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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and objectives of the SI is as follows,  
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we mainly focus on proposals that were not agreed and topics for further study indicated as part of the agreements which were made as part of the RAN1-110bis-e meeting. Evaluation results for potential AI/ML based positioning accuracy enhancements are also presented.  
[bookmark: _Hlk510705081]General Evaluation Aspects
[bookmark: _Hlk104367439]Performance Targets and Key Performance Indicators (KPI)
Generalization of AI/ML Models
As part of RAN1-110bis-e meeting, the following agreement was made:
Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)

One of the important aspect of model generalization relates to investigating how well a given AI/ML model performs within variations of the same scenario (also called in some cases intra-site variations). This aspect has been already agreed as part of the previous meeting. However, it is perhaps not practically feasible to evaluate the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa. It is also challenging to estimate for e.g., how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location. Thus, based on current agreements, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to only intra-site variations, as previously agreed. RAN1 could also discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario. As the evaluation results presented in this contribution indicates, the model performance varies significantly based on the scenario using which the training dataset is generated.

Observation-1: Evaluating the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa, is not practically feasible.
Observation-2: It is unclear as to how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location.
Proposal-1: RAN1 should agree to limit the Rel-18 study on AI/ML for positioning accuracy enhancements use case to only intra-site variations, as previously agreed.
Proposal-2: RAN1 to discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.

Other Performance Metrics: Optional and Intermediate KPIs
The following agreement was made during RAN1-110 meeting, on the topic of intermediate KPIs:
Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
· FFS: Detailed definition of the intermediate performance metric of the model output

Intermediate KPIs are particularly relevant in the context of two-step or AI/ML assisted positioning, where the output of an AI/ML model could be used for deriving the UE location. As discussed in [4], there are various scenarios where two-step or AI/ML assisted positioning could perform better than direct or one-step positioning method. Thus, for such scenarios, it is important to quantify the intermediate KPIs together with the final KPI of horizontal positioning accuracy. Reporting intermediate KPIs will also help in having a better understanding of their impact on the final KPI of horizontal positioning error.
Proposal-3: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
On the topic of possible intermediate KPIs that could be reported, the following question was raised, however, no related agreements were made:
Question 4.4.1-2
Which of the following is considered a KPI for AI/ML based positioning, and expected to be reported?
(a) Latency
(b) Resource efficiency (e.g., amount of reference signal needed)
(c) UE feedback overhead
(d) Other

Various optional KPIs such as position estimation latency, radio resource efficiency – especially in terms of additional overhead for training/testing models and higher layer signaling overhead were proposed as part of the study. The position estimation latency is important since it provides additional clarity in terms of the cost of model complexity. For e.g., models with higher complexity and computational overhead could induce higher latency for position estimation. Radio resource efficiency KPI could take into account the overhead in terms of radio resource consumption for training and test data exchange between the network and the UE. It could also consider other factors such as positioning reference signal density. Higher layer signaling overhead could take into account the additional signaling required for a particular AI/ML based solution in comparison to the Rel-17 positioning mechanisms.
Proposal-4: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.

Dataset Related Aspects
During RAN1-110 meeting, the following proposal was made related to the use of a range of user densities, however it was not agreed:
Proposal 5.2-3
For evaluation of AI/ML based positioning, study the impact from the user area density in the training datasets. A range of user area density is to be evaluated. The user area density is reflected by training dataset size.

The availability of good quality data for model training and testing/validation is one of the key challenges in machine learning, especially in the context of positioning, where obtaining the ground truth labels in terms of UE location, LOS / NLOS condition, etc., is challenging. These challenges are best understood through the evaluation of model performance using real-world data from actual deployments. They could also be emulated in a simulated environment by assuming the availability of a limited dataset which could be a subset of the grid-based or uniform distribution of UEs. As discussed in Sec. 3.1.3 of [4], there are various techniques such as data augmentation that needs to be applied in such scenarios in order to ensure sufficient model performance. The evaluations related to lack of availability of diverse dataset on model performance is presented in Sec. 3.3 of this contribution, where it is shown that additional techniques might be required in scenarios with limited availability of diverse data. In terms of training dataset size as an indication of user area density, it is important to note that this assumption is valid only for uniform distribution of UEs within the simulation setting.
Observation-3: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-4: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Proposal-5: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.

One of the key metrics that could indicate the dataset quality is the inter-point distance (IPD) metric, discussed in detail in Sec. 3.3. For UE-based positioning method with UE-based AI/ML model training and inference, currently it is unclear as to how to ensure that the provided training data is utilized in a manner than ensures optimal model performance.
Observation-5: For UE-based positioning method with UE-based AI/ML model training and inference, currently it is unclear as to how to ensure that the provided training data is utilized in a manner than ensures optimal model performance.

