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Introduction
In the RAN#94 plenary meeting [1], a new SID on artificial intelligence (AI)/machine learning (ML) for air-interface was approved for Rel-18, and the objectives of the SID are attached in the Appendix. For the AI/ML-based beam management, two cases are included: beam prediction in spatial domain and beam prediction in temporal domain. In this contribution, we focus on the evaluations of AI/ML-based beam management (BM), including the EVM and evaluation results.
Evaluation methodology for beam prediction
Generic EVM for beam prediction
Beam prediction mechanisms
In RAN1#110b-e, the beam prediction mechanisms have been discussed in the FL summary [2]
	Proposal 1-2-1f: 
· If L1-RSRP is selected as AI/ML input for both spatial and temporal prediction evaluation, at least the following cases can be considered for the study and potential down selection: 
· Option 1: For Tx-Rx beam pair prediction:
· L1-RSRP of Tx-Rx beam pairs in Set B 
· Option 2: For DL Tx beam prediction 
· Case A: L1-RSRP of Tx beams in Set B, measured by a “best” Rx beam
· FFS on how to obtain the “best” Rx beam
· Case B: L1-RSRP of Tx beams in Set B, measured by the same Rx beam
· FFS on how to select/configure the same Rx beam
· Option 3: For DL Rx beam prediction, 
· L1-RSRP of Rx beams in Set B (where Set B of beams is for Rx beam)
· Note: DL Rx beam prediction may or may not have spec impact  
· Other inputs (e.g. CIR) are not preluded. 
· Note 1: Other assistance information is not precluded
· Note 2: The availability of above options as inputs to the AI/ML models may depend on whether the AI/ML model is UE-side or gNB side


DL Tx beam prediction
AI/ML-based DL Tx beam prediction (Option 2) can be seen as a natural replacement of the legacy P-1/P-2 procedures for Tx beam sweeping, and it is compatible with different numbers/patterns of Rx beams. It should also be noted that Option 2 can be used together with legacy Rx beam sweeping to achieve the best Tx-Rx beam combination.
For the evaluation of Option 2, the performance should be compared with suitable benchmarks. A first baseline scheme that can be regarded as the lower performance bound is the legacy beam sweeping with the same overhead as the AI/ML-based scheme. In this approach the same number of beams as in Set B is swept in P-1, but the beams for second round sweeping (e.g. 5 beams) have fixed positions relatively to the best reported Tx beam from P-1. A second baseline scheme, which can be seen as the upper performance bound with larger overhead than the AI/ML-based approach, is to employ exhaustive beam sweeping over all available beams. 
Regarding the Rx beams to be used for Option 2, in Case A, there are different ways to obtain the best Tx beam measured by the best Rx beam. In a first approach all Rx beams are swept and for each of the Rx beams a DL Tx beam prediction procedure is performed. Thus, the best Tx beam over all Rx beams is eventually known. In a second approach, the best Tx beam is firstly determined in P-2 based on a specific Rx beam (e.g., omni Rx beam, or the 1st Rx beam). Then, in P-3, all Rx beams are swept with the identified best Tx beam in P-2. For Option 2, Case B, only one fixed RX beam is adopted, which can for example be an omni Rx beam or simply the 1st Rx beam, which is similar to P-2 for Case A.
DL Rx beam prediction
For Option 3 (DL Rx beam prediction), the benefit of overhead reduction for Rx beam prediction may be limited due to the small total number and the wide beam characteristics of the Rx beams. 
DL Tx-Rx beam pair prediction
For Option 1 (DL Tx-Rx beam pair prediction), the gNB needs to be aware of the Rx beam number/pattern for NW-side model, or needs to be aware of the Rx beam ID report, which is different from the legacy approach where the number/pattern of the UE Rx beam is transparent to the gNB; in addition, how much additional performance gain over Tx beam prediction could be seen may need to be justified, since for Option 2 (Tx beam prediction), the best Tx-Rx beam pair can also be obtained by legacy Rx beam sweeping. 
For the evaluation of Option 1, the performance should also be compared with two benchmarks. A first baseline scheme is the non-AI/ML solution with legacy Tx beam sweeping plus legacy Rx beam sweeping with the same overhead as the AI/ML solution. As a second baseline scheme, to justify the performance gain over AI/ML-based DL Tx beam prediction (Option 2), it can be considered to adopt the AI/ML-based DL Tx beam prediction plus the legacy Rx beam sweeping, so that the particular gain of involving Rx beams in the prediction can be observed.
In our understanding, Option 2 is straightforwardly applicable for UE-side and NW-side deployment; for Option 1, it can be applicable also for both UE-side and NW-side, if the Tx/Rx beam number/pattern are known by the opposite node. For Option 3, as discussed above, there seems to be no strong benefit to only predict Rx beam.
[bookmark: _Ref118538323]Observation 1: For the AI/ML-based beam prediction mechanism, Alt.1 (DL Tx beam prediction) may also achieve best Tx-Rx beam combination by DL Tx beam prediction and legacy Rx beam sweeping.
[bookmark: _Ref118537724]Proposal 1: For the evaluation of AI/ML-based beam prediction mechanism, 
· Alt.1 (DL Tx beam prediction) should be considered as the starting point.
· Both Case A (best Rx beam) and Case B (same specific Rx beam) can be adopted and reported by companies
· Alt.3 (Tx-Rx beam pair prediction) can be also evaluated to justify potential additional performance gain over Alt.1.
· Alt.2 (DL Rx beam prediction) can be considered with lower priority.
[bookmark: _Ref118537752]Proposal 2: For evaluation of DL Tx sweeping, the following two baselines can be considered:
· Lower performance bound: A lower performance bound obtained by non-AI/ML-based legacy sparse beam sweeping with the same overhead as the AI/ML-based approach
· Upper performance bound: Exhaustive beam sweeping over all available beams
Proposal 3: For evaluation of DL Tx-Rx beam pair sweeping, the following two baselines can be considered:
· Baseline 1: Non-AI/ML solution with legacy Tx beam sweeping plus legacy Rx beam sweeping, to justify the performance gain over non-AI/ML.
· Baseline 2: AI/ML-based DL Tx beam prediction plus the legacy Rx beam sweeping, to justify the performance gain over DL Tx beam prediction.
KPI on prediction accuracy
In the last meeting, following agreements were achieved to clarify the definitions of beam prediction accuracy and the Top-1 genie-aided Tx beam for DL Tx beam and for DL Tx-Rx beam pair prediction.
	Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.
Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
Agreement 
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair considers the following options:
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Option B: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams


