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1 Introduction
In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. One of the objective of the study item [1] is the following:
	*** text omitted***
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
*** text omitted***
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.



In this contribution, we will provide our views on the evaluation of AI/ML for CSI feedback enhancement. 
2 Evaluation on AI/ML for CSI feedback enhancement.
Based on the part of SID [1], captured above, the evaluation methodologies (EVMs) and KPIs for the use cases under consideration will be studied. In this regard, this contribution discusses EVMs and KPIs for one of the use cases, namely, CSI feedback enhancement. Moreover, we consider four sub-use cases under CSI feedback enhancement. A brief description of the sub-use cases, which are described in details in [2], is given below. 
a) CSI prediction:  This sub-use case considers the prediction of CSI in time domain. An AI/ML solution located at either the UE or gNB performs CSI prediction based on a set of inputs, e.g. past CSI measurements/reports. 
b) Frequency-domain CSI extrapolation: This sub-use case considers extrapolation of CSI in the frequency domain.  An AI/ML solution located at either the UE or gNB performs CSI prediction in one frequency band based on a set of inputs, e.g. CSI measurements/reports for another frequency band.        
c) Spatial-frequency domain CSI compression: This sub-use case envisions compression of the CSI feedback in spatial and frequency domains based on a two-sided model. One side of the model located at the UE encodes the CSI to its compressed representation. Another side of the model located at the gNB decodes and reconstructs the received compressed CSI feedback. The pair of encoder and decoder, hence, is referred to as an auto-encoder (AE). 
d) Temporal-spatial-frequency-domain CSI compression: This sub-use case considers the compression of CSI feedback in spatial, frequency, and time domains. As this sub-use case considers the three aforementioned compression domains, it can be loosely considered as a combination of the above three sub-use cases.


2.1 Remaining Issue on General Aspects of Evaluation Methodologies 
RAN1 has made a good progress in coming up with a common evaluation methodology for the evaluation of two-sided model based CSI compression and one-sided model based CSI prediction. In RAN1#109-e, EVMs based on SLS as a baseline and LLS as optional are agreed for evaluation of AI/ML-based CSI feedback enhancement. The tables for the agreed evaluation parameters are included in the Appendix section. Moreover, as shown below, it was agreed that companies can consider performing intermediate evaluation on AI/ML model to derive the intermediate KPIs. In our view, the intermediate evaluation with properly selected intermediate KPIs can be used to compare the performance advantages and complexity requirements of potential sub use cases. This greatly simplifies the evaluation efforts and allows the study to consider a diverse set of sub use cases. Eventual evaluation with system level performance metrics will assist in drawing accurate conclusions on the benefits of AI/ML for CSI feedback enhancement and for possible recommendations of normative projects. With this in mind, in the below, we provide our views on the remaining issues on the evaluation methodologies for AI/ML based CSI feedback enhancement. 

	Agreement
For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison.




2.1.1. Reference for Inference Complexity Analysis 
RAN1 made the below agreements regarding inference complexity. In agenda item 9.2.1, RAN1#110b-e clarified inference complexity includes complexity of pre- and post-processing. Moreover, in RAN1#109, FLOPs was adopted as a measure of computational complexity. However, while reporting the complexity of pre- and post-processing, the reference input  and output format of the pre-processing and post-processing operations, respectively, could be ambiguous. For example, raw channel matrices or eigenvectors can be considered as input for pre-processing. In order to clarify this point we propose the following:

Proposal #1: For the evaluation of the AI/ML based CSI feedback enhancement, while reporting the computational complexity of pre-processing and post-processing the following are considered. 
· Estimated raw channel matrix per each  frequency unit as an input for pre-processing  
· Precoding vectors per each  frequency unit as an output of post-processing
Note: frequency unit can be set to 4 RB or 2 RB for 15KHz SCS and 30KHz SCS, respectively. 
   
	Agreement RAN1#110b-e (under agenda item 9.2.1)
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)

Agreement RAN1#109 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.

Agreement RAN1#110
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.





2.1.2. Alignment on CSI Payload Size
Another remaining issue is alignment on CSI payload for the comparison of AI/ML based CSI and baseline schemes. One option is to align on the payload size taking in to account the variable payload size supported by the baseline schemes, e.g., different parameter combinations, nonzero coefficients reporting, etc. for Rel-16 Type II CB. While admittedly, this provides the fairest comparison, it is restricting to the AI/ML model design as all companies should strive to fixed payload size if this approach is adopted.

Companies can simply calculate the payload size as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE. The CSI payload can be the maximum payload size of a particular rank reporting. Alternatively, it is also possible to count the reported payload bits at each CSI report based on Rel-16 and report the average. Obviously, the latter allows for more accurate comparison as the actually used payload size will be reported while the earlier may help for calibration.  As both views are valid, we propose the following: 
Proposal 2: For the CSI payload size calculation for AI/ML-based CSI compression as well as the legacy TypeII codebook, the payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE.
Note: Whether the CSI payload is calculated as each CSI reported payload with a given rank or as max allowed bits at the given rank can additionally be reported. 





	









2.1.2. Template for Collecting Evaluation Results
One of the key remaining issue is template for evaluation results collection. In our view, the template may have the following three components: 
· AI/ML model description, 
· Evaluation assumptions, e.g., indication among baseline vs. optional settings
· Evaluation results 
With the aforementioned considerations, we propose the template suggested in RAN1#110b to be adopted with additional rows as below.  . 

Proposal 3: For the evaluation of the AI/ML based CSI compression sub use cases, 
	
	
	Source 1
	…

	CSI generation part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	CSI reconstruction part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	Common description
	Input type
	
	

	
	Output type
	
	

	
	Quantization /dequantization method
	
	

	Dataset size
	Train/k
	
	

	
	Test/k
	
	

	Simulation settings and assumptions agreed to be reported
	
	
	

	Gain for intermediate KPIs
	SGCS
	
	

	
	NMSE
	
	

	
	[Others]
	
	

	Gain for eventual KPI
	Mean UPT
	
	

	
	5% UPT
	
	





2.1.2. Additional EVM Considerations for CSI Evaluation
RAN1 made a considerable progress on the evaluation assumptions for one-sided model based CSI prediction. It is yet to be selected as a representative sub-use case, the EVM work has more or less finalized. One remaining major issue here is the determination of benchmark CSI prediction scheme for performance comparison. Some companies suggested Rel-18 refinement of Type II CSI for high/medium mobility, i.e., Rel-18 Type II Doppler domain (DD) CSI. However, Type II DD CSI is a reporting mechanism rather than a prediction scheme. In a similar manner as for temporal-domain beam prediction, the latest reported/measured CSI can be used as a benchmark scheme to evaluate the performance. Other CSI schemes, such linear prediction could also proposed. However, for the sake of fairness, if other CSI prediction benchmarks are also reported then the corresponding computational complexity is reported.   

