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1 [bookmark: _GoBack]Introduction
In 3GPP TSG RAN Meeting #94e meeting, a new SID was approved to study AI/ML technologies over air interface [1].  In addition, RAN1#110 confirmed that both direct AI/ML positioning and AI/ML assisted positioning. In this contribution, we provide our further views on evaluation assumptions and evaluation results on AI/ML for positioning. 
Without further explanations, common scenario parameters, InF specific parameters and assumptions for data generation are according to Appendix A, Appendix B and Appendix C respectively. In addition, the evaluation methodologies for AI model input/output, AI model complexity and inference performance will be detailed in tables.
2 Direct AI/ML positioning
	Agreement:
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.


As discussed in RAN1#110bis-e, CIR and PDP are typical cases for model input. In the following sections,  based on CIR and PDP, evaluation results are conducted in various scenarios, configurations and hardware imperfections.
PDP based AI/ML positioning
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Figure.1 AI model input and output for PDP based AI/ML positioning
As shown above in Figure 1, the AI model input is truncated time delay profiles from 18 TRPs. For the cases when the number of paths (or delay tapes/sampling points) fed into the AI model is smaller than 256, the remaining entries in the input data are set to zero. That is, the input data size keeps the same for all cases even with different number of paths.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
8 path timings + DL PRS RSRPPs
	2- D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.93

	PDP (1x18x256)
16 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.40

	PDP (1x18x256)
32 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.75

	PDP (1x18x256)
64 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.83

	PDP (1x18x256)
128 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.71

	PDP (1x18x256)
256 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.69


Table.1 Positioning performance based on PDP (Grid width for data generation is 1.0 m), Model backbone(CNN)

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (1x18x256)
8 path timings + DL PRS RSRPPs
	3- D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	1.379

	PDP (1x18x256)
16 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.984

	PDP (1x18x256)
32 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.634

	PDP (1x18x256)
64 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.508

	PDP (1x18x256)
128 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.446

	PDP (1x18x256)
256 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.424


Table.2 Positioning performance based on PDP (Grid width for data generation is 0.5 m), Model backbone(CNN)
According to evaluation results for PDP based AI/ML positioning in Table 1 and Table 2, we have following observations:
Observation 1:  The AI/ML based positioning method (i.e., via PDP) has excellent performances even in heavy NLOS conditions.
Observation 2: With the increase in number of path timings and RSRPPs, positioning performances are improved significantly.
Proposal 1: Study and evaluate performance of direct AI/ML positioning under different number of path timings and RSRPPs.
CIR based AI/ML positioning
For CIR based AI/ML positioning, evaluation assumptions are similar to PDP based AI/ML positioning except for the input data size of the AI model. Input data size for CIR based positioning is , where the first dimension means the imaginary part and quadrature part of a path respectively. As we know, the imaginary part and quadrature part of a path are calculated based on RSRPP and path phase of the path. As you can see in Table 3, with path phase information included in the AI model input,  the positioning performance is improved obviously when compared to AI model input without path phase information.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
64 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.508

	CIR (2x18x256)
64 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.421

	PDP (1x18x256)
128 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.446

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.278


Table.3 Positioning performance based on CIR, Model backbone(CNN)
Observation 3: With path phase information included in the AI model input,  the positioning performance is improved obviously when compared to AI model input without path phase information.
Proposal 2: Study and evaluate the performance of direct AI/ML positioning when AI model input includes channel phase information.
Multi-port AI/ML positioning
For multi-port AI/ML positioning, evaluation assumptions are similar to PDP based AI/ML positioning except for the following differences:
· When the input data size is , where the first dimension means only DL PRS RSRPP is included.
· When the input data size is , where the first dimension means the imaginary part and quadrature part of a path respectively.
· When the input data size is , where the first dimension means the imaginary part and quadrature part of a path from a two-port DL PRS.
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Figure. 2 CDFs of positioning errors for multi-port AI/ML positioning 

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
One-port 256 PRS + path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.467

	CIR (2x18x256)
One-port 256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.264

	PDP (2x18x256)
Two-port 256 PRS + path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.369

	CIR (4x18x256)
Two-port 256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.69 M
	172.77 M
	0.167


Table.4 Positioning performance for multi-port AI/ML positioning, Model backbone(CNN)
As shown in Figure 2 and Table 4, under the same samples for model training, positioning performances increase obviously when enriched channel information is used for model input. 
Observation 4: With measurement results from multi-port PRS included in the AI model input, better positioning performance can be observed when compared to AI model input only includes measurement results from single port PRS.
Proposal 3: Study and evaluate the performance of direct AI/ML positioning when AI model input includes measurement results from multi-port PRS.
Model generalization
	Agreement:
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
· Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
· Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
· Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement:
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).