For the definition of the Top-1 genie-aided beam, both for DL Tx beam and for DL Tx-Rx beam pair prediction, there is a FFS for the specific Rx beam(s) for Option B. In our view, the “specific Rx beam” means that one fixed Rx beam is used for DL beam (pair) prediction during one round of inference. The obtained DL beam (pair) represents then the best Tx beam for this given Rx beam (pair). This definition, is more suitable to be used in our view when the AI/ML model infers the Top-K Tx beams rather than for inferring the best DL Tx-Rx beam pairs.
[bookmark: _Ref118537770]Proposal 4: For DL Tx beam (pair) prediction, the definition of Top-1 genie-aided Tx beam (pairs), Option B, the specific Rx beam means that it is one fixed Rx beam out of the available Rx beams during one round of inference.
In the last meeting, following proposal was discussed on whether to add a different KPI of the L1-RSRP difference other than the one already agreed. 
	Proposal 2-1-4b as a working assumption: 
To evaluate the performance of predicted L1-RSRP, other than existing KPI of L1-RSRP difference (ideal RSRP Diff to genie-aided beam), further consider additional KPI as:  
· (Diff to genie-aided beam): The L1-RSRP difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of Top-1 genie-aided beam
· Other options are not precluded and can be reported by companies


In our view, the above KPI is meaningful to have included when the output of the AI/ML model is the predicted L1-RSRP of beams. Since this can be one of the output options that can be reported, we would be supportive to the above proposed working assumption.
It should be noted though, that another main-stream solution is to use the probability (or the resulting best beam ID) of the predicted beam (pair) IDs as the model output. The existing KPIs of beam prediction accuracy and beam L1-RSRP difference to genie-aided beam would be more applicable to the output type of probability/best beam ID.
[bookmark: _Ref118538356]Observation 2: The 2 potential AI/ML-model outputs are the probability of the best beam IDs and the predicted L1-RSRP values. 
· The already agreed KPI for the L1-RSRP difference between the ideal L1-RSRP of the predicted beam and the ideal L1-RSRP of the genie-aided best beam is applicable when the AI/ML-model is inferring the probability/best beam ID. 
· The not yet agreed KPI of the L1-RSRP difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of Top-1 genie-aided beam is applicable when the AI/ML-model is inferring the predicted L1-RSRP values.
Generalization verification
Generalization is one of the key concerns when implementing AI/ML for beam management, it is therefore important that the AI/ML model will be trained under various conditions that can be encountered during inference. In the last meeting, the potential following working assumption and agreement have been made:
	Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.


One issue that needs to be discussed for last meeting’s agreement is the brackets around “[various Set B of beam (pairs)]”
In our view this aspect is important to be evaluated, both for a UE-side or Network-side deployment of the AI/ML model. For the UE-side model it cannot be guaranteed which exact Tx beam pattern and the size of the pattern that the gNB is going to use. Therefore, the robustness of the model should be evaluated for various setting. For the NW-side, at least different beam patterns for Set B should be evaluated since this could increase the flexibility of the AI/ML model deployment in various conditions. Another reason could be for Tx-Rx beam pair prediction, since different UEs might operate with different numbers of Rx beams.
Base on the above discussion, we are making the following proposal:
[bookmark: _Ref118537782]Proposal 5: For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the following configuration is considered:
· Various Set B of beam (pairs)
Selection of Set A
In last meeting the following agreement was made for the number of beams:
	Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.


For the construction of Set A, one example is to use a 32-DFT or 64-DFT codebook. The main motivation when choosing this approach is to employ AI/ML to enable sparse beam sweeping with low overhead and low power consumption, with the benefit of increasing the beam selection accuracy compared to the legacy method. Another option would be to increase the size of Set A to 256 beams by using a denser beam sweeping codebook. By doing so, the angular resolution of the Tx beams is refined, but the beam width and gNB antenna configuration compared to 32/64 beams is not changed. The AI/ML model infers the Top-K subset from the 256 dense beams to perform beam sweeping at P-2/3. Due to the more precisely selectable beam direction, this achieves better coverage than the legacy exhaustive 64 Tx beam sweeping as long as the AI/ML inferred Top-K beams are accurate.
It should be noted that from gNB configuration and AI/ML model both options are very similar. They use the same number of gNB antennas, perform the same sparse beam sweeping and use the same procedure to infer the Top-K beams out of Set A.
[bookmark: _Ref118538360][bookmark: _Ref115430371]Observation 3: Using 256 beams in Set A constructed from a dense codebook increases the angular resolution compared to a 64-DFT codebook, while the same sparse sweeping procedure for inference and gNB configurations can be applied.
[bookmark: _Ref118537802]Proposal 6: To assess the RSRP gains achievable with 256 Tx beams compared to Exhaustive 64 beam sweeping, companies are encouraged to evaluate a dense codebook with overlapping beams for the construction of Set A. 
Selection of Set B
In the last meeting the following agreement could be achieved regarding the beam selection for Set B.:
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 