Proposal 4: For AI/ML based CSI prediction sub use cases, the nearest historical CSI can be taken as a baseline for the benchmark of performance comparison.
Note: Other non-AI/ML based CSI prediction benchmarks for performance comparison are reported by companies. If other CSI prediction benchmarks are also reported then the corresponding computational complexity is reported. 
 




2.2 Evaluation of Training Collaboration Types for Two-sided Models 
The following were agreed for the evaluation of Type 2 and Type 3 training collaboration of two sided models. 
	Agreement
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), the following evaluation cases are considered for multi-vendors,
· Case 1 (baseline): Type 2 training between one NW part model to one UE part model
· Case 2: Type 2 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· Case 3: Type 2 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS N NW part models to M UE part models
· FFS different quantization/dequantization methods between NW and UE
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model
· FFS: companies to report the training order of UE-NW pair(s) in case of M UE part models and/or N NW part models
· FFS: whether/how to report overhead

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model





[image: ]
                            Fig. 1 Two different training orders on the Type 2 training for one UE part and N network part models. 

One of the FFS points for the evaluation of Type 2 training for multi-vendor training case, i.e., M>1 UE part models and/or N>1 network part models, is the training order. For example, as shown in Fig. 1, two training orders can be considered wherein in one the training is performed in a single training session or multiple sessions. These two orders of training for Type 2 may have different practical implications, e.g., it is increasingly difficult to collaborate with multiple vendors simultaneously, either over the air-interface or offline training setup. 

Proposal#5: For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), for multi-vendors training Case 2, i.e., one NW part model and M>1 separate UE part models, and Case 3, i.e., one UE part model and N>1 separate NW part models, evaluate and compare the following two training scenarios:
Scenario 1: training in a single session 
Scenario 2: training in multiple sequential training sessions, i.e, one UE part and one network part at each training session. 

2.3 Evaluation Metrics 
	Agreement RAN1#109-e
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.

Agreement RAN1#110-e
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted

Agreement RAN1#110b
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers 

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)



Another remaining issue is details on intermediate KPIs. For example on how to calculate SGCS for rank>1, for methods were discussed 
· Method 1: Average over all ranks
· Method 2: Weighted average over all ranks
· Method 3: SGCS is separately calculated for each rank (e.g., for K ranks, K SGCS values are derived respectively, and comparison is performed for per rank)

In our view Method 2 is reasonable as it closely emulates the expected system level throughput. In order to forge this alignment between intermediate KPIs and the eventual system performance metrics, the weights can be set as the singular values of the channel’s covariance matrix. It is to be noted that such properties of intermediate KPI may mean it can be used for other purposes than evaluation such as model monitoring. Thus method 2 can be additionally adopted. 

Proposal #6: For the evaluation of the AI/ML based CSI feedback enhancement, adopt SGCS for rank>1 as weighted average over all ranks 

where  is an eigenvalue of the channel covariance matrix corresponding to 
Note:  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.

Furthermore, some discussion were made in the last RAN1 meeting whether to consider additional intermediate metrics. This includes Realized relative SNR (RRSNR), Chordal distance, Numerical spectral efficiency gap, Normalized Expected Directional Gain (NEDG). The main motivation is to emulate the DL throughput better. As an example RR SINR and NEDG capture the residual interlayer interference. In particular, consider the below formulation for RR SINR 

where  is an eigenvalue of the channel covariance matrix corresponding to 
Note:  is the channel matrix at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over.

Consider the channel matrix   where   and  are the right and left-side eignvector matrices of  while . Then,  . Here, it can be noted that RRSNR captures the signal power from the j-th layer projected on the subspace spanned by the other eigenvectors too, i.e.,    for  However, if the receiver (UE) applies the left-side eigenvectors to receive the transmission for different layers, i.e.,  to receive the j-th layer, this leaking energy is suppressed (nullified). Besides, for MU-MIMO, the gNB may apply inter-layer interference nulling, e.g., by applying zero-forcing, after reconstructing the reporting precoder. Thus, in MU-MIMO scenario, when the gNB do not directly apply the reconstructed precoder, RRSNR does not give practical advantage in terms of emulating the DL MU-MIM as compared to SGCS. 
 
Observation #2: RRSNR as intermediate KPI may be advantageous on providing better emulation of the MU-MIMO DL throughput performance than GCS in some receiver assumptions. If the UE performs inter-layer interference nulling, this advantage is lost.  This observation holds to other proposed intermediate KPIs such as numerical spectral efficiency gap and NEDG. 

Observation #3: In MU-MIMO scenario, when the gNB do not directly apply the reconstructed precoder, RRSNR does not give a practical advantage in terms of emulating the DL MU-MIMO throughput performance than SGCS. This observation holds to other proposed intermediate KPIs such as numerical spectral efficiency gap and NEDG.

Proposal #7: For the evaluation of the AI/ML based CSI feedback enhancement, deprioritize discussion on additional intermediate KPIs. 





3 Preliminary Evaluation Results  
3.1 CSI prediction
Recent research results from both academia and industry indicate that AI-based CSI prediction strategies can significantly reduce prediction error beyond that achieved by the sample-and-hold strategy that is supported by Rel. 15-17.  Many of these results utilize deep learning techniques to learn the temporal channel correlations (and, in some instances, spatial-frequency channel correlations).

In our previous contribution [7], we showed that a 3D-CNN that had been augmented with a ResNet yielded a prediction error (i.e. average NMSE) of -10.5 dB, compared to the prediction error of 4.789 dB for a baseline sample-and-hold predictor.  In this contribution, we utilize this 3D-CNN+ResNet for our evaluations.

Our evaluation results were generated using the following parameters:
· UE speed of {10, 20, 30} km/h
· 3GPP UMa channel model
· Carrier frequency of 4 GHz
· Channel bandwidth of 10 MHz
· Inter-BS distance of 200 m
· 100% outdoor UE
· gNB has Nt = 32 transmit antennas and Nr = 4 receive antennas
· K = 52 resource blocks
· CSI-RS periodicity of 5 ms.
 
The 3D-CNN+ResNet that we used, along with its inputs, is shown in Fig. 1-1.  In particular, the objective is to predict the next 3-D CSI sample H, which has dimensions of K x Nt x Nr.

[image: 3dcnn_resnet]
Fig. 1-1: AI-based CSI predictor that utilizes residual neural network

We define the following parameters:
· B is the batch size
· L is the number of past channel observations that are input to the 3D-CNN+ResNet
· X = 2*Nr*floor(Nt/2)*floor(K/4), where floor() is the floor function.

The parameters of the 3D-CNN+ResNet are shown in Table 1-1.

