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Introduction
In the study item [1] scope, it is stated that one of the use cases to be focused on is
-	Initial set of use cases includes: 
o	CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
In this contribution, we provide our opinions on finalization of representative sub use cases for CSI feedback enhancement and discussions on potential specification impact.

Discussion on Sub Use Cases
In the RAN1#110 and RAN110b-e, we have reached the following conclusions regarding CSI prediction in AI 9.2.2.1.

	Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for evaluation,
· 100% outdoor UE is assumed for UE distribution.
· FFS: whether to add O2I carpenetration loss per TS 38.901 if the simulation assumes UEs inside vehicles
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· Note: Companies to report the set/subset of speeds
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, companies are encouraged to report the details of their models for evaluation, including:
· The structure of the AI/ML model, e.g., type (FCN, RNN, CNN,…), the number of layers, branches, format of parameters, etc.
· The input CSI type, e.g., raw channel matrix, eigenvector(s) of the raw channel matrix, feedback CSI information, etc.
· The output CSI type, e.g., channel matrix, eigenvector(s), feedback CSI information, etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded

Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the outdoor UEs, add O2I car penetration loss per TS 38.901 if the simulation assumes UEs inside vehicles.

Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, no explicit trajectory modeling is considered for evaluation

Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, and if the AI/ML model outputs multiple predicted instances, the intermediate KPI is calculated for each prediction instance

Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, both of the following types of AI/ML model input are considered for evaluations:
· Raw channel matrixes
· Eigenvector(s)
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the evaluation of CSI prediction:
· Companies are encouraged to report the assumptions on the observation window, including number/time distance of historic CSI/channel measurements as the input of the AI/ML model, and
· Companies to report the assumptions on the prediction window, including number/time distance of predicted CSI/channel as the output of the AI/ML model



In this section, we discuss CSI prediction as the potential sub use case in addition to spatial-frequency domain CSI compression.

CSI Prediction
CSI is a crucial piece of information that is needed to attain high link quality. For example, CSI is needed for MIMO precoding, beamforming, user scheduling, interference alignment, and transmit antenna selection, among others. CSI aging (or stale CSI), however, is a serious problem that adversely affects wireless systems. This is especially significant in Frequency Division Duplex (FDD) systems, where channel reciprocity is not typically assumed. Thus, FDD transmitters rely on feedback from receivers to acquire CSI. Such feedback causes further delay that adds to the overall CSI aging problem.
To overcome CSI aging, prediction can be performed to allow more timely decisions based on future channel conditions. This is a challenging problem since each CSI instance is a complex-valued matrix with dimensions N_RX×N_TX×N_F, where N_RX and N_TX are the numbers of RX and TX antennas, respectively, and N_F is the number of elements in the frequency dimension, which could be the number of subcarriers or the number of Resource Blocks (RB) or the number of sub-bands, etc. In other words, the number of parameters to be predicted to construct future CSI is quite large. However, the potential gains accrued from CSI prediction warrants further investigation.
In our companion paper [2], on performance evaluation, we demonstrate the promising potential of applying AI/ML based algorithms to the CSI prediction problem in comparison to classical prediction solutions. Specifically, our results demonstrate the AI/ML could be better suited for longer range prediction where classical solutions may fail to provide adequate performance.
We believe CSI prediction is a good sub use case which can resolve serious CSI aging problem and can provide more diverse aspects of standardization impact which is main goal of current study item (SI). Some companies argued that we need to wait for the outcome from Rel-18 MIMO to study CSI prediction in this SI. If two work items (WIs) are working on the same topic, it is better to wait for the other WI to avoid potential overlaps or collisions. However, in this SI, we can just parallelly study AI-based CSI prediction to check some feasibility and compare the performance with the traditional non-AI based solution. Regarding some comment on baseline performance, some companies already proposed several solutions like Kalman filter, Auto-regressive and these solutions are also considered in Rel-18 MIMO. In addition, the discussion on baseline performance is already ongoing in 9.2.2.1 Evaluation on AI CSI. For standardization impact, we could mostly reuse what we agree in Rel-18 MIMO such as future CSI reporting. Also, the discussion on CSI prediction in Rel-18 MIMO is based on mostly UE based prediction and restricted with the existing codebook and framework, but we can have more general discussion without any restriction for AI-based CSI prediction in this SI. Since we already reached some conclusion on evaluation of CSI prediction as shown above, there are not many remaining discussions on EVM. Therefore, we have the following proposal.

