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Introduction
During RAN#94e, a study item (SI) on AI/ML for NR Air Interface was approved, with the revised study item description in [1].  The study item identifies use cases to focus on as follows.
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 



RAN1 #109-e further selected CSI compression as one representative sub-use case [2]. 
For the evaluation methodology of the AI/ML based CSI feedback enhancement, RAN1 #109-e adopted system level simulation as baseline [2].  It was also agreed that “a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.”
In RAN1 #110 it was further agreed that several cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point [3], [4].
	· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.



RAN1 #110 made the following agreement for scenarios and configurations, respectively ([3], [4]):
	For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification



	For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



RAN1 #110bis-e ([5]) further progressed on the evaluation methodology, as follows:
	Conclusion
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Traffic model’ in the baseline of EVM is captured as follows:
	Traffic model
	At least, FTP model 1 with packet size 0.5 Mbytes is assumed
Other options are not precluded.



Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, at least the following types of AI/ML model input (for CSI generation part)/output (for CSI reconstruction part) are considered for evaluations
· Raw channel matrix, e.g., channel matrix with the dimensions of Tx, Rx, and frequency unit
· Companies to report the raw channel is in frequency domain or delay domain
· Precoding matrix
· Companies to report the precoding matrix is a group of eigenvector(s) or an eType II-like reporting (i.e., eigenvectors with angular-delay domain representation)
· Other input/output types are not precluded
· Companies to report the combination of input (for CSI generation part) and output (for CSI reconstruction part), 
· Note: the input and output may be of different types



This contribution presents updated simulation results using recently agreed configuration parameters in RAN1 #110bis-e ([5]). The contribution shows the performance of an AI/ML autoencoder based CSI compression of the raw channel matrix, over various scenarios/configurations, and compares the AE performance to the baseline Rel-16 Type II codebook.   
Autoencoder (AE) based CSI compression for NR
Datasets for model training and performance testing
To verify the generalization performance of the AI/ML model, and based on the agreements from RAN1 meetings #110 and #110bis-e ([4][5]), we consider the scenarios and configurations for model training and testing as shown in Table 1 and Table 2, respectively.

[bookmark: _Ref114102076]Table 1 Scenario definition
	
	Scenario A

	Channel model
	UMa

	UE distribution (in, out)
	 (0.5,0.5)

	Frequency (GHz)
	2 

	UE speed
	Indoor: 3 Km/hr
Outdoor: 30 Km/hr



[bookmark: _Ref118405811]Table 2 Configuration definition
	
	Configuration A
	Configuration B

	Antenna port layout
	(8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
	(4,8,2,1,1,1,8), (dH,dV) = (0.5, 0.8)λ



The common parameters for dataset generation are as agreed in [2], [4] and [5] (see also Table 3 in Section 3.1 below). 

Model assumption and training
Similar to our previous contributions [6]-[8], a CSI-Net [9] based autoencoder model has been utilized where both the encoder and decoder consist of convolutional, fully connected and batch normalization layers. 
· Input CSI Type: raw channel matrix estimated by UE
· Output CSI type: compressed channel matrix
· Pre-processing
To effectively compare the performance of the existing CSI feedback and precoding methods with the deep learning-based methods, we utilize the following pre-processing strategy:
· we average the channel matrix across 2 or 4 resource blocks and across 1 time slot. Therefore, if the size of the raw channel is 624x2x16, representing 52 RBs,  = 16 and  = 2, the pre-processed channel will have a dimension of 26x2x16 or 13x2x16, depending on the averaging across 2 RBs or 4RBs, respectively.
· Additionally, we normalize the channels to zero mean and unit variance.
· Quantization
The output of the encoder is quantized using a uniform quantizer. The encoder output is passed through a tanh layer to restrict the range of the encoder output for uniform quantization. The quantization operation is included during the training so that the encoder and decoder can learn appropriate weights while taking into account the quantization impact.
· Model Information
· Base Model: For our evaluation we use the CSI-Net [9] autoencoder model. The model has 3 main functional blocks. Encoder block, Quantization, Decoder block
· Encoder architecture: CNN->BN->FC->FC
· Quantizer: Linear quantization
· Decoder architecture: FC-> FC -> RN->RN->CNN, where:
· FC: Fully connected layer,
· CNN: Convolutional Neural Network 
· BN: Batch Normalization
· RN: CNN->BN->CNN->BN->CNN->BN with a skip connection from the input to the RN block
· Loss function
· We utilize the mean squared error loss function for training. The mean squared error is calculated between the input to the encoder and the output of the decoder.
· Additional information:
· Optimizer: ADAM with adaptive learning rate starting from a rate of = 0.0001 and scale it down by a factor of 0.9 every 5 epochs. 