Table 1-1: Parameters of 3D-CNN+ResNet
	Module
	Parameter
	Value

	Conv Block 1
	Input and output dimensions
	(B, 2*L, Nr, Nt, K) and 
(B, 4*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	MaxPool 1
	(Kernel, padding, stride)
	(3, 3, 3) and (1, 1, 1) and (1, 1, 1)

	Conv Res Block (1st Conv Block)
	Input and output dimensions
	(B, 4*L, Nr, Nt, K) and 
(B, 8*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Res Block (2nd Conv Block)
	Input and output dimensions
	(B, 8*L, Nr, Nt, K) and 
(B, 16*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Res Block (Conv Layer)
	Input and output dimensions
	(B, 16*L, Nr, Nt, K) and 
(B, 4*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Block 2
	Input and output dimensions
	(B, 4*L, Nr, Nt, K) and 
(B, 2, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 7) and (1, 3, 3) and (1, 1, 1)

	MaxPool 2
	(Kernel, padding, stride)
	(1, 2, 4) and (0, 0, 0) and (1, 2, 4)

	FC Block
	Input and output dimensions
	(B, X) and (B, 2*Nr*Nt*K)



The hyper-parameters that we used for model training are shown in Table 2.
  Table 1-2: Hyper-parameters for model training
	Parameter
	Value

	Batch size
	256

	Number of epochs
	100

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.1 at (100, 200, 250) epochs

	Training/validation split
	90% / 10%



We also utilized a different baseline predictor than sample-and-hold in this contribution.  In particular, to predict the next CSI sample Hn+1, we computed a linear combination of the current and previous CSI samples Hn and Hn-1, respectively.  Thus, we obtained a prediction Hpred,n+1 = αHn+βHn-1.  For each UE speed, we used a numerical search to determine the weights α and β.

The prediction error (i.e. average NMSE) that we obtained for our baseline predictor and our 3DCNN+ResNet (with Case 1 for verifying generalization performance) are shown in Table 3.

Table 1-3: Prediction error (dB) as function of UE speed
	
	10 km/h
	20 km/h
	30 km/h

	Linear combination
	-4.14
	2.14
	2.34

	3DCNN+ResNet
	-20.8
	-19.3
	-18.5



Figure 1-2 shows the CDF of the SGCS for our baseline predictor and our 3DCNN+ResNet for a testing dataset where the UE speed was set to 10 km/h.  The green trace in this plot corresponds to Case 1 for verifying generalization performance, as the UE speed was also set to 10 km/h for the training dataset.  The black trace in this plot corresponds to Case 3 for verifying generalization performance, as the training dataset was equally split between data where the UE speed was set to 1) 10 km/h and 2) 20 km/h.  Here, we determined (α, β) = (1.6, -0.6).

[image: curr_dl_extra]
Figure 1-2: CDF of SGCS for 10 km/h

Figure 1-3 shows the CDF of the SGCS for our baseline predictor and our 3DCNN+ResNet for a testing dataset where the UE speed was set to 20 km/h.  The green trace in this plot corresponds to Case 1 for verifying generalization performance, as the UE speed was also set to 20 km/h for the training dataset.  The black trace in this plot corresponds to Case 3 for verifying generalization performance, as the training dataset was equally split between data where the UE speed was set to 1) 20 km/h and 2) 30 km/h.  Here, we determined (α, β) = (0.7, 0.3).

[image: curr_dl_extra]
Figure 1-3: CDF of SGCS for 20 km/h

Figure 1-4 shows the CDF of the SGCS for our baseline predictor and our 3DCNN+ResNet for a testing dataset where the UE speed was set to 30 km/h.  The green trace in this plot corresponds to Case 1 for verifying generalization performance, as the UE speed was also set to 30 km/h for the training dataset.  The black trace in this plot corresponds to Case 3 for verifying generalization performance, as the training dataset was equally split between data where the UE speed was set to 1) 20 km/h and 2) 30 km/h.  Here, we determined (α, β) = (0.7, 0.3).

[image: curr_dl_extra]
Figure 1-4: CDF of SGCS for 30 km/h

Observation 1-1: AI-based CSI prediction can yield performance benefits over a range of UE speeds, compared to a conventional CSI predictor that computes a linear combination of the current and previous CSI samples.
[image: ]
Figure 1-4: LSTM-based model for one-sided model based CSI prediction

In the below, we investigate another set of results for an LSTM-based model as shown in Figure 1-4 for CSI prediction. The agreed LLS-based EVM assumptions are considered here. Moreover, both UE-side and network-side CSI prediction are considered. As the reader may observe from section 3.4., prediction based on precoding vectors as inputs to an AI/ML model does not work well due to loss of phase information in the SVD operation. One the other hand, prediction based on raw channel matrix works well. One challenge for network-side prediction is the overhead to make the full-channel matrix  available at the gNB. Note here that the (raw) full-channel matrix can be decomposed as   for the right eigenvectors in V where  and left eigenvectors U given as  . Conventionally, the right eigenvectors in V are sent to gNB via CSI feedback. It is clear, that sending the full-channel matrix  which is  per reporting subband as CSI feedback may incur a  hindering overhead. However, the network is usually interested in channel information corresponding to few dominant layers (rank <  ). In this case, the UE may share channel matrix corresponding to the few dominant vectors, e.g.,   for layers, ., by reporting only   and   for few layers .,. Note here that  .
[image: ]
Figure 1-5: GCS vs. delay for 10 km/h
In Figure 1-5, it can be noticed that network-side prediction performs well with comparable performance as UE-side prediction, if the UE-side eigenvectors are available at the gNB side. Note here that the same payload size is used to feedback the {v}  and {u+v} vectors, in the UE-side prediction and network-side prediction, respectively. In Fig. 4-6 (b), the relatively high payload size, i.e., 564 bits, ensured the accurate delivery of the left-side and right-side eigenvectors; therefore, performance is dictated by the prediction performance rather than by feedback reconstruction performance. Additionally,  Fig. 4-6 (c), provides the result for moderate payload size, i.e., 272bits. Herein, even if the performance of UE-side prediction and gNB-side prediction degraded from the one based on uncompressed full-channel matrix, the degradation is not substantial. Thus, both UE-side and gNB-side prediction asymptotically achieved the prediction without (ideal) compression. 

Observation 1-2: Both UE-side and network-side CSI prediction show performance gains as compared to the baseline CSI based on the latest historical CSI, i.e., sample-and-hold. 
· When the raw channel matrices are available at the network, network-side prediction has competitive performance as UE-side prediction
· When the network is interested in lower rank, i.e., rank values lower than the number of receive antenna ports at the UE, the overhead of reporting raw channel matrices can be significantly reduced. 


3.2 Frequency-domain CSI Extrapolation:
The benefits of AI-based CSI prediction can be applied to extrapolation in other domains (e.g. frequency, space; we use “extrapolation” to refer to those domains).  For example, a gNB can configure a UE to send it CSI reports for an inactive bandwidth part (BWP).  The UE can use received DL CSI-RS on an active BWP and then perform AI-based CSI extrapolation to infer CSI on the inactive BWP.  The gNB can then decide whether to configure the UE to switch to the inactive BWP, depending on the CSI reports for the active and inactive BWPs.