Study CSI prediction as a sub use case under Rel-18 AI/ML-based CSI feedback enhancement.
Potential Specification Impact 
CSI compression with auto-encoder
Training strategies of two-sided AI/ML models 
Unlike other sub use cases, where AI/ML models can be merely deployed at a single entity, CSI compression sub use case focuses on two-sided AI/ML models. The two-sided AI/ML models in CSI compression are auto-encoders (AEs) from which encoders are used by UEs and decoders are employed by gNBs during the inference stage. The two-sided AI/ML models in CSI compression raise some fundamental issues. As each vendor may own its exclusive encoder or decoder depending on the vendor’s purpose, the performance of such an encoder/decoder in conjunction with other vendors’ decoder/encoder entails a big question mark. In fact, new training strategies are required to make encoders and decoders of different vendors inter-operable. To facilitate inter-operability of AI/ML models from different vendors, three types of training strategies have been focused in  ‎[4]. We cast our detailed view on these training strategies in the following.   
[bookmark: _Hlk117604721]Training type 1: Joint training at a single entity
Training type 1 aims at training a well-designed AE at a single entity (either UE or gNB) during the training phase and offering the pre-trained encoder or decoder of AE to other entities upon their request in the inference phase. This training type does not offer a solution for inter-operability of encoders and decoders from different vendors, instead it bypasses the problem by guaranteeing that the encoders used by UEs and decoders used by gNBs are already inter-operable (matched in structure and their performance has already been verified). Naturally such a training strategy has superior performance to all other training strategies that we will discuss shortly. Training type 1 can be pursued in two directions depending on which side (UE or gNB) takes the responsibility of training. 
Training type 1 – training at UE:  As shown in Figure 1(a), in the training phase, UE takes full responsibility of training a whole AE including an encoder and a decoder. UE can leverage proprietary/public dataset and train AE in an individual forward pass (FP) and backpropagation (BP) loop. Once the training of AE is finished, UE obtains an encoder and a decoder which effectively perform compression and decompression, respectively. In the inference phase, the gNB requests pre-trained decoder to establish a two-sided AI/ML model with the aid of UE. UE uploads the decoder (exchangeable part of AE) for the gNB and keeps the encoder (unexchangeable part of AE). gNB deploys the received decoder and uses it for decompressing the CSI feedback afterward. 
Training type 1 – training at gNB: As shown in Figure 1(b), in the training phase, gNB takes full responsibility of training an entire AE including an encoder and a decoder. gNB uses a proprietary/public dataset and trains the AE in an individual FP and BP loop. In the inference phase, UE requests pre-trained encoder for CSI compression. UE downloads the encoder (exchangeable part of AE), and gNB keeps the decoder (unexchangeable part of AE). UE and gNB leverage encoder and decoder to form a two-sided AI/ML model and perform CSI compression and decompression, respectively.
	[image: ]
(a) Type 1 - training at UE 
	[image: ]
(b) Type 1 – training at gNB


[bookmark: _Ref117693209]Figure 1: Illustration of training type 1 when AE is trained at UE or gNB side
Whether UE or gNB trains the model, finally a two-sided AI/ML model is established in which encoder has learned how to provide rich latent vectors (compressed CSI maintaining essential information) and decoder has learned how to interpret the latent vectors. Thereby, inter-operability of vendors is no longer an issue. As revealed by our companion document ‎[5], training type 1 not only has superior performance to other types of training, but it also brings the following advantages which mainly roots in its centralized style of training:
· It does not need inter-vendor collaboration in the training phase
· It does not need inter-vendor signalling in the training phase
· BP and FP can maintain high precision for representing elements in latent vectors and gradients
· LCM is generally easier as all engineering efforts for re-training, debugging, and improving AI/ML model is centralized