When Set B is fixed across training and inference (i.e., Option 1), the AI/ML model can converge more easily, thus resulting into a better performance than when using a variable Set B. The fixed Set B is applicable for the Network-side model, or for the UE-side model given the model is also trained with that fixed Set B.
Regarding the issue that the gNB may vary the Set B size or pattern (i.e., Option 2), it should be clarified that the beam sweeping pattern is elaborately designed in general, and the gNB would not arbitrarily change the beam sweeping set in the realistic network, especially considering Set B also takes the role of beam sweeping over legacy UEs for backward compatibility. That is to say, even if there may be more than one variable Set B pattern, it should not be considered as a random pattern, but rather designed as a limited set of patterns (i.e., pre-configured Set B). For example, assuming the 64 Tx beams of Set A, the pre-configured Set B patterns may be: 4 non-overlapping interlaced patterns with 16 beams each. In that sense, the UE could mix multiple pre-configured Set B patterns during training, and a generalized performance can be achieved during the inference. Further for Option 2, for the Option A and Option B of pre-configured sets, it would be sufficient to evaluate the randomly selected sets (Option B), since Option A could be seen as a special case of Option B. An example of the selection of 5 pre-configured Set B patterns is shown in Section 3.3.1.2 together with evaluation results.
Based on this discussion we make the following observation and proposal:
[bookmark: _Ref115430617]Observation 4: For the selection of Set B, under Option 2, it is more realistic for the gNB to choose among a set of pre-configured Set B (Option A/B), rather than varying over totally random beams in Set B (Option 2C). 
· Among the pre-configured Sets, Option A can be regarded as special of Option B.
[bookmark: _Ref115430383]Proposal 7: For BM-Case-1 and Case-2, for the selection of Set B, consider Option 1 (Set B is fixed across training and inference) as a starting point.
· For Option 2 (Set B is variable), Option B can be evaluated optionally further.
Another issue is the number of beams in Set B. Since one of the main motivations to employ sparse beam sweeping is to save overhead compared to an exhaustive sweep, it can be considered to limit the number of beams in Set B relatively to the number of beams in Set A, e.g., number of beams in Set B should not exceed one fourth of the number of beams in Set A.
Assistance information
The discussion on assistance information has been put on hold during last meeting until further progress is achieved in AI/ML 9.2.3.2.
In our view, proprietary and/or privacy information up to Rel-17 shall not be disclosed to the other node. Other assistance information can be evaluated further to see if gains can be expected. This should be done prior to the discussion of potential spec impact in AI/ML 9.2.3.2
[bookmark: _Ref118537851]Proposal 8: For the evaluation of assistance information,
· Information that in Rel-17 is regarded as proprietary and/or privacy shall not be considered as a candidate for assistance information
· The benefits of other potential assistance information should be evaluated in 9.2.3.1 firstly, before a study on potential spec impact is conducted in 9.2.3.2
Model deployment
Though the AI/ML model for beam prediction can be also trained and inferred at the UE side under the UE-side operation mode (i.e. both model training and model inference at the UE side), in this paper we choose to focus on the one-sided AI/ML deployed model at the network (i.e. Network-side model), since in our understanding this is a simpler approach compared to the UE-side model with less necessary information that needs to be aligned between the network and the UE. 
[bookmark: _Ref111192800]Proposal 9: The evaluation for beam prediction should focus on a one-sided AI/ML model.
EVM for beam prediction in spatial domain
Overhead for spatial domain beam prediction
The following working assumption could be achieved last meeting for KPI reporting of RS overhead reduction and RS overhead.
	Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt.1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt.2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt.3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt.1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt.2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt.3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies


As discussed in the last meeting and indicated in the working assumption, down-selection among the options could be pursued.
In the following, we discuss with help of an example which options are meaningful to report to give a fair overview about performance and costs of various schemes.
Example: Assume that 3 schemes as shown below are compared to the baseline of Exhaustive 64 beam sweeping. Their evaluation results in terms of Av RSRP difference and overhead shall be compared as shown in the right column of the table below.
	Scheme
	Set A
	Set B
	Top-K
	Av RSRP diff

	Baseline
	Exhaustive 64
	0 dB

	Scheme 1
	32
	8
	3
	-1.5 dB

	Scheme 2
	64
	16
	5
	-0.3 dB

	Scheme 3
	256
	16
	8
	+1.2 dB


Scheme 3 has the best assumed performance in this example while only having slightly more overhead (16+8=24) than Scheme 2, but still the largest overhead among all schemes. This information should be made easily visible and understandable when schemes and evaluation results are reported according to the table format that was agreed last meeting. We have therefore used the above example numbers for calculation of RS overhead reduction according to Options A1, A2 and A3 and for RS overhead according to Option B1 and B2. We have then inserted the obtained numbers into the agreed table format from last meeting, where we left out those table-rows that have no relevance for the purpose of this example. Alt.1 is adopted for both Option A3 and Option B2.
Table 1. AI/ML overhead and performance analysis for DL Tx beam prediction
	
	Scheme  1
	Scheme  2
	Scheme  3

	Assumptions
	Number of [beams/beam pairs] in Set A
	32
	64
	256

	
	Number of [beams/beam pairs] in Set B
	8
	16
	16

	
	Baseline scheme
	Exhaustive 64
	Exhaustive 64
	Exhaustive 64

	AI/ML model
input/output
	Model input
	L1-RSRPs
	L1-RSRPs
	L1-RSRPs

	
	Model output
	Top-3
	Top-5
	Top-8

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	
	

	
	
	[KPI B]
…
	
	
	

	
	L1-RSRP Diff 
	Average L1-RSRP diff
	-1.5 dB
	-0.3 dB
	+ 1.2 dB

	
	[System performance]
	RS overhead Reduction (%)
Opt A1
	1-(8/32) = 0.75
	1-(16/64) = 0.75
	1-(16/256) = 0.94

	
	
	RS overhead Reduction (%)
Opt A2
	1-((8+3)/64) = 0.828125
	1-((16+5)/64) = 0.671775
	1-((16+8)/64) =0.625

	
	
	RS overhead Reduction (%)
Opt A3, Alt.1 
	1-((8+3)/32) = 0.66
	1-((16+5)/64) = 0.67
	1-((16+8)/256) = 0.91

	
	
	RS overhead
Opt B1
	8
	16
	16

	
	