The problem that we are considering, along with the neural network architecture that we developed to address it, is shown in Fig. 2-1.  In particular, the objective is to extrapolate 72+N CSI-RS observations to CSI on the 288 SCs in the region in yellow.  In this case, if N > 0, then some interpolation is performed to infer the 288 SCs in the region in yellow (hence, we refer to our approach as “extra(inter)-polation”).

[image: testnet]
Fig. 2-1: AI-based CSI frequency extra(inter)-polator

Our evaluation results are shown in Fig. 3, where we compare the performance of our AI-based CSI frequency extra(inter)-polator (which we denote “TestNet”) with an ideal 2-D Wiener filter and an AI-based channel estimator (which we denote “EDSR”) [8].  For both of the latter approaches, we placed CSI-RS on every 4th subcarrier in the region in yellow in Fig. 2.  These results were generated using the following parameters:
· UE speed of 5 km/h
· Delay spread of 100 ns
· TDL-C (NLoS) channel model
· Carrier frequency of 3.5 GHz
· gNB has Nt = 1 transmit antenna and Nr = 1 receive antenna
· K = 48 resource blocks.

[image: curr_dl_extra]
Fig. 2-2: AI-based CSI frequency extra(inter)-polation error

The parameters of the neural network architecture that we developed in this case are shown in Figures 4 and 5.

[image: testnet_params]
Fig. 2-3: Parameters of AI-based CSI frequency extra(inter)-polator

[image: testnet_basic_block_params]
Fig. 2-4: Parameters of “Basic Block” in AI-based CSI frequency extra(inter)-polator

The hyper-parameters that we used for model training are shown in Table 3.
  Table 2-1: Hyper-parameters for model training
	Parameter
	Value

	Initial batch size
	16

	Batch size schedule
	2 at (60, 120, 180, 240, 300) epochs

	Number of epochs
	300

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.1 at (100, 200, 250) epochs

	Training/testing split
	80% / 20%



Observation 2-1: AI-based CSI frequency extrapolation can be enhanced by utilizing additional CSI-RS observations in the band to be extrapolated, which amounts to AI-based CSI frequency extra(inter)-polation.


3.3 Spatial-frequency-domain CSI Compression
The training dataset and inference dataset is obtained from the SLS following the Rel-16 SLS assumptions (see Table 3-1).

Table 3-1. Assumption on dataset generation
	Parameter
	Value

	Scenario
	UMa and UMi (7 macrocell sites and 3 sectors per site), InH

	Carrier Frequency
	2GHz

	Inter-BS distance
	500m for UMa and 200m for UMi

	Simulation bandwidth
	10MHz (52 RB, 13 subbands)

	UE distribution
	80% indoor, 20% outdoor
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Figure 3-1. Block diagram of ViT-AE based CSI compression

For the compression and reconstruction of CSI, the autoencoder (AE) consisting of the encoder for the compression task and the decoder for the reconstruction task is used (see Figure 1). As an AI model in the encoder and decoder, vision transformer (ViT) [3], a useful model to exploit the self-attention mechanism on 2D input data, is used with some modifications. In our evaluations, uniform quantization is used for the quantizer/de-quantizer and GCS is used as a loss function. The system-level channel data for training is generated from 512 drops and 420 UEs per simulation drop, and thus 215,040 training samples are obtained. For the inference dataset, 8400 samples are generated from 20 drops. Further, the ViT-based AE compresses and reconstructs the rank 1 eigenvector for 13 subbands. As an intermediate AI performance metric, the generalized cosine similarity (GCS) is used. The detailed hyper-parameters are shown in Table 3-2.

Table 3-2. Hyperparameters on CSI compression training
	Parameter
	Value

	Batch size
	256

	Number of epochs
	1000 with early stopping

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.96 at every 10 epochs

	Training/validation split
	80% / 20%



In Section 3.2.2, we evaluate the AI performance for three cases as agreed in RAN1#109-e:
· Case 1: (co-scenario evaluation) the training dataset is constructed by training inputs from a single configuration#A/scenario#A, and the testing/inference is performed for the same configuration#A/scenario#A.
· Case 2: (cross-scenario evaluation) the training dataset is constructed by training inputs from a single configuration#A/scenario#A, and the testing/inference is performed for a different single configuration#B/scenario#B.
· Case 3: (mixed-scenario evaluation) the training dataset is constructed by mixing training inputs from multiple configurations/scenarios, and the testing/inference is performed for a single configuration/scenario.
Note that we can verify the generalization capability through the cross-scenario evaluation in case 2 and mixed-scenario evaluation in case 3.

3.2.2 Evaluation results for co-scenario, cross-scenario, and mixed-scenario training/inference
In this section, we provide the initial simulation results for AI-based spatial-frequency domain CSI compression for co-scenario, cross-scenario, and mixed-scenario.

3.2.2.1 Performance-related KPI
[Case 1] In the co-scenario evaluation, the training dataset and the inference dataset are constructed from a single configuration/scenario. In these evaluations, the number of feedback bits is 338 in AI approaches while eType II CB uses 338 bits for UMa and 272 bits for UMi and InH. The GCS performances for different three scenarios are provided in Table 3-3.

Table 3-3. GCS performances for UMa, UMi, and InH scenarios (GCS).
	
	UMa
	UMi
	InH

	ViT-based AE
	.9376
	.9580
	.9530

	CNN-based AE
	.8992
	.9101
	.9336

	eType II CB for ParamCombination=6
	.9348
	.9418
	.9399



Observed from Table 3-3, the performance of AI-based CSI compression varies with the channel scenario. For example, the GCS performance of ViT-based AE changes from 0.9376 to 0.9580. Whereas, the performance variation of eType II CB is relatively small. Note that, since the training and inference datasets are drawn from the same configuration/scenario, the AI-based results (i.e., ViT-based AE and CNN-based AE) could be used as an approximate upper bound in each scenario. These GCSs are used to measure the generalization capability in the subsequent cases.

[Case 2] In the cross-scenario evaluation, configuration/scenario of training dataset and that of inference dataset is different. Thus, through these evaluations, it can be investigated whether the AI model trained with a certain configuration/scenario can generalize the unseen configuration/scenario or not. Note that the eType II CB is free from the performance degradation caused by the cross-scenario since it is not a data-driven approach. In order to measure the generalization, we need to determine a performance metric. For example, in our evaluations, a degree of the performance degradation over the co-scenario performance (in a unit of percentage) can be used. If the degree of the performance degradation is marginal, this implies that the trained AI model generalizes two configurations/scenarios well. The evaluation results of cross-scenario evaluation are in Table 3.