According to the above agreements in RAN1#110, we evaluate the model generalization and model update in various simulation drops, clutter settings, network synchronization errors and UE RX timing errors.

Various simulation drops:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
1st Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
2nd Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	20.42

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	5000
	1800
	984.96K
	44.28 M
	2.72

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	10000
	1800
	984.96K
	44.28 M
	2.33

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from 1st Drop and 2nd Drop
	N/A
	1st Drop
	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.31


Table.5 Positioning performance in various simulation drops, Model backbone(CNN)
Observation 5: For model generalization evaluation in various simulation drops, when datasets for training and test are from different simulation drops, CIR based AI/ML positioning cannot achieve good performance in the test dataset.
Observation 6: For model generalization evaluation in various simulation drops, when model update is performed based on dataset in a simulation drop that is different from the simulation drop used for model training, positioning performance can be improved in a test dataset that is in the same simulation drop as the dataset for model update.
Observation 7: For model generalization evaluation in various simulation drops, when a dataset for training includes  mixed simulation drops, CIR based AI/ML positioning has a good model generalization capability in a test dataset from a simulation drop included in the mixed simulation drops.
Various clutter settings:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	N/A
	{60%, 6m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	N/A
	{40%, 4m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	19.31

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
1st Drop
	{{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	5000
	1800
	984.96K
	44.28 M
	3.81

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	10000
	1800
	984.96K
	44.28 M
	3.18

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from
{60%, 6m, 2m} and {40%, 4m, 2m}
	N/A
	{40%, 4m, 2m}

	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.48



Table.6 Positioning performance in various clutter settings, Model backbone(CNN)
Observation 8: For model generalization evaluation in various clutter settings, when datasets for training and test are from different clutter settings, CIR based AI/ML positioning cannot achieve a good performance in test dataset.
Observation 9: For model generalization evaluation in various clutter settings, when model update is performed based on dataset in a clutter setting that is different from the clutter setting used for model training, positioning performance can be improved in a test dataset that is in the same clutter setting as the dataset for model update.
Observation 10: For model generalization evaluation in various clutter settings, when a dataset for training includes  mixed clutter settings, CIR based AI/ML positioning has a good model generalization capability in a test dataset from a simulation drop included in the mixed clutter settings.

Various network synchronization errors:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Ideal network sync
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	10.32

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Network sync error
= 50 ns
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34



Table.6 Positioning performance in various network synchronization errors, Model backbone(CNN)
Observation 11: For model generalization evaluation in various network synchronization errors, when a dataset for training has ideal network synchronization errors and a dataset for test has network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value), the positioning performance degrades seriously compared to ideal network synchronization.
Observation 12: For model generalization evaluation in various network synchronization errors, when both datasets for training test have network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value),  positioning performance is comparable to ideal network synchronization. This may be explained by:
· CNN model is translation-invariant to the time shift of channel information due to network synchronization error;
· Random network synchronization errors added in training dataset are analogous to data augmentation, thus increase the model robustness.

Various UE RX timing errors:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	Without UE Rx timing error
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.89

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 10 ns
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.27

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 20 ns
	N/A
	UE Rx timing error = 20 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34



Table.6 Positioning performance in various UE RX timing errors, Model backbone(CNN)
Observation 13: For model generalization evaluation in various UE Rx timing errors, the positioning performance in a test dataset with UE Rx timing errors degrades slightly compared to the dateset without UE Rx timing errors.
3 AI/ML assisted positioning
3.1. AI/ML assisted RSTD estimation
As an example shown in Figure 3, AI/ML assisted positioning generally has two stages to get UE position. The first stage is to estimate intermediate results( e.g., DL RSTD values) by using AI network. In our simulation, the AI model outputs are 18 DL RSTD values that  are relative timing differences to a reference TRP. Finally, the estimated DL RSTD values are used by a non-AI based model (a classical algorithm, e.g., Chan’s algorithm) to get a 2-D UE position.
[image: ]
Figure.3 AI/ML assisted RSTD estimation

