use in our study in each of the A, B and C category.
In our study, we adopt either vector quantization method or scalar quantization method depending on the identified CSI feedback overhead bits. For very small CSI overhead bits, e.g., < 14 bits, we use vector quantization method and for larger CSI overhead bits we use scalar quantization method to generate similar number of overheads as Rel-16 Type II codebook-based approach.
Table 3.1-1 describes the identified CSI overhead bits we use in our study in each of the A, B and C CSI overhead category.
Table 3.1-1: mapping between CSI overhead bits and A, B, C categories in our study
	Approach
	A (<= 1.5 * 80 bits)
	B (1.5 * 100 – 1.5 * 140 bits)
	C (>= 1.5 * 230 bits)

	Rel-16 Type II codebook
	87 bits
	159 bits
	355 bits

	AI/ML based
	48 bits/layer (code size=8, 6 bits/code), total=96 bits
	80 bits/layer (code size=16, 5 bits/code) total=160 bits
	180 bits/layer (code size=30, 6 bits/code), total=360 bits



In the following subsections, we discuss our study results at a high level. The detailed results of our study are available in the accompanying Excel file (under Tab “FTP, Max rank = 2”). Please refer to the Excel for assumptions, configuration, and result details. 

Simulation configurations for dataset generation and evaluation settings
The key system level simulation configuration parameters are specified in Table 3.2-1. All UEs are limited with max rank 2 feedbacks and transmissions. The ML model’s input and labels are based on ideal channel estimation during training and inference phases. Ideal channel estimation is also adopted in Rel-16 Type II codebook-based approach. 
Table 3.2-1: Simulation parameters for UMa dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only, 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-2)

	BS Tx power 
	44dBm for 20MHz

	Numerology: SCS
	30kHz for 4GHz

	UE distribution
	100% outdoor (3km/h) 



Evaluation results
Figure 3.3-1 depicts the Mean UPT performance comparison between the baseline, i.e., Rel-16 Type II codebook-based approach and AI/ML based approach, Figure 3.3-2 shows the corresponding 5% UPT performance comparison.
In the figures, the orange dots are Rel-16 Type II codebook-based performance and the blue dots represent the performance of AI/ML based approach using scalar quantization method across various CSI overhead bits selected based on CSI overhead categories A, B and C for max rank = 2 as agreed in RAN1#112bis-e as described in Table 3.1-1. The green dot represents the performance of AI/ML based approach using look-up-table (LUT) based approach in which the LUT is generated using vector quantization codebook and CSI reconstruction part (see Section 2 for LUT-based approach description and Table 3.1-1 for vector quantization settings). The dashed lines are used to connect the points together directly.Figure 3.3-1: Mean UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach (max rank = 2)
Figure 3.3-2: 5% UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach (max rank = 2)


From the above figures, we can observe system level performance gains in AI/ML based CSI compression compared to Rel-16 Type II codebook-based approach in almost all 3 CSI overhead categories for mean UPT. For 5% UPT, system level performance gain can be observed in most part as shown in Figure 3.3-2 while there is very small degradation using AI/ML-based approach when total CSI overhead is below ~110 bits.
To understand performance details, Table 3.3-1 summarizes the Mean UPT comparison between AI/ML based CSI compression and Rel-16 Type II codebook-based baseline approach. Table 3.3-2 summarizes the 5% UPT comparison between AI/ML based CSI compression and Rel-16 Type II codebook-based baseline approach (with some interpolation). 

Table 3.3-1: Mean UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach for overhead category A, B and C
	Category
	Overhead bits
	Mean UPT (AI/ML)
	Mean UPT (Rel-16 Type II)
	Gain

	A
	26 bits 
	64.76 Mbps (VQ)
	NA
	7.76 Mbps
(13.6%)

	
	120 bits
	~62.5 Mbps (SQ)
	~57 Mbps
	5.5 Mbps (9.65%)

	B
	180 bits
	~71 Mbps (SQ)
	~65.5 Mbps
	5.5 Mbps
(8.40%)

	C
	360 bits
	76.64 Mbps (SQ)
	~68 Mbps
	8.64 Mbps
(12.71%)

	Average
	Considering SQ only
	10.25%



Table 3.3-2: 5% UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach for overhead category A, B and C 
	Category
	Overhead bits
	5% UPT (AI/ML)
	5% UPT (Rel-16 Type II)
	Gain

	A
	26 bits 
	13.9 Mbps (VQ)
	NA
	3.85 Mbps
(38.31%)

	
	120 bits
	~10.05 Mbps (SQ)
	~10.05 Mbps
	0%

	B
	180 bits
	~14 Mbps (SQ)
	~13 Mbps
	1 Mbps
(7.69%)

	C
	360 bits
	17.47 Mbps (SQ)
	~15.9 Mbps
	1.57 Mbps
(9.87%)

	Average
	Considering SQ only
	5.85%



AI/ML-based approach achieved ~10.25% average mean UPT gain and ~5.85% average 5% UPT gain when using scalar quantization. The UPT performance gain is more significant when using LUT-based approach (by selecting the best entry from the vector quantization codebook), which achieved 13.6% gain in mean UPT and 38.31% gain in 5% UPT while using a fraction of the overhead (~22%) comparing to Type II codebook-based approach. 
From Figure 3.3-1 and Figure 3.3.-2, we also compare CSI overhead reduction between AI/ML-based approach and Rel-16 Type II codebook-based approach, and Table 3.3-3 summarizes the comparison results for CSI overhead category A, B and C (low, medium, and high) when using scalar quantization.