	RS overhead
Opt B2, Alt.1
	11
	21
	24


Discussion of obtained KPI numbers:
For RS overhead reduction we can observe the following:
Option A1 calculates the overhead reduction only based on the size of Set B and size of Set A for the parameters of the given scheme. In order to enable a fair comparison between schemes, when Option A1 would be used for RS overhead reduction reporting, then also the RS overhead needs to be reported. In addition, Option A1 does not consider the second round beam sweeping, which also is essential to provide a complete understanding about the relationship between performance and overhead. Assume for example that an AI/ML-based scheme would only have 1 beam in Set B and would infer the complete Set A. Then, according to Option A1, the overhead reduction would be huge (almost 100%) with a prediction accuracy of the Top-1/K beam would 100%. Hence, it would indicate great performance KPIs even if it is obvious that this kind of AI/ML model configuration would be meaningless in practice.
Option A2 takes all beams that are needed for measurement into account, “N” in the nominator includes the beams in Set B as well as the Top-K beams for second round beam sweeping. This is gives a fair comparison between results. Also, the overhead reduction is compared to a certain baseline, which is 64 in this example. In the table that is used to capture the results it can be seen that the overhead reduction for Scheme 3 is the least among the schemes, which is feasible, since Scheme 3 requires to sweep most beams for measurement. But it has still a significant reduction compared to the Exhaustive 64 baseline. When Option A2 is reported a fair comparison across different schemes with different size in Set B and Set A is enabled and it is not necessary to report the RS overhead. 
Option A3 solves the issue from Option 1 with respect to the measurement beams: all measured beams (Set B + Top-K) are counted. This beam measurement is similar to Option A2 only that it is spelled out explicitly for Option A3. The problem with Option A3 is the denominator which has the size of Set A of the investigated scheme. Thus, as for Option A1, no objective comparison between schemes with different sizes of Set A is possible. If Option A3 is used as KPI for RS overhead reduction then also the overhead should be reported. 
Based on the above discussion we make the following observation for RS overhead reduction:
[bookmark: _Ref118538397]Observation 5: For the evaluation of the overhead for BM-Case1, for reporting RS overhead reduction
· Option A1: For a given scheme, it does not take the overhead of second round beam measurements into account and it relates the overhead reduction to the size of Set A of the given scheme. A fair performance/overhead comparison between schemes with different sizes of Set A is not possible.
· Option A2: For a given scheme, it can take all beams that are needed for measurement (Set B and Top-K) into account. The overhead reduction is related to the size needed for measurements of a baseline scheme. A fair performance/overhead comparison between schemes with different and same sizes of Set A is possible.
· Option A3: For a given scheme, it can take all beams that are needed for measurement (Set B and Top-K) into account. But it relates the overhead reduction to the size of Set A of the given scheme. A fair performance/overhead comparison between schemes with different sizes of Set A is not possible. 
For the RS overhead, as analysed above, it is needed to be reported if Option A1 or Option A3 are reported for RS overhead reduction. In our view, Option B2 should then be used, since beams from both Set B and the Top-K beams need to be measured to predict the final beam. Within this option we prefer Alt.1
[bookmark: _Ref118538414]Observation 6: For the evaluation of the overhead for BM-Case1, for reporting RS overhead (Option B)
· Option 1: Only counts the beams that are needed as input to the AI/ML model. Which is misleading, since with different settings of Top-K the performance and total overhead is significantly impacted
· Option 2: Gives the information about the full overhead that is needed to obtain the best beam.
Based on the above discussion we make the following proposal:
[bookmark: _Ref118538193]Proposal 10: For the evaluation of the overhead reduction for BM-Case1, 
· Support Option A2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on beam sweeping
· If one of Options A1 or A3 is additionally supported, then for reporting also the RS overhead according to Option B2 (Alt.1) should be reported
EVM for beam prediction in temporal domain
Following the illustration in Figure 1 below, in temporal beam prediction, historical information is collected during an observation window (T1) consisting of N instances each of which includes beam sweeping for Set B, and M sets of Top-K beams are inferred by the AI/ML model to be separately used for P-2 sweeping in M instances during the prediction window (T2).
 [image: ]
[bookmark: _Ref110618044][bookmark: _Ref110618033]Figure 1. Diagram of the temporal domain beam prediction
[bookmark: _Ref115173066][bookmark: _Ref111192911]UE trajectory modeling
Regarding the UE trajectory, we prefer Option#4 (i.e., Random direction straight-line trajectories) as a starting point. In that option the UE is dropped randomly in the cell and the initial moving direction is also randomized. This model better matches the outdoor vehicle with straight & fast moving behavior. Other options may be also considered in the verification of the generalization scenarios.
[bookmark: _Ref111192924]Proposal 11: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point.
The key component to support temporal domain beam prediction is the spatial consistency. In this paper, we consider procedure B in TR38.901 which updates all small scale parameters and large scale parameters along with the trajectory.
Overhead for temporal domain beam prediction
For the evaluation of the overhead in temporal domain, since the sweeping methods in the observation window (i.e., Set B sweeping) and the prediction window (i.e., Top-K sweeping) are different, a different evaluation method compared to the spatial domain for overhead should be considered. 
To obtain the optimal Tx beam ID in each time instance a full sweep (i.e., Set A sweeping) is the baseline which is the same approach as for the spatial domain beam prediction. Let us consider the Set B sweeping in the observation window and Top-K sweeping in prediction window as an integer operation, then, the overhead for combined observation and prediction can be calculated as:

where  means the size of Set B and T1 denotes the number of observation instances,  means the Top-K beams and T2 denotes the number of prediction instances. 
For the overhead reduction, the overhead should be related to the size of Set A, i.e.,

where M is the number of beams in Set A used in the baseline. 
[bookmark: _Ref115430475]Proposal 12: For the evaluation of the overhead for temporal domain AM//ML-based BM, the observation and prediction window are jointly considered, and two metrics should be reported
· The RS overhead, consisting of the beams being swept in Set B during observation and the Top-K beams for P-2 beam sweeping during prediction (if applicable)
· for K>1 and  for K = 1
· The RS overhead reduction compared to an exhaustive beam sweep over Set A during observation and the Top-K beams for P-2 beam sweeping during prediction (if applicable)
·  for K > 1 and  for K = 1
· Where: M is beams in Set A of the baseline, N is beams in Set B and K is the number of beams as inference output
KPI reporting for the prediction window:
For BM-Case 2, the AI/ML-model can predict the top-K beam for multiple instances. It is then a question for a given intermediate KPI if it should be reported as average value over all prediction instances or separately for each prediction window. A similar question had come up in the CSI prediction sub use case, where it was concluded that the KPI is calculated for each prediction instance. We suggest to adopt the same concept also for beam management and make the following proposal:
[bookmark: _Ref118538248]Proposal 13: If the AI/ML model outputs predict multiple time instances, if intermediate KPIs are calculated, then they are calculated for each prediction instance.
[bookmark: _Ref129681832]Evaluations for spatial domain beam prediction
Procedure for spatial domain beam prediction
Figure 2 below provides a flow chart to illustrate how the AI/ML-based BM is operated. In the outlined approach, the Network-side AI/ML model is considered where the AI/ML model is assumed to be trained and performs inference at the gNB side. Supervised learning is considered in this evaluation, where the UE feeds back the L1-RSRP for each Tx beam as the ground-truth information for training input. For the AI/ML training phase, the gNB performs beam sweeping over sparse (narrow or wide) beams in Set B, and the UE feeds back the L1-RSRPs of the sparse beams and the optimal beam ID over the full beam set (i.e., Set A) to the gNB, which then will be used to train the AI/ML model. When the trained AI/ML model is used for inference, the gNB will sweep the sparse beams for the 1st round sweeping (e.g., 16 beams), and the UE will report the corresponding L1-RSRPs for all the measured sparse beams to the gNB for inferring the Top-K beams. CSI-RS beam sweeping based on the inferred Top-K beams will then be carried out in the 2nd round sweeping of P-2 as in the legacy system, and the optimal Tx beam from the Top-K beams will then be fed back from the UE. The Tx beam sweeping/prediction procedure is performed for each Rx beam, so the globally best Tx beam is reported after sweeping the Rx beams.
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[bookmark: _Ref102039974]Figure 2. Flow chart for AI/ML-based spatial domain beam management
Description of the AI/ML model 
The AI/ML model related parameters for spatial domain beam prediction are given below.
Table 2. AI/ML model and training parameters for spatial domain beam prediction
	Parameter
	Value

	AI/ML (NN) model architecture type
	Convolutional Neural Network (CNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	45000/5000 samples