Evaluation results of AI/ML based CSI compression
[bookmark: _Ref111198283]Simulation Assumptions
This section describes the simulation assumptions used to evaluate the ML model performance. We refer to the model trained under Scenario A/ConfigurationA (Dataset A) as Model A, the model trained under Scenario A/ConfigurationB (Dataset B) as Model B, and the model trained under (ScenarioA/ConfigurationA, Scenario A/ConfigurationB) as Model AB. Further, we use the terminology Train X / Test Y to indicate that the associated result is obtained based on an AE model trained under Model X and tested under channel samples from Dataset Y where the testing sample have different random seeds from what used in the training.  
For training Models A and B, a dataset of 210k channel samples was utilized; 80% of the dataset was used for model training, while 20% was used for validation. For training Model AB, a total of 420k training samples were used, with 210k samples coming from each of the scenarios/configurations.
We use AE models with feedback sizes 112 bits and 256 bits. For these models, the encoder and decoder networks are imported separately. The sub-band size associated with the ML approach is 2 RBs. In particular, the decompressed channel at the gNB is of size 26x2x16, where the first dimension represents the number of subbands in which the 2x16 channel associated with each sub-band is obtained through averaging out the channel coefficients across 2 RBs.      
To assess how well the ML approach works and how well it generalizes, the baseline CSI Rel-16 Type II codebook is used, where the wideband and sub-band precoders’ indices are selected and sent back by the UE. For the ML approach, SVD precoders are derived based on the decompressed channel at the gNB side. 
The common parameters used for the considered suite of simulations are based on the assumptions agreed in [2] and is shown below in Table 3 for convenience.
Finally, to evaluate the end-to-end performance, the throughput is used as a performance metric.
Table 3 Common parameters used in all Scenarios/Configurations
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	UMa

	Frequency Range
	FR1 only, 2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	16 ports ; configuration specific

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS Tx power
	41 dBm 

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30 kHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	MU-MIMO with rank adaptation

	Number of users
	6 UE per BS

	Max number of MU layers
	12

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Traffic model
	Full buffer, Non full buffer (FTP Model 1), packet size 0.5 Mbytes

	UE distribution
	(0.5, 0.5)

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	4ms delay, ideal

	Channel estimation         
	ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.

	Baseline for performance evaluation
	Rel-16 Type II CSI



Simulation Results
Evaluation based on intermediate KPI 
To evaluate the AI/ML model generalization performance, we first use the per layer SGCS as the intermediate KPI, per the RAN1 #110bis-e agreement [5]. The per layer SGCS for layer j is calculated as:


where  denotes the number of sub-bands and  denotes the layer index. The term  represents the -th eigenvector of the estimated channel matrix (input to the AI/ML encoder) at the -th sub-band, while  represents the -th eigenvector of the reconstructed channel matrix (output of the AI/ML decoder) at the -th subband. 
We evaluated the performance of several different autoencoders separately trained for Case1, Case2, Case 3, with feedback size 112 bits. 
Figure 1 shows the SGCS performance for Layer 1of AE models A, B and AB, with feedback size of 256 bits, compared to the Rel-16 Type II codebook performance for Test A (Scenario A/Configuration A). 
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[bookmark: _Ref118409847]Figure 1 SGCS performance of AE compared to Rel-16 Type II CB (Layer 1)

It can be seen that the considered ML models generalize well for the considered examples. Specifically, the performance of Model A (trained on Scenario A/Configuration A) under Test A (Scenario A/Configuration A) is the same as the performance of the mixed model AB (trained on a mix of Scenario A/Configuration A and Scenario A/Configuration B) under Test A. The performance of Model B (trained on Scenario A/Configuration B) under Test A is also very close.
Moreover, the AE models (256 bits) outperforms Rel-16 Type II configuration 4 (319 bits) while having lower feedback overhead.
Observation 1: The AI/ML models generalize well for the considered test scenarios (Case 1 for Model A, Case 2 for Model B, and Case 3 for Model AB tested with Test A).
Observation 2: When evaluated with the intermediate KPI (SGCS), the AI/ML model outperforms Rel-16 Type II codebook while having lower overhead. 