Despite prominent advantages offered by training type 1 in the training phase, it has some drawbacks in the inference phase:
· The exchangeable part of AE may not be pre-tested and optimized at HW/SW architecture of the entity which uses the model trained at the other entity
· The exchangeable part of AE and processing related to it cannot be proprietary. For example, if UE trains AE, it should share information of decoder, dequantization, post-processing, and output type. If gNB trains AE, it should share information of encoder, quantization, and pre-processing. 
· Depending on the number and size of AI/ML models that one entity may requests from others, the inference signalling overhead can be quite high. 

Since the procedure and shared information in training “type 1-training at UE” and “type 1-training at gNB” are different, we believe the spec impact of each has to be discussed separately. Also, we note that alignment on different shared information including model format, structure, pre-/post-processing, and quantization as well as signalling format for request, download, and upload AI/ML models is required. 
[bookmark: _Hlk117697215]Categorize type 1 training into “type 1-training at UE” and “type 1-training at gNB”, and discuss the spec impact on each separately.  
Discuss potential spec impact on exchangeable part of model in the inference phase including:
· Model format, pre/post-processing, quantization, input/output format.
· Signaling format to request and upload/download exchangeable part of AI/ML model
· Related UE capability
During the inference phase, training entity can keep half of AI/ML model (unexchangeable) part proprietary. However, this action may cripple non-training entity in performance monitoring. For example, in training “type 1-training at gNB”, if the gNB does not reveal the decoder part to UE, UE loses its capability of measuring CSI reconstruction accuracy. On the other hand, gNB lacks access to original estimated CSI at UE, which prohibits the performance monitoring using NMSE and SGCS intermediate KPIs. Thereby, it needs to be meticulously discussed if training entity reveals the entire AI/ML model for the sake of performance monitoring or not. 
Discuss sharing full AI/ML model or only the exchangeable part of AI/ML model to non-training entity for performance monitoring.  
[bookmark: _Hlk117604779]Training type 2: Joint training at different entities
Training type 2 is introduced to avoid the model exchange issues in the training type 1 which breaks the proprietariness of AE and entails possible large signalling overhead in the inference phase. In training type 2, UE vendors participate with their encoders, and gNB vendors participate with their decoders in a training session. UE and gNB vendors jointly collaborate to train AEs. While the training is done jointly, each entity does not exchange any part of its AI/ML model and instead it exchanges other necessary information including latent vectors and gradient vectors to complete an FP and BP loop across two or more entities. Figure 2 shows the procedure of type 2 training for a single encoder and a single decoder pair, and it shows the signalling among encoder and decoder which completes the FP and BP loop across two different entities (i.e., UE and gNB). Simply put, a shared dataset is used by both encoder (at UE) and decoder (at gNB) for training purpose. The encoder generates the latent vectors and passes them to the decoder for CSI reconstruction. The reconstructed CSI samples will be compared to the target/label CSI samples, and loss will be calculated. The gradient of loss w.r.t. parameters will propagate through the decoder, and the decoder’s parameter will be updated accordingly. The decoder then will pass the gradient vector on its input layer to the encoder, and the encoder will resume BP and updating learnable parameters. While the encoder and decoder are proprietary, the applicable quantization/dequantization as well as format/precision of gradient vectors, latent vectors, and CSI samples may need to be aligned. 
For training type 2, discuss alignment of quantization/dequantization as well as format/precision of gradient vectors, latent vectors, and CSI samples.