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie-aided Top-1 beam ID as label

	Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	100

	Learning rate
	Starting at 0.001 with certain LR scheduler setting


Simulation results for beam prediction in spatial domain
System level simulations are performed for spatial domain beam prediction in this section. The AI/ML model performance together with the baseline scheme for spatial domain beam prediction is given in the following of this section. Regarding the baseline solutions, both options proposed in RAN1#109-e have been considered as the upper and lower bounds, respectively.
[bookmark: _Ref101955953][bookmark: _Ref111143692]Sparse beam sweeping based on 64-DFT codebook
According to Table 3 shown below, AI/ML schemes are simulated for different numbers of Top-K beams and compared with two non-AI/ML schemes. Option 1 (measuring all RS or all beams of Set A) and Option 2 (measuring RS of Set B) in RAN1#109-e are both considered as baselines.
· Exhaustive 64 (Option 1), is the exhaustive beam sweeping over all 64 Tx beams, which can be regarded as the upper performance bound; with this method, the gNB will always get the genie-aided Top-1 beam. It gives the best performance but also requires the largest overhead and power consumption. 
· Baseline (Option 2), is the traditional sparse beam sweeping under non-AI/ML, where 16 sparse Tx beams are swept at P-1, and after the UE feeds back the optimal P-1 beam ID, the gNB will determine the Tx beams for P-2 to include this optimal P-1 beam as well as its 4 fixed neighboring beams; this is to align the overhead and to compare the accuracy with the AI/ML-based approach under K=5. In addition, the optimal P-1 beam directly applied to without P-2 sweeping is also provided to align the overhead with AI/ML-based K=1.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme.
[bookmark: _Ref101955388]Table 3. Schemes for evaluating the 64-DFT codebook Type
	Schemes
	P-1
	P-2/3

	Exhaustive 64 
(Option 1)
	64 beams
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	16 beams
Sparse beam sweep
	One best measured beam [and 4 neighbors]
	

	AI/ML
	16 beams
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


Evaluation on the fixed Set B
This sub-section provides the evaluation results for fixed Set B (i.e., Option 1) as discussed in Section 2.1.5.
The simulation results are shown in Table 4 below. It can be seen that the performance gap between the Baseline (legacy sparse beam sweeping) and the Exhaustive 64 (i.e., genie-aided Top-1) is large. The baseline only achieves a prediction accuracy of 55.3%, i.e. there is only a 55.3% chance that the optimal beam is included in the Top-5 candidates that are identified with the legacy method. The performance gap compared to the upper bound Exhaustive 64 is significantly narrowed when the AI/ML-based approach is taken instead. With the same overhead as the baseline (i.e. K=5), AI/ML can achieve a prediction accuracy as high as 94.95%. Additionally, even when the AI/ML model is configured to infer fewer beam candidates than the legacy baseline, i.e. K=1 or K=3, its performance is still better.
The simulation results are also illustrated in Figure 3 below where the CDF of the prediction accuracy is shown for various L1-RSRP differences. It can clearly be seen that all AI/ML-based approaches outperform the Baseline and that as larger the value of K is chosen, the better is the prediction result of the AI/ML-based method.
Based on the above discussion we make the following observations:
[bookmark: _Ref111192585]Observation 7: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
[bookmark: _Ref111192664]Observation 8: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie-aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
[bookmark: _Ref110512540]Table 4. KPIs for AI/ML model performance for spatial domain beam prediction with 64-DFT
	Assumptions
	Number of [beams/beam pairs] in Set A
	64 beams

	
	Number of [beams/beam pairs] in Set B
	16 beams

	
	Baseline scheme
	Lower bound baseline: non-AI/ML beam selection (16SSB + 5 CSI-RS)
Upper bound baseline: exhaustive beam sweeping

	AI/ML model
input/output
	Model input
	16 L1-RSRPs

	
	Model output
	Predicted best beam ID

	Data Size
	Training
	40000

	
	Testing
	1000

	AI/ML model
	[Short model description]
	CNN

	Evaluation results
[With AI/ML / baseline]
	Prediction Accuracy [%] 
	[Beam prediction accuracy (%)] Narrow beam Set B
	AI Top-1
	65.5

	
	
	
	AI Top-3
	89.2

	
	
	
	AI Top-5
	94.95

	
	
	[Beam prediction accuracy (%)] Wide beam Set B 
	AI Top-1
	46.2

	
	
	
	AI Top-3
	80.2

	
	
	
	AI Top-5
	90.1

	
	
	Lower bound baseline 
	Top-1
	22.13

	
	
	
	Top-5
	55.3

	
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	[Beam prediction accuracy (%)] Narrow beam Set B
	AI Top-1
	79.5

	
	
	
	AI Top-3
	92.5

	
	
	
	AI Top-5
	97.95

	
	
	[Beam prediction accuracy (%)] Wide beam Set B 
	AI Top-1
	51.2

	
	
	
	AI Top-3
	84.4

	
	
	
	AI Top-5
	95.3

	
	
	Lower bound baseline
	Top-1
	29.45

	
	
	
	Top-5
	59.65

	
	Average L1-RSRP Diff [dB] vs Exh 64
	Narrow beam Set B
	AI Top-1
	-0.4062

	
	
	
	AI Top-3
	-0.0832

	
	
	
	AI Top-5
	-0.0304

	
	
	Wide beam Set B
	AI Top-1
	-1.0501

	
	
	
	AI Top-3
	-0.1027

	
	
	
	AI Top-5
	-0.0489

	
	
	Lower bound baseline
	Top-1
	-1.5428

	
	
	
	Top-5
	-1.0260

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead\]
	AI Top-1
	75

	
	
	
	AI Top-3
	70.31

	
	
	
	AI Top-5
	67.19

	
	