Model Refinement / Tuning
Related to model refinement or tuning, the following agreement was made during RAN1-110, and a question was raised related to RAN1 methods for performing model monitoring:
Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.

Question 3.3.3-2
Do you support that RAN1 evaluate methods for performing model monitoring for AI/ML based positioning? 

As discussed in [3], for ML model training, the network or UE may use a pre-trained base (initial) ML model instead of a model with random weights. The base model can be refined/tuned using a small training dataset measured in the environment. The base model can be obtained from training with samples measured/simulated in an echo-chamber. In this case, the model is only trained in the LOS condition, and reusing the learned weights can be seen as transfer learning (domain adaptation). Although an echo-chamber is a general source domain, adaptation to new environment may need a large dataset measured in the deployed environment. Another option of obtaining base ML model is to use meta learning approach. Here, a general (meta) model is trained using the training samples measured in different environments.
Proposal-6: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling and/or monitoring the ML model adaptation and fine-tuning after model deployment.

One-Sided vs. Two-Sided Models
On the topic of one-sided and two-sided models, the following proposal was discussed during RAN1-110 meeting, however no related agreements were made:
Proposal 3.2.1-2
For evaluation of AI/ML-based positioning, one-sided model is prioritized over two-sided model.
Here one-sided models imply that only one AI/ML model is deployed, with applicable positioning methods including direct and AI/ML-assisted positioning methods. Two-sided models imply that there are two AI/ML models, possibly deployed at the UE-side and network-side, with the output of the first model provided as the input for the second model. Most of the solution approaches that were presented so far as part of this study have been considered one-sided models, with the out of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location. One key motivation to consider two-sided approaches relates to the agreement from RAN1-110b-e meeting to consider CIR and PDP as possible model inputs. Both model inputs require the signaling measurements with high-dimensionality, with potentially high reporting overhead. This would imply that with these model inputs, the network would need to collect measurements over a significant period of time to create a labeled dataset for model training, as well as frequent collection of CIR/PDP measurements from the UE for model inference – in case of LMF/network-based model inference. Such considerations make it necessary to investigate potential two-sided models that could enable vendor-agnostic training data collection with minimal overhead.
Observation-6: The solution approaches that were presented so far as part of this study have been considered one-sided models, with the output of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location.
Observation-7: The use of CIR and PDP with high-dimensionality as model input could cause significantly high overhead for data collection for model training and inference.
Proposal-7: RAN1 to further study the impact of CIR and PDP as model input in terms of over-the-air signaling overhead with possible two-sided models as a solution to enable overhead reduction and for improving the quality of the collected data samples.

Model Input Related Discussions
On the topic of model input, the following proposal was made during RAN1-110, however it was not agreed:
Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.

The topic of baseline model input is relevant, since it ensures that the model could be deployed at the UE-side or network-side without any potential impacts to standards in terms of defining new measurements or signaling. However, on the use of CIR as model input, currently, the UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported. It is also important to note that the CIR definition is not defined in current standards and the CIR estimate could be significantly dependent on the UE processing capabilities. For e.g. two UEs at the same location may report CIRs of different lengths, with possibly mismatched delays, since the two UEs may optimize the result based on implementation-specific criteria, including the choice to possibly resampling the received PRS, and introducing UE-specific spurs, etc. 
Thus, if CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network. Thus, it would be beneficial for RAN1 to consider received signal / RSRP as a baseline model input.
Observation-8: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-9: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Proposal-8: RAN1 to consider RSRP as a baseline model input for evaluation of direct and AI/ML assisted positioning.

Furthermore, if CIR is considered as a potential model input, practical aspects related to how labeled data samples could be collected. One key related aspect that needs to be taken into account relates to the additional signaling overhead required for collecting CIR-based labeled dataset. The overhead is relevant not only for data collection for model training, but also for model inference – since for LMF/network-based model inference and positioning, the UE would need to report this information frequently to the network.
Observation-10: For CIR as model input, one key aspect that needs to be taken into account relates to the additional signaling overhead required for collecting CIR-based labeled dataset.
Proposal-9: RAN1 to consider overhead for CIR reporting as part of data collection and model inference – for LMF/network-based positioning where the UE would need to report this information frequently to the network.