Evaluation based on throughput
To further evaluate the performance of the considered AI/ML models, we provide end-to-end throughput results for the ML model with 112 bits feedback size, and compare the results against Rel-16 Type II Configurations 2 and 3, for FTP traffic Model 1 with different traffic loads.
CDF plots of the throughput for resource utilization of 25%, 52% and 78% are shown in Figure 2, Figure 3, Figure 4, respectively.
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[bookmark: _Ref118412745]Figure 2 Throughput of AE model compared to Rel-16 Type II, for RU=25%
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[bookmark: _Ref118412748]Figure 3 Throughput of AE model compared to Rel-16 Type II, for RU=52%
For the RU=52% simulations in Figure 3, the measured average payload size for the Rel-16 Type II is 100 bits for Configuration 2, and 123 bits for Configuration 3. 

[image: Chart

Description automatically generated]
[bookmark: _Ref118412750]Figure 4 Throughput of AE model compared to Rel-16 Type II, for RU=78%
For the RU=78% simulations in Figure 4, the measured average payload size for the Rel-16 Type II is 98 bits for Configuration 2, and 120 bits for Configuration 3. 
Additionally, a comparison of the average and the 5th percentile throughput for the 112 bit AE versus Rel-16 Type II Configurations 2 and 3 is shown in Table 4 below.

[bookmark: _Ref118414722]Table 4 Comparison of average and 5th percentile T-put for AE vs Rel-16 Type II, for different RU
	RU
	
	AE
	Rel-16 Type II Config 2
	Rel-16 Type II Config 3

	78%
	Average T-put (Mbps)
	12.12
	11.49
	11.71

	
	5th percentile T-put (Mbps) 
	0.56
	0.80
	0.82

	52%
	Average T-put (Mbps)
	16.65
	14.46
	14.76

	
	5th percentile T-put (Mbps) 
	0.88
	1.00
	1.03

	25%
	Average T-put (Mbps)
	23.23
	18.07
	18.35

	
	5th percentile T-put (Mbps) 
	1.3
	1.40
	1.4



From Figure 2 to Figure 4, it can be seen that the AE (112 bits) outperforms Rel-16 Type II Config 2 and 3 (of comparable average payload sizes, as indicated above). It can also be seen that the relative gains of the AE over the baseline Rel-16 Type II are higher when the traffic load is lower, and the relative gain tends to decrease as the resource utilization increases.
Observation 3: For end-to-end throughput measurements, the AE outperforms Rel-16 Type II baseline of comparable feedback size.
More specifically, from Table 4 it can be seen that the average throughput gain of the AE relative to the baseline is in the range of 4% for RU=78% to 27% for RU=25%. 
Observation 4: The relative gain in average throughput for the AE compared to the Rel-16 Type II baseline ranges from 4% to 27% when the resource utilization changes from 78% to 25%. 
Additionally, from Table 4 it can also be seen that the Rel-16 Type II baseline slightly outperforms the AE for the 5th percentile throughput. This may suggest that the AE model may not be optimized for low geometry UEs. 
Observation 5: The Rel-16 Type II baseline slightly outperforms the AE for the 5th percentile throughput.
Proposal 1: It is proposed to study model optimization for low geometry UEs. 

Conclusion
In this contribution, we discussed the use of AI/ML models for CSI compression of the raw channel matrix, evaluated the ML models performance over various scenarios/configurations, and compared to the baseline Rel-16 Type II codebook. We provide the following observations and proposals:

Observation 1: The AI/ML models generalize well for the considered test scenarios (Case 1 for Model A, Case 2 for Model B, and Case 3 for Model AB tested with Test A).
Observation 2: When evaluated with the intermediate KPI (SGCS), the AI/ML model outperforms Rel-16 Type II codebook while having lower overhead. 
Observation 3: For end-to-end throughput measurements, the AE outperforms Rel-16 Type II baseline of comparable feedback size.
Observation 4: The relative gain in average throughput for the AE compared to the Rel-16 Type II baseline ranges from 4% to 27% when the resource utilization changes from 78% to 25%. 
Observation 5: The Rel-16 Type II baseline slightly outperforms the AE for the 5th percentile throughput.

Proposal 1: It is proposed to study model optimization for low geometry UEs. 
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