	
	Top-5
	67.19



[image: ]
[bookmark: _Ref110522972]Figure 3. CDF of L1-RSRP difference of Top-K prediction beam for 64-DFT codebook
It had also been discussed whether Set B (the input to the AI/ML model) should be a subset of Set A (the full set of possible beams) or if Set B also could contain beams that are not part of Set A. As seen the last two rows of Table 4, we performed simulations for both cases. In the second last row, Set B is a sparse subset with 16 beams from the 64 narrow beams contained in Set A, and in the last row, Set B consists of wide beams.
[bookmark: _Ref111192685]Observation 9: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
To further illustrate the advantages of AI/ML in spatial domain beam prediction, from both overhead and performance perspectives, both Option 1 and Option 2 should be considered as the upper bound and lower bound, respectively. It can be found from the simulation results that AI/ML can provide near optimal performances with much lower overhead than the upper bound and much better performances than the lower bound for approximately the same overhead.
[bookmark: _Ref111192968]Evaluation on the Variable Set B
This sub-section provides the evaluation results for pre-configured Set B (i.e., Option 2B) as discussed in Section 2.1.5. Figure 4 gives a simple illustration of the variable Set B, where there are five Set B patterns considered in this evaluation, including the subset of Pattern#1{0, 1, 6, 7, 16, 21, 27, 28, 35, 36, 42, 45, 56, 57, 62, 63}, Pattern#2{3, 4, 10, 13, 16, 23, 25, 30, 33, 38, 40, 47, 50, 53, 59, 60}, Pattern#3{3, 5, 9, 14, 19, 21, 25, 30, 35, 37, 41, 46, 51, 53, 57, 62}, Pattern#4 {1, 6, 10, 13, 17, 22, 26, 29, 33, 38, 42, 45, 49, 54, 58, 61} and Pattern#5 {0, 4, 9, 13, 18, 22, 27, 31, 32, 36, 41, 45, 50, 54, 59, 63} of Set A.
[image: C:\Users\l00642298\AppData\Roaming\eSpace_Desktop\UserData\l00642298\imagefiles\originalImgfiles\1DA61237-817D-4958-919D-F2C1B768357E.png]
[bookmark: _Ref118382218]Figure 4. Illustration of pre-configured Set B
The simulation setup is the same as the sparse beam sweeping based on 64-DFT codebooks. The sparse beams are selected randomly from the pre-configured patterns, in which 5 different patterns are considered. The simulation results are illustrated in Table 5. It can be found that the performances are still considerable for the pre-configured Set B, having the dataset size same as it in the fixed pattern approach in Table 4, the Top-1 accuracy only degrades 4% while the Top-5 can achieve 87.9% accuracy. 
[bookmark: _Ref118380584]The simulation results are also illustrated in Figure 5, where the CDF of the prediction accuracy is shown for various L1-RSRP differences. It is clear that the pre-configured Set B achieve close performance and same trend as the fixed pattern approach.
[bookmark: _Ref118408324]Table 5. KPIs for AI/ML model performance for spatial domain beam prediction with 64-DFT with Variable Set B
	Assumptions
	Number of [beams/beam pairs] in Set A
	64 beams

	
	Number of [beams/beam pairs] in Set B
	16 beams, 5 patterns (Proposal 4-3-1f, Option 2, Opt. B)

	
	Baseline scheme
	non-AI/ML beam selection (16SSB)
non-AI/ML beam selection (16SSB + 5 CSI-RS)

	AI/ML model
input/output
	Model input
	16 L1-RSRPs

	
	Model output
	Predicted best beam ID

	Data Size
	Training
	40000

	
	Testing
	1000

	AI/ML model
	[Short model description]
	CNN

	Evaluation results
[With AI/ML / baseline]
	Prediction Accuracy [%] 
	Narrow beam Set B (5 variable patterns)
	AI Top-1
	61.3 (fixed: 65.5)

	
	
	
	AI Top-3
	81.1 (fixed: 89.2)

	
	
	
	AI Top-5
	87.9 (fixed: 94.95)

	
	
	Lower bound baseline
	Top-1
	22.13

	
	
	
	Top-5
	55.3

	
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Narrow beam Set B (5 variable patterns)
	AI Top-1
	73.1 (fixed: 79.5)

	
	
	
	AI Top-3
	90.6 (fixed: 92.5)

	
	
	
	AI Top-5
	95.4 (fixed: 97.95)

	
	
	Lower bound baseline
	Top-1
	29.45

	
	
	
	Top-5
	59.65

	
	Average L1-RSRP Diff [dB] vs Exh 64
	Narrow beam Set B
	AI Top-1
	-0.8553 (fixed: 0.4062)

	
	
	
	AI Top-3
	-0.3169 (fixed: 0.0832)

	
	
	
	AI Top-5
	-0.1585 (fixed: 0.0304)

	
	
	Lower bound baseline
	Top-1
	-1.5428

	
	
	
	Top-5
	-1.0260



[image: ]
[bookmark: _Ref118383377]Figure 5. CDF of L1-RSRP difference of Top-K prediction beam for Variable Set B (5 patterns)
According to the simulations results illustrated above, we can find that variable Set B selected from pre-configured patterns can achieve close performance as the fixed pattern approach while its ability in generalization has been improved. Both fixed Set B pattern and pre-configured Set B pattern can achieve significant gain over the non-AI/ML beam sweeping solution. Therefore, we have the following proposal as:
[bookmark: _Ref118538469]Observation 10: Variable pattern selected from pre-configured patterns (Option 2B) can achieve close performance as the fixed pattern approach but with better generalization on different patterns.
Sparse beam sweeping based on 256 dense codebook
The schemes for the 256 dense codebook are provided in Table 6, where two non-AI/ML schemes are also considered for comparison. 
· The exhaustive 64 Tx beam sweeping under the 64-DFT codebook described in Section 2.1.4 is considered as the upper bound achievable with the legacy 64 Tx beam sweeping. This is also taken as the baseline to evaluate the relative gain of the following two schemes under the 256 dense codebook.
· The exhaustive 256 Tx beam sweeping under the dense codebook of 256 Tx beams described in Section 2.1.4 can lead to genie-aided Top-1 beam ID and is considered as the upper performance bound of the 256 Tx beams scheme.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme. Hence, the overhead is the same as the AI/ML-based scheme in Section 3.3.1, but the inferred beams are taken from the dense codebook of 256 Tx beams.
[bookmark: _Ref101955887]Table 6.  Schemes for evaluating the 256 dense codebook
	Schemes
	P-1
	P-2/3

	Exhaustive 64
	64 beams
Exhaustive sweep
	Optimal beam
	

	Exhaustive 256
(Option 1)
	256 beams
Exhaustive sweep
	Optimal Beam
	

	AI/ML
	16 beams
Sparse beam sweep
	Predicted Top-K beams from 256 dense beams
	


[bookmark: _Ref110522915]The simulation results are shown in Table 7 below.
[bookmark: _Ref110615871][bookmark: _Ref110615859]Table 7. KPIs for AI/ML model performance for spatial domain beam prediction with 256 dense codebook
	Assumptions
	Number of [beams/beam pairs] in Set A
	256 beams

	
	Number of [beams/beam pairs] in Set B
	16 beams

	
	Baseline
	Exhaustive 64 beam sweeping

	AI/ML model
input/output
	Model input
	16 L1-RSRPs

	
	Model output
	Predicted best beam ID

	Data Size
	Training
	40000

	
	Testing
	1000

	AI/ML model
	[Short model description]
	CNN

	Evaluation results
[With AI/ML / baseline]
	Prediction Accuracy [%] 
	[Beam prediction accuracy (%)] Narrow beam Set B
	AI Top-1
	44.9