Table 3-4. Cross-scenario performance for UMa, UMi, and InH (GCS).
	Inference
Training
	UMa
(0.9348 for eType II)
	UMi
(0.9418 for eType II)
	InH
(0.9399 for eType II)

	UMa
	.9376
	.9563 (-0.2%)
	.9008 (-5.4%)

	UMi
	.9314 (-0.6%)
	.9580
	.9085 (-2.7%)

	InH
	.8858 (-5.5%)
	.9064 (-5.4%)
	.9530



In Table 3-4, we observe that the degree of GCS degradation in UMa and UMi scenarios is much smaller than that in InH scenario. For example, when the AI model is trained with the UMa dataset, the GCS for UMi and InH is degraded by  % and  %, respectively (see the second row in Table 5). Compared to eType II, the performance degradation between UMa and UMi is tolerable, implying that the AI model trained with UMa or UMi can be used for the cross-scenario. It is worth noting that, from these evaluations, the generalization capability among various configuration(s)/scenario(s) can be identified. Then, the identified generalization capability can be used to determine the way of dataset construction in the training. For example, compared to the generalization from UMa to UMi, it is difficult to generalize from UMa to InH. Hence, when we construct the mixed-scenario dataset (see Case 3 below), it would be better to include the InH dataset rather than UMi dataset.


Observation 3-1: The following observation were made for generalization performance across deployment scenario
· AI model generalizes well from UMa to UMi and vice versa.
· It is relatively difficult to generalize from UMa or UMi to InH.

[Case 3] For the mixed-scenario evaluation, the UMa dataset and the InH dataset are mixed when constructing the training dataset. The mixing ratio of UMa data samples and InH data samples is 50% and 50%, respectively while maintaining the size of dataset same as the co-scenario/cross-scenario evaluations. From these evaluations, we can verify how much the performance degradation in cross-scenario evaluation can be mitigated. The evaluation results are provided in Table 6.

Table 3-5. Mixed-scenario performance for UMa and InH (GCS). 
	Inference
Training
	UMa
	InH

	UMa
	.9376
	.9008 (-5.4%)

	InH
	.8858 (-5.5%)
	.9530

	50% UMa + 50% InH
	.9324 (-0.6%)
	.9337 (-2%)



From Table 3-5, we observe that GCS degradation in case 2 is mitigated significantly. For example, when the AI model is trained with the UMa dataset and is tested with the InH dataset, the GCS degradation is around -5.4%. In case of the mixed-scenario training, the GCS degradation is around -2%. For the generalization, mixing various scenarios (or channel parameters, configurations) might be a useful option to alleviate the degradation of the generalization performance.

Observation 3-2: The following observations were made regarding approaches to improve generalization performance 
· GCS degradation in cross-deployment-scenario, i.e., Casse 2, can be alleviated by mixing various datasets.
· For the generalization, mixing various configuration(s)/scenario(s) is a viable option to alleviate the degradation of the generalization performance.


In this part, the generalization performance for rank>1 configurations is provided. Note that for the generalization evaluation of multiple layers, the dimension of inputs and outputs is fixed. In our evaluation, the compression ratio is 1/8, which makes the dimension of encoded codeword 104. Hence, the total number of feedback bits is 208 when the 2-bit scalar quantization is used. In the training, we use 100,800 channel data generated under UMa scenario with 240 drops. As an AI performance metric, the squared generalized cosine similarity (SGCS) is used. For the generalization evaluation, two options are considered as followings:
• Option 1 (layer-specific): Separated AI/ML models are trained per each MIMO layer and applied for corresponding layers to perform individual inference.
• Option 2 (layer-common): A unified AI/ML model is trained and applied across multiple layers to perform inference.
· Option 2-A: A unified AI/ML model is trained with the dataset for layer 1, i.e., the dominant eigenvector. In the inference, the trained model is applied to an inference data for layer 1.
· Option 2-B: A unified AI/ML model is trained with the mixed dataset for layer 1 and layer 2, i.e., the first and second dominant eigenvectors, respectively. In the inference, the trained model is applied to an inference data for layer 1 and layer 2.
The evaluation results of rank generalization for layer 1 and layer 2 are provided in Table 3-6.

Table 3-6. Evaluation results for layer generalization (SGCS)
	Inference
Training
	Layer 1
	Layer 2

	Layer 1
	0.8466
	0.7580

	Layer 2
	0.8327
	0.7573

	Mixed for Layer 1 and Layer 2
	0.8161
	0.7267



Observed from Table 3-6, the generalization capability between layer=1 and layer=2 cases would be high. For example, when the AI model trained with layer 1 (dominant eigenvector) dataset is applied to layer 2 dataset, SGCS is 0.7580. This SGCS value is comparable to the SGCS=0.7573 obtained from the case that the AI model trained by layer 2 dataset is applied to layer 2 dataset. On the other hand, when a unified model trained with the mixed dataset for layer 1 and layer 2 is applied to layer 1 dataset and layer 2 dataset, the SGCS performance is degraded. For example, in case of layer 1, SGCS is degraded by 3.6% (from 0.8466 to 0.8161). 

Observation 3-3: For AI/ML based CSI compression, the following observations were made for generalization performance across layer 1 and layer 2
· AI model generalizes well from layer 1 to layer 2 thus a layer-common model can be used.
· Training an AI model with the mixed dataset consisting of layer 1 and layer 2 doesn’t help it rather degrades the SGCS performance as compared to training an AI model with a single dataset (layer 1 or layer 2).

  In order to verify the generalization performance between indoor and outdoor, two AI models trained with outdoor channel dataset and indoor channel dataset are used. The evaluation results for indoor/outdoor generalization are provided in Table 3-7.
Table 3-7. Evaluation results for indoor/outdoor generalization (SGCS)
	Inference
Training
	Outdoor channel
	Indoor channel

	Outdoor channel
	0.8331
	0.7952 (-1.9%)

	Indoor channel
	0.8307 (-0.3%)
	0.8105



  From Table 3-7, the AI model generalizes well from indoor channel to outdoor channel. For example, the performance degradation is around -0.3% when the AI model trained with indoor channel dataset is applied to the outdoor channel dataset. In case of the generalization from outdoor channel to indoor channel, the performance degradation is around -1.9%.

Observation 3-4: For AI/ML based CSI compression, the AI model generalizes well from indoor channel to outdoor channel.

In order to verify the generalization performance between line-of-sight (LOS) and non-LOS (NLOS), two AI models trained with LOS channel dataset and NLOS channel dataset are used. The evaluation results for LOS/NLOS generalization are provide in Table 3-8.
Table 3-8. Evaluation results for LOS/NLOS generalization (SGCS)
	Inference
Training
	LOS channel
	NLOS channel

	LOS channel
	0.8980
	0.8796

	NLOS channel
	0.8978
	0.8796



From Table 3-8, the AI model generalizes well from LOS channel to NLOS channel and vice versa. For example, there is no performance degradation from LOS channel to NLOS channel (i.e., SGCS=0.8796).