Evaluation Results for Positioning Sub-Use Cases
On-demand LOS/NLOS Labelling 
For many traditional positioning methods (including TDOA, TOA, AOA), line-of-sight (LOS) propagation condition is a prerequisite. The positioning accuracy will deteriorate if wrongly used for non-line-of-sight (NLOS) conditions. Therefore, ML based LOS/NLOS classification is the first and critical step for a 2-step positioning approach. Considering data-intensity in ML model training and in-field labelling of LOS/NLOS requires devices like positioning reference unit (PRU) for in-field measurement, we propose to assess the necessity of requesting LOS/NLOS labelling before requesting a PRU for in-field measurement and labelling. That is, for ML model training or finetuning, the ML model takes in a channel observation (like CIR) and assess its estimation uncertainty on the LOS/NLOS classification, if and only if current ML model is not confident on the estimation output, it will request for a PRU for in-field measurement on ground-truth LOS/NLOS-tag, otherwise, for CIR that current ML model can estimate LOS/NLOS with high confidence, no labelling is required. With the selectively labelled data, training can become more efficient (in terms of required data size) in model training. On-demand labelling and training can be beneficial in making data labelling and training high-efficient, avoiding unnecessary labelling and improve the training efficiency in terms of training data size. 
Deployment Scenario and Simulation Assumptions 
To study the necessity of LOS/NLOS estimation uncertainty assessment in a 2-step positioning, an evaluation comparison is conducted following the workflow in Fig.1. As on-demand labelling and training shows on left, in step-1, in which the input is the channel observation (e.g., CIR) and the ML model outputs both LOS/NLOS estimation and the estimation uncertainty. If and only if the estimation uncertainty is higher than a threshold, PRU is requested on-demand for LOS/NLOS labelling and then ML model training/finetuning is activated with on-demand labelled dataset. Step-1 will repeat until ML model training is accomplished. For comparison, on the right side, the model training using randomly labelled data is also evaluated where all CIRs are labelled without regarding estimation uncertainty. 
In step-2, which is same for both cases, based on the LOS/NLOS classification result by the ML models (trained in step-1), either traditional TDOA or fingerprint-based approach is used for position estimation for LOS and NLOS, respectively.
In step-1, the data used for training is collected from an agreed simulation environment of InF-DH scenario with clutter setting of {40%, 2m, 2m}, which is detailed in Table 1. The CIR from 18 TRPs are combined for a generic model training using supervised learning. The two of the above-mentioned training approaches (training with on-demand labelling and regular labelling) are conducted in parallel with their estimation accuracy monitored with the increase of training data with the results shown in Fig.2. 
There are multi methods that can be used to evaluate the method, like k-nearest neighbors (KNN), the other model is fully connected neural network (FCNN) and Random Forests (RF). KNN is evaluated herein as an example:
· Input of KNN: CIR of [100,1] vector;
· In KNN, Euclidian distance is used as the metric to measure the distance of x to its k nearest neighbours that falls respectively to LOS (as class-0) and NLOS (as class-1). The hyperparameter k in KNN is set as 32.
· Output of KNN is the LOS/NLOS detection results.

[image: ]
Fig. 1 comparison of 2-step positioning with on-demand labelling and training (left) and regular data labelling (right) in step-1 and same step-2 for positioning


Table 1: Parameters used in the simulation setup.
	
	FR1 Specific Values

	Channel model
	InF-DH

	Layout
	Hall size
	InF-DH: 120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing 20m, located 10m from the walls.
[image: ]

	
	Room height
	10m

	Number of macro sectors per site
	1

	Penetration loss
	0dB

	Path loss model
	NR_InF_DH

	UE horizontal drop procedure
	UE's are dropped in a uniform random fashion across the entire layout while adhering to specified constraints on minimum distances.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h

	Min gNB-UE distance (2D), m
	Random circle (gNBs are placed in a random circle located a given distance from the site location with min distance 1m.)

	gNB antenna height
	Baseline: 8m
(Optional): FFS

	Clutter parameters: {density: r, height: h, size: d}
	{40%, 2m, 2m}

	Note 1: According to Table A.2.1-7 in 3GPP TR 38.802




Performance Evaluation 
Performance comparison between training with random data selection and with on-demand labelled data are illustrated in Fig. 2. With the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs for both approach and on-demand labelling approach is always leading. To reach a close-to-optimal accuracy level of 81 % for training based on random data selection, the number of required labelled data for training can be reduced by approximately 65% using on-demand labelling. It’s understandable for on-demand labelling has selective skipped the CIR that current ML model can already estimate with high confidence, therefore only high-informative data are selected for model training.
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Fig. 2: LOS/NLOS detection accuracy versus required labelled data volume in training between two approaches, random data labelling and on-demand labelling 
Observation-11: for example, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs accordingly. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling. 
Proposal-10: RAN1 to investigate further the use of on-demand labelling mechanisms for LOS/NLOS detection for it could effectively reduce the required LOS/NLOS labelling by PRU. 
It is noteworthy that for LOS/NLOS classification using KNN typed ML model, KNN’s intermedia results can be used directly to assess its estimation uncertainty without introducing extra computational complexity. While for FCNN typed ML model, taking the FCNN structure presented as option-b in Sec. 3.1.1 of [4] as an example, most of original NN parameters and intermediate results could be reused and only the last layer should be recalculated for estimation uncertainty assessment. As listed in Table 2, parameter number will increase from 0.24M (using random data selection) to 0.31M (using on-demand data selection) and FLOPs will increase from 2.38M to 4.33M accordingly. The gross number of training data for both training approaches is the same (13k samples). 