	
	
	
	AI Top-3
	65.5

	
	
	
	AI Top-5
	73.2

	
	
	[Beam prediction accuracy (%)] Wide beam Set B 
	AI Top-1
	33.7

	
	
	
	AI Top-3
	61.45

	
	
	
	AI Top-5
	73.1

	
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	[Beam prediction accuracy (%)] Narrow beam Set B
	AI Top-1
	51.8

	
	
	
	AI Top-3
	71.2

	
	
	
	AI Top-5
	81.5

	
	
	[Beam prediction accuracy (%)] Wide beam Set B 
	AI Top-1
	41.1

	
	
	
	AI Top-3
	68.9

	
	
	
	AI Top-5
	80.55

	
	Average L1-RSRP Diff [dB] vs Exh 256
	Narrow beam Set B
	AI Top-1
	-0.75

	
	
	
	AI Top-3
	-0.23

	
	
	
	AI Top-5
	-0.1

	
	
	Wide beam Set B
	AI Top-1
	-1.1198

	
	
	
	AI Top-3
	-0.2377

	
	
	
	AI Top-5
	-0.12

	
	Average L1-RSRP Diff [dB] vs Exh 64
	Narrow beam Set B
	AI Top-1
	+0.45

	
	
	
	AI Top-3
	+0.97

	
	
	
	AI Top-5
	+1.1

	
	
	Wide beam Set B
	AI Top-1
	+0.0002

	
	
	
	AI Top-3
	+0.9623

	
	
	
	AI Top-5
	+1.08

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead\]
Vs Exh 64 (Option A2)
	AI Top-1
	0.75

	
	
	
	AI Top-3
	0.70

	
	
	
	AI Top-5
	0.67
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[bookmark: _Ref110522975][bookmark: _Ref110615919]	Figure 6. CDF of L1-RSRP difference of Top-K prediction beam for 256 dense codebook	
From the simulation results shown in Figure 6, it can be seen that by using a dense 256 codebook (i.e. applying Exhaustive 256), the upper bound performance of the legacy approach given by Exhaustive 64 can be pushed higher, where an increased L1-RSRP with 1.2 dB can be achieved. However, the overhead and the power consumption of the legacy Exhaustive 64 method is already very high. Going straightforward to a non-AI/ML based Exhaustive 256 approach is therefore not feasible, since the already high costs would be further increased by 400%.
AI/ML-based solutions, can here be applied instead to reduce the beam sweeping overhead, but at the same time, to enhance the coverage of the legacy system. The dense codebook containing 256 beams, only increases the number of beams in Set A from 64 to 256. The number of beams in Set B remains unchanged compared to the settings in Section 3.3.1, i.e. 16 sparse narrow beams or 16 wide beams can be used. Therefore, the beam sweeping overhead is the same as for the AI/ML approached described in the previous section.
It can be found from the simulation results that Set B with 16 sparse dense beams can offer 1.1 dB gain in terms of the L1-RSRP while the overhead is only 33% of the Exhaustive 64. When the Set B contains wide beams and Set A is 256 dense codebook, it can offer 1.08dB over the Exhaustive 64. This motivates the following observation that:
[bookmark: _Ref111192698]Observation 11: The AI/ML-based beam prediction based on the Set A with 256 beams provides a considerable gain over the legacy upper bound Exhaustive 64 in achievable L1-RSRP for a small fraction of the overhead associated with an Exhaustive 64 sweep.
Evaluations for beam prediction in temporal domain
Procedure of AI/ML-based temporal domain beam prediction
Figure 7 below provides a flow chart to illustrate how the AI/ML-based temporal domain BM is operated. The Network-side operation mode is considered here as an example where the AI/ML model is assumed to be trained and inferred at the gNB side.
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[bookmark: _Ref118471615]Figure 7. Flow chart of AI/ML-based temporal domain beam management
Different from the spatial domain BM, temporal beam prediction includes an observation phase. During the observation window, sparse beam sweeping at P-1 (e.g., 16 beams) is performed N times in N observation instances and the corresponding L1-RSRPs are fed back from the UE and regarded as historical information, which is utilized for beam prediction in the temporal domain. This historical information is given as input to the AI/ML network to infer M Top-K subsets from the full beam set (e.g. from 64 beams), each of the M subsets are to be applied for P-2 sweeping over the Top-K beams in a prediction instance to determine the corresponding optimal beam ID for that prediction instance. The above Tx beam sweeping/prediction procedure is performed for each Rx beam, so the globally best Tx beam is reported after sweeping the Rx beams.
Another approach as opposed to use the L1-RSRPs from the sparse beams as input to the AI/ML model, would be to perform a full beam sweep and to feed the AI/ML model with the L1-RSRPs from all beams out of Set A. This has been mentioned in RAN1#110 AI/ML 9.2.3.2 as Alt.3, i.e., Set B = Set A. However, this concept requires too much overhead in our view for practical implementation. Overhead reduction is one of the mains reasons why sparse beam sweeping has been introduced. Additionally, a full beam sweep might not be compatible with non-AI/ML-based UEs that and it would also cause unnecessary interference to UEs in other cells.
We think the same principle as for spatial domain beam management should be taken for temporal beam prediction and we are making the following proposal:
[bookmark: _Ref111192825]Proposal 14: For AI/ML-based temporal domain beam prediction, regarding the relationship between Set A and Set B:
· The size of Set B smaller than Set A should be considered as baseline.
· Both can be considered in evaluations: Set B is a subset of Set A; Set B contains wide beams with full direction which are different from Set A with narrow beams.
· Set B equal to Set A can be optionally used for performance comparison in evaluations.
Description of the AI/ML model
For the design of the AI/ML structure, Table 8 gives a detailed introduction, while RNN is considered for the temporal domain prediction. N=M=2 is assumed. Same as the spatial domain method, L1-RSPP is chosen to be the input and the output are the Top-K candidates with the highest probability to represent the optimal beam. Please note that the time distance between the two prediction instances is assumed as 0.08s or 0.16s, to evaluate the impact of spatial consistency: the spatial consistency becomes weaker for longer instances.
[bookmark: _Ref109721039]Table 8. AI/ML model and training parameters for temporal domain beam prediction
	Parameter
	Value

	AL/ML (NN) model architecture type
	Recurrent Neural Network (RNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	10000/1000 samples