Observation 3-5: For AI/ML based CSI compression, the AI model generalizes well from LOS channel to NLOS channel and vice versa.


3.2.2.2 Capability-related KPI
As a capability-related KPI, the number of model parameters (e.g., weights and biases) and the number of FLOPs are considered. In Table 7, we provide the capability-related KPI for ViT-based AE and eType II codebook-based PMI feedback.

Table 3-6 Capability-related KPI for ViT-based AE and eType II codebook-based PMI feedback
	
	The number of model parameters
	The number of FLOPs

	
	UE
	gNB
	UE
	gNB

	ViT
	183,283
	185,208
	
	

	CNN
	142,273
	142,940
	
	

	eType II
	-
	
	-



As shown in Table 7, the AI approach only requires the model parameters to run the AI model. Further, since the decoder at gNB reconstructs the CSI in the AI approach, the additional FLOPs are required. We observe that the number of FLOPs to perform the AE operations is much larger than eType II codebook-based PMI feedback. For example, at the UE side, the number of FLOPs for ViT and CNN are around 26 times and 5 times as large as that for eType II codebook, respectively. Even, including the FLOPs for the AE decoder operation, the number of FLOPs for ViT is around 53 times as large as that for eType II (10 times for CNN-based AE). In this respect, the effectiveness of the AI approach at the cost of these large amount of computational complexities can be investigated. Note that the number of FLOPs for ViT is around 5 times as large as that for CNN while the performance of ViT has around 6% gain over the CNN. When using the AI approach, the model selection can be performed using the trade-off between the performance and complexity.

Observation 3-3: The number of FLOPs to perform the AE operations is much larger than eType II.
3.4. Temporal-spatial-frequency-domain CSI compression
In the following the performance of temporal-spatial-frequency domain compression is provided. As it is detailed in [9.2.2.2] and depicted in Fig. 3.4.1 below, two approaches are considered, namely, Approach 1 gNB-side prediction and UE-side prediction. Thus, this sub use case can be considered as joint CSI prediction and compression. 
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                  Fig. 4-1.  Approach 1 gNB-side prediction vs. Approach 2  UE-side prediction 

The performance is evaluated according to the agreed LLS-based evaluation [9] with the parameters selected as shown in Table 4.1.


Table 4-1 Parameters for LLS-based evaluation 
	Parameter
	Value

	Duplex, Waveform 
	FDD , OFDM 

	Carrier frequency
	2GHz 

	Bandwidth
	10MHz 

	Subcarrier spacing
	15kHz 

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C 

	UE speed
	3kmhr, 10km/h, 

	Delay spread
	300ns

	Channel estimation
	ideal

	Rank per UE
	Rank 1

	CSI-RS resources
	Periodic with 5ms

	CSI report
	4ms delay between measurement and report



First, let us evaluate the compressibility of time-correlated CSI. For this the setups shown in Fig. 4-2 are considered. Two setups are depicted in the figure, i.e., suitable for (a) aperiodic burst CSI-RS resources and (b) periodic and semi-persistent CSI-RS resources. 


[image: ]

             Fig. 4-2. Set up to test time-domain compressibility of CSI






For aperiodic CSI-RS resources, the UE compresses CSI from  measurements after receiving a burst of CSI-RS resources at different time instants. In particular, per each layer, M eigenvectors matrices, denoted as  ,  are considered.  for  corresponds to the  m-th measurement, , and consists of eigenvectors for the subbands, i.e.,. The autoencoder in Fig. 4-2. (a) compresses these measurements to generate the codeword   which potential can be partitioned to M sub-codewords . The CSI for the M measurements can then be reported in either a single CSI report or in multiple CSI reports. 




For, periodic and semi-persistent CSI-RS resources, as shown in Fig. 3.4.2 (b), a CSI corresponding to a single measurement can be reported at a time. Then the decoder considers the codewords reported for the past  measurements, i.e., and concatenate them with current codeword to reconstruct the CSI. This way the time-domain correlation can still be exploited for spatial-frequency-time domain CSI compression even if the UE reports a CSI for a single measurement at a time. 


The detailed AI/ML model and training configuration for the autoencoder is depicted in Fig. 3.4.3. A Bi-LSTM based neural network is employed at both the encoder and decoder. At the encoder, the input layer dimension is  due to concatenation of real and imaginary precoder parts of  eigenvectors. Further, the first and second hidden layers are of dimension . The third Bi-LSTM layer generates a  dimensional codeword per subband such that the total output dimension is . This is converted in to a 1D sequence of length  using a reshape layer. Finally, a 1-bit Quantizer converts them into a discrete sequence in the set .

The decoder input layer concatenates the current and past  measurement reports. The following reshaping layer converts the input in to  dimension. This is further processed by two Bi-LSTM layers of dimension . The eigenvectors are then reconstructed by a third Bi-LSTM layer by generating a  output sequence. 
	AE Training configuration

	Dataset size
	300000

	Number of epochs
	150

	Loss function
	Cosine similarity

	Optimizer
	Nadam

	Learning rate
	0.001

	Train test split
	80%-20%





Fig. 4-3. Set up to test time-domain compressibility of CSI

Fig. 4-4. shows the performance of spatial-frequency-time-domain compression in terms of GCS with respect to various payload sizes. The performance of the baseline scheme, i.e., Rel-16 eType II codebook, with parameter combination 1-8 as specified TR 38.214 is also provided. The payload size is determined by the payload of a single layer PMI for the 8 parameter combinations for Rel-16 eType II codebook. The measurements are 5ms apart and parameters listed in Table 3.4.1 are considered. One observation is that adding time-domain in the compression domain achieves a significant advantage in terms of overhead reduction. As an example when M=5 measurements are considered, to achieve GCS=0.85, over 185% payload size reduction is achieved by the autoencoder over Rel-16 CB. On the other hand, when the payload size is fixed to 157 bits per layer over 7% gain is observed in terms of GCS. This is significant as compared to the 57% payload overhead reduction achieved by an AI-based spatial-frequency-domain CSI compression. 

[image: ]
Fig. 4-4. Performance of spatial-frequency-time-domain compression with variable number of measurements (M=1, 3, 5)

Observation 4-1: Adding the time-domain in the CSI compression domains, i.e., CSI compression in spatial-frequency-time domains, achieves a higher compression, i.e., further reduction in CSI report overhead, as compared to spatial-frequency domain CSI compression. 