Table 2: Model information and evaluation results for AI/ML model for on-demand labelling and random labelling. 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Required training data size to reach accuracy at 82%

	
	
	
	
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.31M
	4.33M flops
	680 (red line in Fig. 2)

	
	Degree of classification confidence
	
	
	
	
	
	
	

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.24M
	2.38M flops
	2010 (blue line in Fig. 2)



It is also noteworthy that the benefits from such on-demand labelling is 2-folds, reduced requirement on the training data size and augmented LOS/NLOS classification accuracy. As shown in Fig. 1, with such ML-assisted 2-step positioning scheme, if the intermedia result of LOS/NLOS classification is LOS in step-1, traditional TOA based approach will be used in the step-2 for positioning calculation, otherwise fingerprint based positioning will be considered. Therefore, if NLOS is wrongly classified as LOS, it will cause considerable positioning error by using LOS-dedicated approaches like TDOA based positioning. 
In step-2, based on the LOS/NLOS detection result, if CIRs from 3 gNB are classified as LOS, TOA of 3 UE-gNB will be used for position estimation. Since for different gNB selection and combination, LOS/NLOS classification gain diverse, we simply denote x% as the percentage of NLOS that is wrongly classified as LOS by random labelling scheme and is correctly classified by on-demand labelling. Since 3 gNBs are required for positioning, we assume classification results of UE-gNB1 and UE-gNB2 is 100% trustworthy while x% of NLOS of UE-gNB3 is wrongly estimated as LOS. 
In the simulation evaluation, we evaluated CDF of positioning accuracy with x = 5, 10, 20, 30, respectively, in Fig. 3. As the results indicate, with higher LOS/NLOS classification accuracy, TDOA/TOA based traditional approach brings considerable positioning accuracy with respect to the LOS/NLOS classification gain using on-demand labelling for ML model training.
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Fig. 3: positioning accuracy comparison with different ratio (x%) of NLOS being wrongly classified as LOS (x = 5, 10, 20, 30)

Evaluations Related to Model Generalization 
The evaluation of generalization was done on two well defined setups. Setup 01 is based on the evaluation of two different cluttering density scenarios (clutter density 40% and 60%) only. Setup 02 is based on the generalisation evaluation between a setup with and without network sync error on the previous scenario.
Details of both setups are shared in the following sub-section. 
Deployment Scenario and Simulation Assumptions 
The two setups mentioned above are based on the deployment scenario described in Table 1, which aims to represent an industrial scenario with 18 BSs and an arbitrarily number of users deployed randomly (using a uniform distribution) on the hall area. This industrial setup is defined in 3GPP TR 38.802 and considers a diversity of channel models and pathloss models. In this specific deployment, the channel is related to Inf-DH and pathloss model to NR_Inf_DH.
In Setup 01, the key point is to evaluate generalization between two very well different scenarios in terms of clutter density. In Setup 02 a similar configuration setup was considered in simulation with an extra addition of network syn error. Both setups are described in Table 3 providing further details of the key system parameters used in the system level simulation (SLL). 

Table 3 – System level parameters used in the deployment of Setup 01 and Setup 02.
	Setup
	Scenario
	Clutter density
	Clutter height (m)
	Ceiling height (m)
	Clutter size (m)
	Network sync error

	Setup 01
	Scenario 01
	40%
	2
	10
	2
	No

	
	Scenario 02
	60%
	6
	10
	2
	No

	Setup 02
	Scenario 03
	40%
	2
	10
	2
	Yes




Using SLL, Setup 01 and Setup 02 were deployed considering a distribution of BSs and UEs with the parameters defined in Table 1. Each Setup is composed of two different scenarios, which were used to generate a dataset composed of the following features:
· Channel impulse response (CIR) in downlink, which means that every UE is obtaining in the same sample time 18 measurements from each BS.
· Ground truth for each UE, which is the 2D location of each entity.
· A flag for each BS-UE link indicating if it is in line-of-sigh (LOS) or non-line-of-sight (NLOS) condition. Based on this feature, it is possible to highlight the key difference between scenario 01 and scenario 02. Scenario 01 has 43% of LOS links and Scenario 02 has less than 2% of LOS links.

The machine learning model is based on a convolutional neural network (CNN) and fully connected layers with different sizes. The CNN used different filter sizes complemented with a combination of different regularization techniques to avoid overfitting. In all cases, the dataset used for testing is not considered in the AI/ML model training. The input of the CNN is the CIR of 18 BSs and the output layer is composed of the X and Y components of the 2D position.
In the simulation assumptions there are three different generalization evaluations, one without considering fine-tuning, one considering fine-tuning, and the last considering a mixed dataset. They are detailed in the following.