Table 3.3-3: CSI overhead comparison between Rel-16 Type II codebook-based approach and AI/ML based approach with scalar quantization for overhead categories A, B and C 
	Category
	Mean UPT reference point (based on Type II)
	Overhead (AI/ML)
	Overhead (Rel-16 Type II)
	Reduction

	A
	~57 Mbps
	~95 bits
	120 bits
	25 bits
(20.83%)

	B
	~65.5 Mbps
	140 bits
	180 bits
	40 bits
(22.22%)

	C
	~68 Mbps
	150 bits
	360 bits
	210 bits
(58.33%)

	Average
	
	33.79%


Table 3.3-3 shows that AI/ML-based approach with scalar quantization can significantly reduce CSI overhead bits compared to Rel-16 Type II codebook-based approach while achieving similar mean UPT performance. 

Table 3.3-4: CSI overhead comparison between Rel-16 Type II codebook-based approach and AI/ML LUT-based approach
	Mean UPT reference point
	Overhead (LUT-based approach)
	Overhead (Rel-16 Type II)
	Reduction

	64.75 Mbps
	26 bits
	155 bits
	129 bits
(83.22%)



Table 3.3-4 compares the CSI overhead bits between Rel-16 Type II codebook-based approach and LUT-based approach. We can observe when using LUT-based approach, the CSI overhead reduction ratio is much higher compared to scalar quantization. LUT-based approach achieved mean UPT 64.75 Mbps when using 26 CSI overhead bits for max rank = 2, while a similar mean UPT can be achieved by Rel-16 Type II codebook-based approach but requiring ~155 CSI overhead bits (~83.22% overhead reduction).
Observation 5: For CSI feedback compression sub use case with max rank = 2, when using scalar quantization AI/ML-based approach outperforms Rel-16 Type II codebook-based approach in all 3 CSI overhead categories, A, B and C with ~10.25% average Mean UPT gain and ~5.85% average 5% UPT gain.
Observation 6: For CSI feedback compression sub use case with max rank = 2, when using LUT-based approach (selecting the best entry from vector quantization codebook), AI/ML-based approach with 26 CSI overhead bits achieves a similar Mean UPT as Rel-16 Type II codebook-based approach with ~5.96 times more overhead bits (i.e., ~155 bits), or ~83% overhead reduction. 

Conclusions
In this contribution, we first compared the performance between our proposed LUT-based approach and typical autoencoder-based approach across various encoder output sizes and vector quantization codebook sizes. For system level performance evaluation, we discussed our results of CSI feedback compression sub use case for max rank = 2 when using eigenvectors as input/output of AI/ML model(s) with either vector quantization or scalar quantization method depending on CSI feedback overhead range category A, B or C and compared with Rel-16 Type II codebook-based approach. Our observations and proposals are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Proposal 1: For spatial-frequency domain CSI compression, when using vector quantization, study the feasibility and gains by selecting the best VQ codebook entry as the final output of the CSI generation part.
Note: Companies are encouraged to evaluate the performance between selecting the best VQ entry from the codebook as CSI feedback and the results using the typical approach based on the CSI generation part of the two-sided model with quantization to generate the CSI feedback. 
Proposal 2: For spatial-frequency domain CSI compression, the per layer CSI payload size X/Y/Z in the templates, add a separate CSI feedback overhead range, e.g., X0 is <=bits, considering the significantly low(er) overhead aspect in the per layer CSI feedback when quantizing the entire encoder output vectors.
Note: the existing “X is <= bits” needs to be updated to “X is bits-bits”.
Observation 1: For spatial-frequency domain CSI compression, using vector quantization (by quantizing vectors of the encoder outputs) has the potential of significantly reducing the air interface CSI overhead compared to using scalar quantization.
Observation 2: For spatial-frequency domain CSI compression, when using vector quantization, the CSI feedback generated based on the encoder and VQ quantizer may NOT be the best entry in the VQ codebook.
Observation 3: For CSI feedback compression sub use case, determining CSI feedback by selecting the best entry from a CSI look-up-table constructed using the CSI reconstruction part and a vector quantization codebook outperforms (evaluated using SGCS) both typical autoencoder-based approach that uses the CSI generation part and vector quantization codebook to predict the CSI feedback and Rel-16 Type II codebook-based approach. 
Observation 4: For CSI feedback compression sub use case, when using LUT-based approach (by selecting the best VQ codebook entry as CSI feedback), AI/ML-based approach with 13 CSI overhead bits (max rank = 1) achieves comparable UPT performance as Rel-16 Type II codebook-based approach with 242 CSI overhead bits. 
Observation 5: For CSI feedback compression sub use case with max rank = 2, when using scalar quantization AI/ML-based approach outperforms Rel-16 Type II codebook-based approach in all 3 CSI overhead categories, A, B and C with ~10.25% average Mean UPT gain and ~5.85% average 5% UPT gain.
Observation 6: For CSI feedback compression sub use case with max rank = 2, when using LUT-based approach (selecting the best entry from vector quantization codebook), AI/ML-based approach with 26 CSI overhead bits achieves a similar Mean UPT as Rel-16 Type II codebook-based approach with ~5.96 times more overhead bits (i.e., ~155 bits), or ~83% overhead reduction. 
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