Table 4.1 Complexity in terms of mega-FLOPs and model size
	Index
	Payload
	Rel-16 CB complexity
# of FLOPs (Mega-FLOPs)
For  paramCombination-r16=1-8.
	Bi-LSTM model complexity (# of FLOPs (Mega-FLOPs)
	Model 
Size (# of parameters)

	
	
	UE side
	Encoder
	Decoder
	Encoder
	Decoder

	
	
	
	
	M=1
	M=3
	M=5
	
	

	1
	55
	0.032
	44.5
	171.7
	172.5
	173.4
	17,16,404
	66,15,616

	2
	84
	0.032
	44.6
	171.9
	173.2
	174.4
	17,20,698
	66,23,808

	3
	100
	0.087
	44.7
	172
	173.5
	175
	17,22,872
	66,27,904

	4
	157
	0.087
	45
	172.5
	175.1
	177.6
	17,34,012
	66,48,384

	5
	214
	0.087
	45.2
	172.9
	176.4
	179.8
	17,43,248
	66,64,768

	6
	272
	0.087
	45.5
	173.4
	177.6
	181.9
	17,52,772
	66,81,152

	7
	230
	0.163
	45.3
	173.1
	176.7
	180.3
	17,45,602
	66,68,864

	8
	564
	0.163
	47
	175.8
	185
	194.1
	18,13,124
	67,75,360




Table 3.4.1 provides the complexity comparison of the aforementioned autoencoder-based CSI compression with respect to Rel-16 CB in terms of mega-FLOPs. Two observations can be made from the table. There is a multiple order of increase on computational complexity is incurred by AI-based CSI compression as compared to PMI derivation based on Rel-16 CB. However, in order to have the full picture of the requirements for AI-based CSI compression, the impact of such increase in computational complexity on inference latency shall be studied.  This is particularly important as the level of parallelization allowed for the tasks in AI-based CSI compression and in legacy codebooks based CSI computation might be different. Additional observation is that the increase in computational complexity is invariant with respect to the number of time-domain measurements as the complexity per measurement remains the same at the encoder. 

Observation 4-2: AI-based CSI compression incurs a multiple order of increase in the computational complexity (measured in terms of number of FLOPs) as compared to CSI computation based on Rel-16 eType II codebook.
· The increase in FLOPs is invariant with respect to the number of time-domain CSI measurements considered in the compression, i.e., same for spatial-frequency-domain and spatial-frequency-time-domain compression. 
· The model size remains in the same range for spatial-frequency-domain and temporal-spatial-frequency -domain compression

In the following we provide the performance for joint prediction and compression. In this regard, as shown in Fig. 4-5., we considered a UE-side prediction based on the (a) eigenvectors and (b) full-channel matrix. 
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Fig. 4-4. UE-side prediction: eigenvector-based and channel matrix-based prediction

The performance of the two approaches (Approach 2-1 and Approach 2-2) is provided in Fig. 4-5 in terms of GCS vs. prediction delay. The performance is evaluated based on the parameters list in the Table 3.4.1 with UE speed set to 10km/hr. As a baseline, a Rel-16 CB based reporting with no prediction (sample-and-hold) is considered. Moreover, the two payload sizes per layer are considered, i.e., 272 bits and 564 bits. The GCS is computed between the recovered (predicted and compressed) CSI and the ground truth value (genie-aided CSI). For the baseline method, the GCS is simply computed between the reported CSI and the ground truth at a certain prediction delay value. The first and obvious observation is that the GCS performance degrades as the prediction delay increases. However, this degradation is severe (higher slop) if no prediction is applied. In this regard, joint compression and prediction out performs the baseline by 32% at prediction delay of 20ms. Another observation is that most of the gain is attributed to the CSI prediction aspect compared to the compression aspect as the gain from increasing the payload size from 272 to 564 is less significant ( 2%) as opposed to the 32% gain from compression and prediction. 
[image: ]

Fig. 4-5. Performance for UE-side prediction: eigenvector-based and channel matrix-based prediction

Observation 4-3: Significant gain is observed for UE-side joint CSI prediction and compression as compared to Rel-16 CB reporting without prediction. 
· Most of the performance gain is attributed to CSI prediction as compared to compression. 
· The prediction based on full channel matrices outperforms prediction based on eigenvectors. 

In the following the performance of  gNB-side prediction (Approach 1) and UE-side prediction (Approach 2) are presented. It can be noticed from Fig. 4-5 that the eigenvectors-based prediction does not work well as compared to full-channel matrix based  prediction. One challenge for Approach 1 is that the overhead to make the full-channel matrix  available at the gNB. Note here that the full-channel matrix can be decomposed as   for the right eigenvectors in V where  and left eigenvectors U given as  . Conventionally, the right eigenvectors in V are sent to gNB via CSI feedback. Even if sending the full-channel matrix  which is  per reporting subband as CSI feedback the reporting overhead is hindering. However, the gNB is usually interested in channel information corresponding to few dominant layers (low rank). In this case, the UE may share channel matrix corresponding to the few dominant vectors, e.g.,   for layers, .   Note here that  . 
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(a) gNB-side prediction with availability of u and V vectors at the gNB
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(b) Payload 564 bits
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(c) Payload =272 bits


Fig. 4-6.  Performance for gNB-side prediction (with the availability of left and right eigenvectors U and V. i.e., ) paylaoad size set to 274,  time-domain compression for M=3 past and future time instants for UE-side and gNB-side, respectively, are compressed and reported). 


In Figure 4-6 (b) and (c), it can be noticed that gNB-side prediction performs well with comparable performance as UE-side prediction, if the UE-side eigenvectors are available at the gNB side. Note here the same payload size is used to feedback the {v}  and {u+v} vectors, in the UE-side prediction and gNB-side prediction, respectively. In Fig. 4-6 (b), the relatively high payload size, i.e., 564 bits, ensured the accurate delivery of the left-side and right-side eigenvectors; therefore, performance is dictated by the prediction performance rather than by feedback reconstruction performance. Additionally,  Fig. 4-6 (c), provides the result for moderate payload size, i.e., 272bits. Herein, even if the performance of UE-side prediction and gNB-side prediction degraded from the one based on uncompressed full-channel matrix, the degradation is not substantial. Thus, both UE-side and gNB-side prediction asymptotically achieved the prediction without (ideal) compression. 

Observation 4-4: gNB-side prediction performs well as UE-side prediction if the UE-side eigenvectors are available at the gNB side. 
· The UE-side eigenvectors can be compressed and reported with overhead that scales up with the reported rank. 



4.  Conclusion
In this contribution the following observations are made:

Observation #1: For generalization performance evaluation of AI-based CSI feedback enhancement, Case2A can be viewed as part of Case 1-3 depending on factors such as:  the relative size of fine-tuning dataset, learning rate, or the order of dataset samples for training or fine-tuning. 

Observation #2: RRSNR as intermediate KPI may be advantageous on providing better emulation of the MU-MIMO DL throughput performance than SGCS in some receiver assumptions. If the UE performs inter-layer interference nulling, this advantage is lost.  This observation holds to other proposed intermediate metrics such as numerical spectral efficiency gap and NEDG. 