Generalization evaluation not considering fine-tuning.
Beyond the typical generalization analysis, the evaluation without considering fine-tuning is based on using a dataset that was not used in training specific AI/ML model. In general, if the AI/ML model was trained with a dataset generated in scenario A, the testing evaluation is done using a dataset generated in scenario B. An illustrative description of this approach is shared in Table 4.

Table 4 – Dataset arrangement used to evaluate generalization in which fine-tuning is not considered.
	
	Dataset used in training
	Dataset used for testing

	Datasets obtained in simulation 
	Dataset generated in scenario A
	Dataset generated in scenario B

	
	Dataset generated in scenario B
	Dataset generated in scenario A




Generalization evaluation considering fine-tuning.

Complementing the previous generalization approach, this generalization evaluation considers fine-tuning training. The fine-tuning relays on updating a previously trained AI/ML model with a sub-set of a different dataset defined as x % in Table 5. As the fine-tuning used in this generalization evaluation considers updating all parameters of a previously trained AI/ML model, an extra evaluation of the impact of the fine-tuning is done by performing a test on both datasets.
 An illustrative description of this generalization evaluation is provided in Table 5. Here, each column is used to indicate the purpose for what is used a specific dataset (for training, testing, fine-tuning). 
  

Table 5 – Dataset arrangement used to evaluate generalization in which fine-tuning is considered.
	
	Dataset used in training
	Dataset used for testing
	Dataset used in fine-tuning
	Dataset used for testing after fine-tuning

	Datasets obtained in simulation 
	Dataset generated in scenario A.
	Dataset generated in scenario B.
	x % of dataset generated in scenario B.
	Dataset generated in scenario B.
	Dataset generated in scenario A.

	
	Dataset generated in scenario B.
	Dataset generated in scenario A.
	x % of dataset generated in scenario A.
	Dataset generated in scenario A.
	Dataset generated in scenario B.



Generalization evaluation considering mixed dataset.

To visualize the impact of fine-tuning, a mixed dataset approach is also evaluated. In this evaluation, the AI/ML model is trained with the mixed dataset. This model is tested independently in each isolated dataset and in the mixed dataset. Details of this generalization evaluation are described in Table 6.
Table 6 - Dataset arrangement used to evaluate generalization in which fine-tuning is considered.
	
	Dataset used in training
	Dataset used for testing

	Datasets obtained in simulation 
	Mixed dataset generated in scenario A and scenario B.
	Dataset generated in scenario A.
	Dataset generated in scenario B.
	Mixed dataset not used in training.



The performance evaluation of Setup 01 and Setup 02 are shared in subsection 3.2.2.

Performance Evaluation of Setup 01 (Clutter density)
The performance evaluation of Setup 01 is done by training and testing an AI/ML model using datasets that were generated with different clutter parameters. The evaluation metric considers the 2D error obtained by the same AI/ML model that was trained with different datasets. This error is based on the Euclidian distance between the ground truth labelling and the UE position inferred by the AI/ML model.
In this Setup the following performance evaluations are registered:
· Performance evaluation on scenarios without fine-tuning,
· Performance evaluation on scenarios with fine-tunning,
· Performance evaluation on scenarios with a mixed dataset.
A graphical evaluation in terms of CDF with descriptive tables are shared in subsections 3.2.2.1, 3.2.2.2, and 3.2.2.3. In each table is described the input and output parameter used in the AI/ML model, the labeling, the setting parameter related to the clutter scenario, the dataset size in terms of samples, the AI/ML model and computational complexity, and finally the horizontal accuracy of the 90th percentile of the CDF. This performance evaluation is shown in Fig. 4 and Fig. 5.
Performance evaluation on scenarios without fine-tuning.
[image: ]
Fig. 4 – CDF of the 2D positioning error of different generalization setting between datasets generated on scenario 1 (clutter density 40%) and scenario 2 (clutter density 60%) when the AI/ML model was primarily trained with the dataset generated in scenario 1. It includes the evaluation result with and without fine-tuning, and the one that considers the mixed dataset.