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.278

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	DL RSTD values
(1x18)
	DL RSTD values

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.269
(Based on AI/ML assisted RSTD estimation)


Table.7 Positioning performance comparison between direct AI/ML positioning and AI/ML assisted positioning
Observation 14: The AI/ML based positioning method has excellent accuracy on the estimation of DL PRS RSTD values even in heavy NLOS conditions.
Observation 15: AI/ML assisted positioning achieves better positioning performance than direct AI/ML positioning to some degree.
Proposal 4: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes DL PRS RSTD values.
3.2. AI/ML assisted LOS/NLOS identification
In order to investigate the effectiveness of an AI model being used for LOS/NLOS identification, InF-DH channel should at least have some moderate LOS conditions, e.g., the clutter settings can be {40%, 2m, 2m}. In addition, AI/ML assisted LOS/NLOS identification is a non-fingerprinting based method, there is not necessary to generate training dataset within a square grid.  
[image: ]
Figure.4 AI model input and output for AI/ML assisted LOS/NLOS identification
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS accuracy rate

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	Confidence levels of LOS&NLOS
(1x2)
	LOS&NLOS indicator
	{40%, 2m, 2m}
	{40%, 4m, 2m}
	60000
	1800
	90.45K
	10.45 M
	95%


Observation 16: The AI/ML based positioning method has a good accuracy rate of LOS/NLOS identification.
Proposal 5: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes confidence levels of LOS/NLOS identification.
4 Conclusions
In this contribution, we provide our further views on evaluation assumptions and evaluation results on AI/ML for positioning. We have following observations and proposals:
Observation 1:  The AI/ML based positioning method(i.e., via PDP)has excellent performances even in heavy NLOS conditions.
Observation 2: With the increase in number of path timings and RSRPPs, positioning performances are improved significantly.
Proposal 1: Study and evaluate performance of direct AI/ML positioning under different number of path timings and RSRPPs.
Observation 3: With path phase information included in the AI model input,  the positioning performance is improved obviously when compared to AI model input without path phase information.
Proposal 2: Study and evaluate the performance of direct AI/ML positioning when AI model input include channel phase information.
Observation 4: With measurement results from multi-port PRS included in the AI model input, better positioning performance can be observed when compared to AI model input only includes measurement results from single port PRS.
Proposal 3: Study and evaluate the performance of direct AI/ML positioning when AI model input includes measurement results from multi-port PRS.
Observation 5: For model generalization evaluation in various simulation drops, when datasets for training and test are from different simulation drops, CIR based AI/ML positioning cannot achieve good performance in the test dataset.
Observation 6: For model generalization evaluation in various simulation drops, when model update is performed based on dataset in a simulation drop that is different from the simulation drop used for model training, positioning performance can be improved in a test dataset that is in the same simulation drop as the dataset for model update.
Observation 7: For model generalization evaluation in various simulation drops, when a dataset for training includes  mixed simulation drops, CIR based AI/ML positioning has a good model generalization capability in a test dataset from a simulation drop included in the mixed simulation drops.
Observation 8: For model generalization evaluation in various clutter settings, when datasets for training and test are from different clutter settings, CIR based AI/ML positioning cannot achieve a good performance in test dataset.
Observation 9: For model generalization evaluation in various clutter settings, when model update is performed based on dataset in a clutter setting that is different from the clutter setting used for model training, positioning performance can be improved in a test dataset that is in the same clutter setting as the dataset for model update.
Observation 10: For model generalization evaluation in various clutter settings, when a dataset for training includes  mixed clutter settings, CIR based AI/ML positioning has a good model generalization capability in a test dataset from a simulation drop included in the mixed clutter settings.
Observation 11: For model generalization evaluation in various network synchronization errors, when a dataset for training has ideal network synchronization errors and a dataset for test has network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value), the positioning performance degrades seriously compared to ideal network synchronization.
Observation 12: For model generalization evaluation in various network synchronization errors, when both datasets for training test have network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value),  positioning performance is comparable to ideal network synchronization. This may be explained by:
· CNN model is translation-invariant to the time shift of channel information due to network synchronization error;
· Random network synchronization errors added in training dataset are analogous to data augmentation, thus increase the model robustness.
Observation 13: For model generalization evaluation in various UE Rx timing errors, the positioning performance in a test dataset with UE Rx timing errors degrades slightly compared to the dateset without UE Rx timing errors.
Observation 14: The AI/ML based positioning method has excellent accuracy on the estimation of DL PRS RSTD values even in heavy NLOS conditions.
Observation 15: AI/ML assisted positioning achieves better positioning performance than direct AI/ML positioning to some degree.
Proposal 4: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes DL PRS RSTD values.
Observation 16: The AI/ML based positioning method has a good accuracy rate of LOS/NLOS identification.
Proposal 5: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes confidence levels of LOS/NLOS identification.
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Appendix A Common scenario parameters applicable for all scenarios
Table 6-1: Common scenario parameters applicable for all scenarios
	