[image: ]
[bookmark: _Ref117700055]Figure 2: Illustration of training type 2 for a single encoder and single decoder 

Unlike training type 1, in training type 2, the UE and gNB are not necessarily aware of detailed or type of AI/ML model structure used at the other side, and the structure of encoder and decoder may not match in type, number of layers, complexity, computational requirement, etc. For example, encoder may leverage a simple convolutional neural network (CNN) while decoder may use transformer (TF) as its core architecture. This architecture mismatch results a performance degradation compared to training type 1 where the training entity is implicitly responsible to train a matched architecture of encoder and decoder in its AE. In our companion contribution ‎[5], our evaluation shows that the encoder/decoder mismatch will cause 2.23% performance loss for UE and 2.26% performance loss for gNB. Despite this performance degradation, training type 2 has three prominent advantages: 
· Maintains the proprietariness of encoders and decoders
· Naturally serves as performance upper-bound to training type 3
· Much less signalling (over the air interface) overhead in the inference phase 
Extension to single-encoder multi-decoder setting
The extension of training type 2 to single-encoder multi-decoder setting is pretty straightforward as the single UE (encoder) can coordinate the training/updating its parameters and triggering different decoders in a Round-Robbin fashion or at the same time. We note that if the UE divides the training session into multiple sub-sessions and sequentially assigns each sub-session for exposing itself to only one of gNBs (decoders), it finally will be biased toward the last decoder which has been exposed to. 
For single-encoder multi-decoder setting in training type 2, UE should not break down the training session into multiple single-encoder single-decoder training sub-sessions
Extension to multi-encoder single-decoder setting 
Extension of training type 2 to multi-encoder single-decoder scenario requires more provisions depending on data ownership and inter-vendor learning/update schedule. From data ownership point of view, two cases can be imagined, common/shared dataset and UE-specific datasets. With common dataset, all UEs and the gNB have access to the same CSI samples to generate the latent vectors and calculate CSI reconstruction loss. Using UE-specific datasets, each UE vendor does not share its CSI sample with other UE vendors, and it may share the CSI sample (with desired type, e.g., eigenvectors or raw CSI) with the gNB to make gNB able to calculate the CSI reconstruction loss. In this sense, if vendors use UE-specific datasets, the type of target CSI (shared with gNB) should be aligned among UE vendors. 
In training type 2 for multi-encoder setting, if UE-specific datasets are used, the type of target CSI should be aligned among UE vendors.

[bookmark: _Hlk118465786]From learning/update scheduling perspective, three major cases with different levels of coordination can be implemented: i) concurrent update scheduling, ii) alternating update scheduling, and iii) sequential update scheduling.
Concurrent update scheduling: In this case, for each parameters’ update at UEs’ encoders and gNB’s decoder, a batch (minibatch) of CSI data samples can flow through encoders and the decoder. As the CSI samples in the batches are shared with the gNB, gNB is able to calculate the joint loss accumulated from all CSI reconstructions and initiate BP. The procedure is shown in Figure 3. 

[image: ]
[bookmark: _Ref117764901]Figure 3: Concurrent update scheduling in multi-encoder single-decoder setting for training type 2

Alternating update scheduling: Coordinating concurrent update may not be feasible due to alignment in size of batch, defining an appropriate joint loss, etc. In this case, UE vendors can individually trigger FP and BP using a batch or multiple batches of their specific CSI samples in an alternating pattern to maintain the fairness of their exposure to the common decoder. This training style is shown in Figure 4, where one parameters’ update (FP and BP) using a batch at UE vendor A is followed by a parameters’ update at UE vendor B, and these alternating updates last till the end of the training session. However, the inter-vendor synchronization is required at the UE side to not interfere parameter updates of each other. 

[image: ]
[bookmark: _Ref117765679]Figure 4: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
Sequential update scheduling: If concurrent or alternating update scheduling among UE vendors is not reachable/preferred, the training session can be divided into multiple sub-sessions during each of which one UE vendor uses its dataset (shared or specific) for training purpose as shown in Figure 5. While the synchronization requirement is almost rectified in this case, gNB vendor needs additional provisions to maintain its performance with the UE vendors which it has been exposed to them during initial sub-sessions.