[image: ]
Fig. 5 – CDF of the 2D positioning error of different generalization setting between datasets generated on scenario 1 (clutter density 40%) and scenario 2 (clutter density 60%) when the AI/ML model was primarily trained with the dataset generated in scenario 2. It includes the evaluation result with and without fine-tuning, and the one that considers the mixed dataset.
[image: ]
Fig. 6 – Evaluation of the impact of the percentage of the dataset used in fine-tuning on the testing evaluation of the dataset used in the fine-tuning and in the dataset used in the initial training.
Without using fine-tuning, the generalization evaluation indicates a degradation of the horizontal accuracy when a previous AI/ML model already trained with dataset of scenario 1 (clutter density 40%) is used to test the dataset of scenario 2 (clutter density 60%). It indicates that the AI/ML model already trained with the dataset generated in scenario 1 (CDF at 90th percentile of 5.6 meters) provides a significative degradation when it is tested in the dataset generated in scenario 2 (CDF at 90th percentile of 12.4 meters). A similar performance is observed in the opposite combination, when the dataset generated in scenario 2 (CDF at 90th percentile of 7.8 meters) provides a significative degradation when it is tested in the dataset generated in scenario 1 (CDF at 90th percentile of 11.4 meters), these values can be verified in Table 7. 
In Fig. 6 we evaluate the impact of the percentage of the dataset used in fine-tuning in the degradation of the generalization of the initial dataset (axis x) versus the average between five simulations in each case of the 90th percentile – CDF of the horizontal error. For instance, if the AI/ML model is originally trained with the dataset generated with scenario 1 (clutter density of 40%), and the same model is fine-tunned with a dataset generated with scenario 2 (clutter density of 60%), the degradation of the generalization on the dataset of scenario 1 (used in the initial training) is increased when the x% of the dataset of scenario 2 is increased.
Observation-12: For 40 % clutter density scenario, the positioning accuracy is improving with the usage of higher percentage of data used for fine-tuning, whereas there are no clear trends observed for the 60 % clutter density scenario.
Table 7. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity (parameters)
	Computational complexity (flops)
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	5.6

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	12.4

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	60% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	7.8

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	11.4




Performance evaluation on scenarios with fine-tuning.
In the case of fine-tuning, the performance of the dataset generated in scenario 2 is improved (CDF at 90th percentile of 7.89 meters). However, the testing on the dataset generated in scenario 1 is degraded because of the fine-tuning (CDF at 90th percentile of 5.6 to 8.94 meters). A similar performance is obtained in the opposite combination. These values can be verified in Table 8.
Table 8. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters with fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	fine-tune
	test
	train
	Fine-tune
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	60% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	7.89

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	40% clutter density
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	8.94

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	40% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	6.45

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	60% clutter density
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	10.95



Performance evaluation on scenarios with mixed dataset.
To verify the impact of the fine-tuning used in this evaluation, an extra evaluation is performed on a mixed dataset between dataset generated in scenario 1 and scenario 2. The outcomes of this combination in terms of 90th percentile of the CDF is shared in Table 9. Here, the performance of mixed dataset obtains a similar performance when compared to the fine-tuning approach. However, using a mixed dataset provides a better generalization when both datasets are evaluated in an isolated manner.
Table 9. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning. A mixed dataset between 40% and 60% clutter density is considered.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	Mixed 40% and 60% clutter density
	22K (90%)
	22K (10%)
	300K
	20M
	6.67

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	40% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	4.33

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	60% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	5.08



Observation-13: The fine-tuning scheme could lead to degradation in model performance when some specific parameters update is performed using a different dataset in terms of clutter density.
Observation-14: Fine-tuning improves the performance of a previously trained model in a new/different dataset. However, there is a degradation in the generalization of the model when evaluated in the original dataset used in the initial training. 
Observation-15: The performance of mixed dataset obtains a similar performance when compared to the fine-tuning approach. However, using a mixed dataset provides a better generalization when both datasets are evaluated in an isolated manner.
Proposal-11: RAN1 to consider the impact of different fine-tuning performance on different generalization performance approaches in terms of horizontal positioning accuracy.
Proposal-12: RAN1 to consider the impact of mixed dataset on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy. 
Proposal-13: RAN1 to consider the evaluation of trade-offs between fine-tuning and mixed dataset approaches on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy.
 
Performance Evaluation of Setup 02 (network sync error)
Following the same approach used in subsection 3.2.2, the evaluation of Setup 02 aims to evaluate the generalization between datasets with and without network sync error. 

[image: ]

Fig. 7 – CDF of the 2D positioning error of different generalization setting between datasets generated on scenario 3 (clutter density 40% + network sync error) and scenario 1 (clutter density 40%) when the AI/ML model was primarily trained with the dataset generated in scenario 3. It includes the evaluation result with and without fine-tuning, and the one that considers the mixed dataset.

Performance evaluation on scenarios without fine-tuning.
Without using fine-tuning, the generalization evaluation indicates a degradation of the horizontal accuracy when a previous AI/ML model already trained with dataset of scenario 3 (clutter density 40% + sync error) is used to test the dataset of scenario 1 (clutter density 40%). It indicates that the AI/ML model already trained with the dataset generated in scenario 3 (CDF at 90th percentile of 15.33 meters) provides a significative improvement when it is tested in the dataset generated in scenario 1 (CDF at 90th percentile of 10.77 meters).  These values can be verified in Table 10.