Observation #3: In MU-MIMO scenario, when the gNB do not directly apply the reconstructed precoder, RRSNR does not give a practical advantage in terms of emulating the DL MU-MIMO throughput performance than SGCS. This observation holds to other proposed intermediate metrics such as numerical spectral efficiency gap and NEDG.

Observation 1-1: AI-based CSI prediction can yield performance benefits over a range of UE speeds, compared to a conventional CSI predictor that computes a linear combination of the current and previous CSI samples.

Observation 1-2: Both UE-side and network-side CSI prediction show performance gains as compared to the baseline CSI based on the latest CSI report, i.e., sample-and-hold. 
· When the raw channel matrices are available at the network, network-side prediction has competitive performance as UE-side prediction
· When network is interested in lower rank, i.e., rank lower than the number of receive antenna ports at the UE, the overhead of reporting raw channel matrices can be significantly reduced. 


Observation 2-1: AI-based CSI frequency extrapolation can be enhanced by utilizing additional CSI-RS observations in the band to be extrapolated, which amounts to AI-based CSI frequency extra(inter)-polation.

Observation 3-3: The number of FLOPs to perform the AE operations is much larger than eType II.

Observation 4-1: Adding the time-domain in the CSI compression domains, i.e., CSI compression in spatial-frequency-time domains, achieves a higher compression, i.e., further reduction in CSI report overhead, as compared to spatial-frequency domain CSI compression. 

Observation 4-2: AI-based CSI compression incurs a multiple order of increase in the computational complexity (measured in terms of number of FLOPs) as compared to CSI computation based on Rel-16 eType II codebook.
· The increase in FLOPs is invariant with respect to the number of time-domain CSI measurements considered in the compression, i.e., same for spatial-frequency-domain and spatial-frequency-time-domain compression. 
· The model size remains in the same range for spatial-frequency-domain and temporal-spatial-frequency -domain compression

Observation 4-3: Significant gain is observed for UE-side joint CSI prediction and compression as compared to Rel-16 CB reporting without prediction. 
· Most of the performance gain is attributed to CSI prediction as compared to compression. 
· The prediction based on full channel matrices outperforms prediction based on eigenvectors. 

Observation 4-4: gNB-side prediction performs well as UE-side prediction if the UE-side eigenvectors are available at the gNB side. 
· The UE-side eigenvectors can be compressed and reported with overhead that scales up with the reported rank. 

And the following proposals are provided: 

Proposal #1: For the evaluation of the AI/ML based CSI feedback enhancement, while reporting the computational complexity of pre-processing and post-processing the following are considered. 
· Estimated raw channel matrix per each  frequency unit as an input for pre-processing  
· Precoding vectors per each  frequency unit as an output of post-processing
Note: frequency unit can be set to 4 RB or 2 RB for 15KHz SCS and 30KHz SCS, respectively. 
   

Proposal 2: For the CSI payload size calculation for AI/ML-based CSI compression as well as the legacy TypeII codebook, the payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE.
Note: Whether the CSI payload is calculated as each CSI reported payload with a given rank or as max allowed bits at the given rank can additionally be reported. 


Proposal 3: For the evaluation of the AI/ML based CSI compression sub use cases, 
	
	
	Source 1
	…

	CSI generation part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	CSI reconstruction part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	Common description
	Input type
	
	

	
	Output type
	
	

	
	Quantization /dequantization method
	
	

	Dataset size
	Train/k
	
	

	
	Test/k
	
	

	Simulation settings and assumptions agreed to be reported
	
	
	

	Gain for intermediate KPIs
	SGCS
	
	

	
	NMSE
	
	

	
	[Others]
	
	

	Gain for eventual KPI
	Mean UPT
	
	

	
	5% UPT
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Proposal 4: For AI/ML based CSI prediction sub use, the nearest historical CSI can be taken as a baseline for the benchmark of performance comparison.
Note: Other non-AI/ML based CSI prediction benchmarks for performance comparison are reported by companies. If other CSI prediction benchmarks are also reported then the corresponding computational complexity is reported. 
 
Proposal#5: For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), for multi-vendors training Case 2, i.e., one NW part model and M>1 separate UE part models and Case 3, i.e., one UE part model and N>1 separate NW part models, evaluate and compare the following two training scenarios:
Scenario 1: training in a single session 
Scenario 2: training in multiple sequential training sessions, i.e, one UE part and one network part at each training session. 

Proposal #6: For the evaluation of the AI/ML based CSI feedback enhancement, adopt SGCS for rank>1 as weighted average over all ranks 
[image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{71FE5452-ED84-439F-A4C9-4D3FEAA08310}]
where [image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{0446EFA6-E007-48EF-ACF5-E6FB2803C57F}] is an eigenvalue of the channel covariance matrix corresponding to [image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{4C4D0EA7-778D-461F-BA55-4842481214BC}]
Note: [image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{4F30EC46-BC26-40EE-A0CA-AFFDD1DAADBF}] is the jth eigenvector of the target CSI at resource unit i and K is the rank. [image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{FC80CF06-4621-4324-85D9-C3950379BEC3}] is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.  [image: C:\Users\amehat.abebe\AppData\Local\Microsoft\Windows\Clipboard\HistoryData\{6E6ABC01-BDB0-4227-A395-373E99D9A439}\{C00DDA69-BAE9-4A34-8AD2-D088C172F8DE}\ResourceMap\{8B035A99-B142-4846-B721-4F6DF92B2326}] denotes the average operation over multiple samples.


Proposal #7: For the evaluation of the AI/ML based CSI feedback enhancement, deprioritize discussion on additional intermediate KPIs. 
5. Appendix
Table 5-1 SLS-based EVM
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline.
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, FFS 2GHz or 4GHz as a baseline

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)
Other configuration is not precluded.

	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	FFS

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	Companies shall provide the downlink overhead assumption (i.e., whether the CSI-RS transmission is UE-specific or not and take that into account for overhead computation)

	Traffic model
	FFS

	Traffic load (Resource utilization)
	FFS

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
FFS whether/what other indoor/outdoor distribution and/or UE speeds for outdoor UEs needed

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic as a baseline
FFS ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.

	Baseline for performance evaluation
	FFS



Table 5-2 LLS-based EVM

	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM 

	Carrier frequency
	2GHz as baseline, optional for 4GHz

	Bandwidth
	10MHz or 20MHz

	Subcarrier spacing
	15kHz for 2GHz, 30kHz for 4GHz

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C as baseline, CDL-A as optional

	UE speed
	3kmhr, 10km/h, 20km/h or 30km/h to be reported by companies

	Delay spread
	30ns or 300ns

	Channel estimation
	Realistic channel estimation algorithms (e.g. LS or MMSE) as a baseline, FFS ideal channel estimation

	Rank per UE
	Rank 1-4. Companies are encouraged to report the Rank number, and whether/how rank adaptation is applied
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