[image: ]
[bookmark: _Ref117766811]Figure 5: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
Discuss feasibility of synchronization/alignment required for different update scheduling in training type 2.
[bookmark: _Hlk118471965]Another possible issue in multi-encoder setting is unintentional bias created by a UE-vendor such as excessive size of its dataset compared to the others, abnormal statistics of some datasets, unfair loss functions, etc. For example, consider gNB is using MSE function and dataset from a certain UE has samples with large values. Probably, gNB will be tempted to minimize loss function with focusing on large-valued samples and give up on the rest. As another example consider the case where one UE bombards gNB with its excessively large dataset.  If the underlying distribution of those CSI samples is different from CSI samples of other UEs, the gNB again trains a decoder that may not properly work for UEs with smaller datasets. As such, even if the UE vendors leverage UE-specific datasets, sharing information on training-related parameters such as size of datasets, statistics of datasets, training loss, update schedule, etc. is helpful to assure UE vendors about fairness of training sessions they are involved into.
If UE-specific datasets are used for multi-encoder training, consider sharing information on training-related parameters such as size of datasets, statistics of datasets, training loss, and update schedule.
In brief, the major advantage of training type 2 is enhancing the performance of unmatched encoder-decoder pair (as a single AE) in the inference phase by exposing them to each other in the training phase. The costs of this enhancement are frequent inter-vendor information exchange (e.g., latent vectors and gradient vectors) and the need for possible inter-vendor coordination. 
Training type 3: Sequential separate training 
Training type 3 relaxes the coordination requirements of training type 2 by offering a sequential separate training at UE and gNB sides. In this training type, either gNBs’ decoders or UEs’ encoders will be trained first, and then other parties will train their corresponding part of AEs accordingly. Based on possible order of training, the training type 3 has two categories: UE-first separate training and gNB-first separate training. A simple implementation of sequential separate training is described in the following for the most general setting where multiple encoders (at UEs) and multiple decoders (at gNBs) are trained in a single training session.
UE-first separate training: An example implementation of UE-first separate training may entail the following steps in order:
Step 1: Each UE leverages training type 1 to train an AE
Step 2: Each UE uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: UEs provide compound datasets including CSI samples and corresponding latent vectors to gNBs
Step 4: gNBs collect compound datasets from all UEs and train their decoders.

gNB-first separate training: An example implementation of gNB-first separate training may entail the following steps in order:
Step 1: Each gNB leverages training type I to train an AE
Step 2: Each gNB uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: gNBs provide compound datasets including CSI samples and corresponding latent vectors to UEs
Step 4: UEs collect compound datasets from all gNBs and train their encoders.
In our companion contribution ‎[5], we have evaluated training type 3 including both UE-first and gNB-first cases. In general, our results confirm the natural performance degradation of training type 3 compared to training 1 and training type 2. We also identified the risk of pairing unmatched encoder and decoders are higher in the training type 3, and between UE-first and gNB-first separate training, this risk is higher for gNB-first training. How to avoid such a degradation from unmatched pairs is a challenge that need information other than training inputs/outputs, i.e., latent vectors and CSI samples. Information such as encoders’/decoders’ types and complexity can be useful for the parties come second in the training order. 
Consider sharing information about encoders’/decoders’ architecture type and complexity from entities doing training first to other entities. 

Quantization 
At the last meeting, some companies proposed to discuss quantization schemes for CSI compression with auto-encoder. We also believe that it is an important topic for CSI compression. Since the quantization function is not differentiable, the gradient of bit level quantization function cannot be handled when we perform backpropagation algorithm for training. Some of works in literature tried to handle this issue. In this SI, it is better to study different quantization methods to resolve the problem and get the performance as close to non-quantization as possible. Therefore, we would like to make a following proposal.
Study potential spec impact on quantization for CSI compression with auto-encoder focusing on the followings
· Uniform vs Non-uniform quantization
· Scalar vs Vector quantization
· Derivable (approximated) quantization
· Gradient passing
· Learnable quantization offset

Life cycle management 
In the last RAN1 meeting, we have discussed the following proposal. 