Table 10. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters and network sync error for the case without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity (parameters)
	Computational complexity (flops)
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density+ Sync error.
	40% clutter density + Sync error.
	11K (90%)
	11k (10%)
	300K
	20M
	15.33

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density+ Sync error.
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	10.77




Performance evaluation on scenarios with fine-tuning.
In the case of fine-tuning, the performance of the dataset generated in scenario 1 (clutter density 40% without sync error) is improved (CDF at 90th percentile of 8.1 meters). In the case of testing on the dataset generated in scenario 3 (clutter density 40% with sync error), the performance presents a minor difference in performance when compared to the case that does not consider fine-tuning (CDF at 90th percentile of 15.33 to 14.99 meters). These values can be verified in Table 11.
Table 11. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters and network sync error for the case without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	fine-tune
	test
	train
	Fine-tune
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density + sync error
	40% clutter density
	40% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	8.1

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density + sync error
	40% clutter density
	40% clutter density + sync error
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	14.99




Performance evaluation on scenarios with mixed dataset.
To verify the impact of the fine-tuning used in this evaluation, an extra evaluation is performed on a mixed dataset between dataset generated in scenario 3 and scenario 1. The outcomes of this combination in terms of 90th percentile of the CDF is shared in Table 12. Here, the performance of mixed dataset and the isolated dataset generated in scenario 3 indicates a similar performance. However, using a mixed dataset provides a better generalization when both datasets are evaluated in an isolated manner. 

Table 12. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning. A mixed dataset between 40% with and without network sync error is considered.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	Mixed 40% + sync error and 40% clutter density without sync error
	22K (90%)
	22K (10%)
	300K
	20M
	11.74

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	40% clutter density + sync error
	22K (90%)
	11K (10%)
	300K
	20M
	9.59

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	40% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	5.76



Observation-16: The performance of the dataset with network sync error is degraded in all generalization scenarios when compared to the dataset without network sync error.
Observation-17: The results for network synchronization error and clutter density follow a similar trend in terms of the performance of fine-tuning and initial model training using mixed dataset. However, it is important to note that the configurations used for fine-tuning could impact model performance significantly.
Proposal-14: RAN1 to study further the impact of configurations used for fine-tuning on model performance, and how the network could have better control over such aspects for UE-based positioning.

Evaluations Related to Diverse Data Availability 
In this section, we will present some evaluations related to the impact of lack of diverse data availability, and the application of data augmentation as a potential solution to this problem.
Deployment Scenario and Simulation Assumptions 
We consider scenario 1 defined by a clutter density of 40%, with a clutter height of 2 meters, clutter ceiling height of 10 meters and clutter size of 2 meters. Further details of the deployment scenario and related assumptions are as shown in Table 1 in Sec. 3.1.1.
The generated dataset contains features, such as Time of Arrival (ToA) for each link between each BS and the specific UE (18 ToAs per UE) as well the ground truth of UE 2D location.
Performance Evaluation 
We consider a Neural Network based positioning method (num_hidden_layers = 2, num_hidden_nodes = 500) which considers as input ToA from variable number of TRPs (18, 9 or 6) and the 2D UE position as output.
[image: ]
Fig. 8: Considered ML based positioning model
The performance of the ML model is assessed following a split of the total collected data into two separate sets for training and test following different partitions. The model is first trained on the selected training set and then the positioning accuracy is estimated on the test dataset. 
The data set can be described through the distance between the geographical locations associated with the data points, called as Inter Point Distance (IPD). The IPD metric can be computed using Ripley’s G function (available within pointpats an open-source python library for the statistical analysis of planar point patterns). The G function depicts the distribution of nearest neighbor distances. IPD metric is then defined as : .  
As an example, Fig. 9 shows the G function for the training set corresponding to 70% of the total data and for which IPD is estimated to be 1.5 m. As expected, the higher the proportion of the training set is, the closer are the data points (in terms of geographical distance) which corresponds to lower IPD value. Fig. 10 shows the IPD estimated for training set ranging from 5% to 70% of the total data (for 5% training set proportion & 95% for test, the IPD is 5m whereas IPD=1.5 m for 70% training proportion).
[image: ]IPD 

Fig. 9: IPD metric estimation with Ripley’s G function for test data 70% of total data
 [image: ]
Fig. 10: IPD metric estimation with Ripley’s G function for different training/test split proportions

Positioning accuracy is evaluated for different cases, using 90% CDF value of the calculated position error:
· ToA is measured from a variable number of 18, 9 and 6 TRPs 
· Different IPD metric values derived from different training/test partitions: [95%, 80%, 60%, 50%, 30%]

[image: ][image: ]
Fig. 11. Positioning accuracy vs. IPD for 18 TRPs case (left) and 9 TRPs case (right)
[image: ]
Fig. 12. Positioning accuracy vs. IPD for 6 TRPs case 
Fig. 11 presents the relation between the IPD metric and horizontal positioning accuracy on the test dataset for 18 and 9 TRPs. Fig. 12 shows the positioning accuracy performance in comparison to the IPD metric for 6 TRPs.
The main conclusions derived from the obtained results are: 
· The positioning accuracy is improved with higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements. 
· The positioning accuracy is enhanced with lower IPD of the training data set with around 13% improvement. This enhancement is more important for the case of lower number of TRPs.  