	FR1 Specific Values
	FR2 Specific Values 

	Carrier frequency, GHz 
	3.5GHz
	28GHz

	Bandwidth, MHz
	100MHz
	400MHz

	Subcarrier spacing, kHz
	30kHz for 100MHz 
	120kHz

	gNB model parameters 
	
	

	gNB noise figure, dB
	5dB
	7dB

	UE model parameters 
	
	

	UE noise figure, dB
	9dB – Note 1
	13dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1
	23dBm – Note 1
EIRP should not exceed 43 dBm.

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)
	Baseline:
Multi-panel Configuration 1 and Panel Configuration a – Note 1
-	Multi-panel Configuration 1: (Mg, Ng) = (1, 2); Θmg,ng=90°; Ω0,1=Ω0,0+180°; (dg,H, dg,V)=(0,0)
-	Panel Configuration a:
-	Each antenna array has shape dH=dV=0.5λ
-	Config a: (M, N, P) = (2, 4, 2),
-	the polarization angles are 0° and 90°
-	The antenna elements of the same polarization of the same panel is virtualized into one TXRU

Optional:
4-panels UE:
- The antenna elements of the same polarization of the same panel is virtualized into one TXRU

	UE antenna radiation pattern 
	Omni, 0dBi
	Antenna model according to Table 6.1.1-2 in TR 38.855

	PHY/link level abstraction
	Explicit simulation of all links, individual parameters estimation is applied. Companies to provide description of applied algorithms for estimation of signal location parameters.

	Network synchronization
	The network synchronization error, per UE dropping, is defined as a truncated Gaussian distribution of (T1 ns) rms values between an eNB and a timing reference source which is assumed to have perfect timing, subject to a largest timing difference of T2 ns, where T2 = 2*T1
–	That is, the range of timing errors is [-T2, T2]
–	T1:	0ns (perfectly synchronized), 50ns (Optional)

	UE/gNB RX and TX timing error
	(Optional) The UE/gNB RX and TX timing error, in FR1/FR2, can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-T2, T2] range, and with T2=2*T1:
-	T1: X ns for gNB and Y ns for UE
-	X and Y are up to sources  
-	Note: RX and TX timing errors are generated per panel independently

Apply the timing errors as follows: 
-	For each UE drop, 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*Y,2*Y] and another random sample for the Rx error according to the same [-2*Y,2*Y] distribution. 
-	For each gNB 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*X,2*X] and another random sample for the Rx error according to the same [-2*X,2*X] distribution. 
-	Any additional Time varying aspects of the timing errors, if simulated, can be left up to each company to report.
-	For UE evaluation assumptions in FR2, it is assumed that the UE can receive or transmit at most from one panel at a time with a panel activation delay of 0ms.

	Note 1: 	According to TR 38.802
Note 2: 	According to TR 38.901
















Appendix B Parameters common to InF scenarios
Table 6.1-1: Parameters common to InF scenarios
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,hc), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density r, height hc,size [image: ]dclutter}
	High clutter density:
- {40%, 2m, 2m}
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:	According to Table A.2.1-7 in TR 38.802


Appendix C Evaluation assumptions on dataset generation
	Frequency range
	FR1

	Bandwidth
	100 MHz

	Sub-carrier spacing
	30 KHz

	InF channel
	InF-DH

	Clutter setting
	{60%, 6m, 2m} (heavy NLOS conditions) or
{40%, 4m, 2m}(moderate NLOS conditions) 

	Spatial consistency modeling
	Large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901

	UE distribution for training dataset 
	Grid distribution, i.e., one training data is collected at the center of one small square grid, the width of the square grid is 0.5/1.0 m.
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