	Proposal 3-4-2(v2):  
In CSI compression using two-sided model use case, further study CSI compression specific potential specification for life-cycle management procedure, e.g., [model selection], [model configuration], model activation/de-activation, model switching across various configurations/scenarios.



Life cycle management (LCM) is already being actively discussed in AI 9.2.1 General aspects of AI/ML framework. The followings are main related issues in the discussion.
· [bookmark: _Toc101357047][bookmark: _Toc105521385]Model configuration, activation, and deactivation
· Model download
· Model performance monitoring and related signaling support
· Model selection and update
· Online training
· UE capability impact 
Since life cycle management is related to not only CSI compression but also all other use cases and sub use cases, we have the following proposal.
[bookmark: OLE_LINK4]Discuss the potential spec impact of life cycle management for CSI compression in AI 9.2.1 General aspects of AI/ML framework 

CSI prediction
Several alternatives to handle CSI prediction exists and each would have their own specification impact.
One aspect of CSI prediction is whether to execute it on the UE side or on the gNB side. If CSI is to be predicted on the UE side, then it is important to decide on how the CSI feedback to gNB is executed:
· One example is that gNB configures the UE with a prediction target of X milliseconds in the future (which is likely to be subject to UE capability) then the UE compresses the predicted CSI using one of the already available mechanisms. For instance, the UE may feedback PMI/RI/CQI information using, for example, E-Type II codebook. Alternatively, the UE may compress the raw CSI using an AI/ML CSI compression approach.
· Another example is that the UE feeds back multiple instances of future CSI, taking into account the time domain fluctuations. In this case a new feedback mechanism is required since so far, the time domain has not been incorporated in CSI feedback.
If CSI is to be predicted at gNB, then the UE must provide proper information sufficient for gNB to accomplish the prediction task. Our earlier results on CSI enhancement in the time domain showed that PMI prediction at gNB using previous PMIs does not result in good prediction performance. Such results, however, were not based on AI/ML models but it is likely to hold true even with AI/ML models. In such scenario, more information may be needed at gNB for it to handle the prediction reliably, which will be an extra burden on feedback. It remains to be seen what extra feedback could be required and whether the increased feedback to gNB (to allow it to do prediction) warrants enough performance gains over prediction on UE side.
Discuss the potential spec impact for CSI prediction.

1 Conclusion
In summary, based on the above discussion we have the following observations and proposals:
1. Study CSI prediction as a sub use case under Rel-18 AI/ML-based CSI feedback enhancement.
Categorize type I training into “type I-training UE” and “type I- training gNB”, and discuss the spec impact on each separately.  
Discuss potential spec impact on exchangeable part of model in inference phase including:
· Model format, pre/post-processing, quantization, input/output format.
· Signaling format for request and upload/download exchangeable part of AI/ML model
· Related UE capability
Discuss sharing full AI/ML model or only exchangeable part of AI/ML model to non-training entity for performance monitoring.  
For training type II, discuss alignment of quantization/dequantization as well as format/precision of gradient vectors, latent vectors, and CSI samples.
For single-encoder multi-decoder setting in training type II, UE shall not break down the training session into multiple single-encoder single-decoder training sub-sessions
In training type 2 for multi-encoder setting, if UE-specific datasets are used, the type of label CSI should be aligned among UE vendors.
Discuss feasibility of synchronization/alignment required for different update scheduling in training type 2.
If UE-specific datasets are used for multi-encoder training, consider  sharing information on training-related parameters such as size of datasets, statistics of datasets, training loss, and update schedule.
Consider sharing information about encoders’/decoders’ architecture type and complexity from entities doing training first to other entities. 
Study potential spec impact on quantization for CSI compression with auto-encoder focusing on the followings
· Uniform vs Non-uniform quantization
· Scalar vs Vector quantization
· Derivable (approximated) quantization
· Gradient passing
· Learnable quantization offset
Discuss the potential spec impact of life cycle management for CSI compression in AI 9.2.1 General aspects of AI/ML framework 
Discuss the potential spec impact for CSI prediction.
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