Observation-18: The positioning accuracy results improve in correlation with higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements.
Observation-19: The positioning accuracy is enhanced with lower IPD of the training data set with around 13 % improvement. This enhancement is more important for the case of lower number of TRPs.
Proposal-15: RAN1 to agree on the importance of data diversity in general and inter-point distance in particular, and further study mechanisms to ensure that datasets with diverse data samples are utilized for model training.
Conclusion
In this contribution we make the following observations and proposals:

Observation-1: Evaluating the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa, is not practically feasible.
Observation-2: It is unclear as to how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location.
Observation-3: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-4: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Observation-5: For UE-based positioning method with UE-based AI/ML model training and inference, currently it is unclear as to how to ensure that the provided training data is utilized in a manner than ensures optimal model performance.
Observation-6: The solution approaches that were presented so far as part of this study have been considered one-sided models, with the output of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location.
Observation-7: The use of CIR and PDP with high-dimensionality as model input could cause significantly high overhead for data collection for model training and inference.
Observation-8: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-9: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Observation-10: For CIR as model input, one key aspect that needs to be taken into account relates to the additional signaling overhead required for collecting CIR-based labeled dataset.
Observation-11: for example, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs accordingly. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling. 
Observation-12: For 40 % clutter density scenario, the positioning accuracy is improving with the usage of higher percentage of data used for fine-tuning, whereas there are no clear trends observed for the 60 % clutter density scenario.
Observation-13: The fine-tuning scheme could lead to degradation in model performance when some specific parameters update is performed using a different dataset in terms of clutter density.
Observation-14: Fine-tuning improves the performance of a previously trained model in a new/different dataset. However, there is a degradation in the generalization of the model when evaluated in the original dataset used in the initial training. 
Observation-15: The performance of mixed dataset obtains a similar performance when compared to the fine-tuning approach. However, using a mixed dataset provides a better generalization when both datasets are evaluated in an isolated manner.
Observation-16: The performance of the dataset with network sync error is degraded in all generalization scenarios when compared to the dataset without network sync error.
Observation-17: The results for network synchronization error and clutter density follow a similar trend in terms of the performance of fine-tuning and initial model training using mixed dataset. However, it is important to note that the configurations used for fine-tuning could impact model performance significantly.
Observation-18: The positioning accuracy results improve in correlation with higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements.
Observation-19: The positioning accuracy is enhanced with lower IPD of the training data set with around 13 % improvement. This enhancement is more important for the case of lower number of TRPs.

Proposal-1: RAN1 should agree to limit the Rel-18 study on AI/ML for positioning accuracy enhancements use case to only intra-site variations, as previously agreed.
Proposal-2: RAN1 to discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.
Proposal-3: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
Proposal-4: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.
Proposal-5: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.
Proposal-6: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling and/or monitoring the ML model adaptation and fine-tuning after model deployment.
Proposal-7: RAN1 to further study the impact of CIR and PDP as model input in terms of over-the-air signaling overhead with possible two-sided models as a solution to enable overhead reduction and for improving the quality of the collected data samples.
Proposal-8: RAN1 to consider RSRP as a baseline model input for evaluation of direct and AI/ML assisted positioning.
Proposal-9: RAN1 to consider overhead for CIR reporting as part of data collection and model inference – for LMF/network-based positioning where the UE would need to report this information frequently to the network.
Proposal-10: RAN1 to investigate further the use of on-demand labelling mechanisms for LOS/NLOS detection for it could effectively reduce the required LOS/NLOS labelling by PRU. 
Proposal-11: RAN1 to consider the impact of different fine-tuning performance on different generalization performance approaches in terms of horizontal positioning accuracy.
Proposal-12: RAN1 to consider the impact of mixed dataset on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy. 
Proposal-13: RAN1 to consider the evaluation of trade-offs between fine-tuning and mixed dataset approaches on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy.
Proposal-14: RAN1 to study further the impact of configurations used for fine-tuning on model performance, and how the network could have better control over such aspects for UE-based positioning.
Proposal-15: RAN1 to agree on the importance of data diversity in general and inter-point distance in particular, and further study mechanisms to ensure that datasets with diverse data samples are utilized for model training.
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