	
	Trajectory length
	20 time instances, 0.08s/0.16s per time instance

	
	UE speed
	30km/h, 90km/h

	
	Observation window
	2 observation instances

	
	Prediction window
	2 prediction instances

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie-aided Top-1 beam ID as label

	 Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	At least 100

	Learning rate
	0.00001


Simulation results for beam prediction in temporal domain
For the simulations for temporal domain beam prediction, we follow the agreement in RAN1#109-e to define baselines, where the upper bound baseline is the Option 1a which exhaustively sweeps all beams in each prediction instance so that the genie-aided Top-1 beam ID can be obtained for each predicted instance. For the lower bound baseline, the Option 2 is selected which means that the selected beam ID for each predicted instance is kept as same as the optimal beam ID resulting from the exhaustive sweeping for the latest observation instance. The detailed setup for simulation schemes can be found in Table 9, for the AI/Ml-based scheme, the values of K are assumed to be 1, 2, 4 and 8 for the inference of Top-K beams for P-2. Two speeds are selected (i.e., 30km/h, 90km/h), and combined with two sets of prediction instances (i.e., 0.08s, 0.16s), 4 sets of evaluation results are provided for evaluating the temporal domain beam prediction. 
[bookmark: _Ref109720823][bookmark: _Ref109720815]Table 9. Schemes for evaluating the temporal domain beam prediction
	Schemes
	P-1
	P-2/3

	Exhaustive 64
(Option 1a)
	64 beams
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	64 beams
Exhaustive sweep
	Same as the optimal beam in previous observation instance
	

	AI/ML
	16
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


As discussed earlier, the main benefit of temporal domain beam prediction is that it can reduce the beam sweeping overhead, for example compared to very frequent spatial domain beam prediction that otherwise could be required in case of UE mobility. 
According to the simulations results illustrated in the following tables and figures, the AI/ML-based Top-K (K>1) can achieve significant gain over Top-1 with only a slight increase of overhead. Moreover, in most cases (except 90km/h, 0.16s time interval), Top-1 inference has even lower performance than the baseline. This motivates us to encourage Top-K, K>1 prediction in addition to only inferring K=1 beam with the AI/ML model. We are making the following proposal:
[bookmark: _Ref111193022]Proposal 15: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.
[bookmark: _Ref110618420][bookmark: _Ref111124961]The performances of temporal domain beam prediction in different set of scenarios are shown in Table 10
[bookmark: _Ref118456214]Table 10. Simulations results for AI/ML model performance for temporal domain beam prediction
	Assumptions
	Number of [beams/beam pairs] in Set A
	64 beams

	
	Number of [beams/beam pairs] in Set B
	16 beams

	
	Speed
	30km/h, 90km/h

	
	Trajectory length
	20 time instances, 0.08s/0.16s per time instance

	
	Observation window
	2 observation instances

	
	Prediction window
	2 prediction instances

	
	Baseline scheme
	Option 2 in 109 Session note

	AI/ML model
input/output
	Model input
	16 L1-RSRPs

	
	Model output
	Predicted best beam ID for future time insances

	Data Size
	Training
	10000

	
	Testing
	1000

	AI/ML model
	[Short model description]
	LSTM

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)] 
	Speed: 30km/h
Window size: 0.08
	AI Top-1
	56.35

	
	
	
	AI Top-2
	71.54

	
	
	
	AI Top-4
	81.73

	
	
	
	AI Top-8
	89.58

	
	
	
	Baseline
	63.25

	
	
	Speed: 30km/h
Window size: 0.16
	AI Top-1
	52.73

	
	
	
	AI Top-2
	65.17

	
	
	
	AI Top-4
	75.37

	
	
	
	AI Top-8
	86.23

	
	
	
	Baseline
	58.45

	
	
	Speed: 90km/h
Window size: 0.08
	AI Top-1
	45.37

	
	
	
	AI Top-2
	57.58

	
	
	
	AI Top-4
	69.16

	
	
	
	AI Top-8
	81.98

	
	
	
	Baseline
	55.48

	
	
	Speed: 90km/h
Window size: 0.16
	AI Top-1
	45.97

	
	
	
	AI Top-2
	55.36

	
	
	
	AI Top-4
	66.18

	
	
	
	AI Top-8
	81.05

	
	
	
	Baseline
	45.8

	
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Speed: 30km/h
Window size: 0.08
	AI Top-1
	62.11

	
	
	
	AI Top-2
	75.83

	
	
	
	AI Top-4
	84.68

	
	
	
	AI Top-8
	91.98

	
	
	
	Baseline
	69.19

	
	
	Speed: 30km/h
Window size: 0.16
	AI Top-1
	57.71

	
	
	
	AI Top-2
	69.19

	
	
	
	AI Top-4
	79.01

	
	
	
	AI Top-8
	88.85

	
	
	
	Baseline
	64.02

	
	
	Speed: 90km/h
Window size: 0.08
	AI Top-1
	50.63

	
	
	
	AI Top-2
	62.12

	
	
	
	AI Top-4
	73.40

	
	
	
	AI Top-8
	85.40

	
	
	
	Baseline
	60.81

	
	
	Speed: 90km/h
Window size: 0.16
	AI Top-1
	50.43

	
	
	
	AI Top-2
	59.22

	
	
	
	AI Top-4
	80.07

	
	
	
	AI Top-8
	84.34

	
	
	
	Baseline
	50.41

	
	Average L1-RSRP Diff [dB] vs Ex 64
	Speed: 30km/h
Window size: 0.08
	AI Top-1
	-2.9567

	
	
	
	AI Top-2
	-1.8333

	
	
	
	AI Top-4
	-0.9908

	
	
	
	AI Top-8
	-0.4210

	
	
	
	Baseline
	-2.1407

	
	
	Speed: 30km/h
Window size: 0.16
	AI Top-1
	-3.8585

	
	
	
	AI Top-2
	-2.5848

	
	
	
	AI Top-4
	-1.4712

	
	
	
	AI Top-8
	-0.6119

	
	
	
	Baseline
	-3.1223

	
	
	Speed: 90km/h
Window size: 0.08
	AI Top-1
	-4.6884

	
	
	
	AI Top-2
	-3.1668

	
	
	
	AI Top-4
	-1.8800

	
	
	
	AI Top-8
	-0.8234

	
	
	
	Baseline
	-3.5468

	
	
	Speed: 90km/h
Window size: 0.16
	AI Top-1
	-5.1366

	
	
	
	AI Top-2
	-3.5828

	
	
	
	AI Top-4
	-2.2035

	
	
	
	AI Top-8
	-0.9421

	
	
	
	Baseline
	-5.2219

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead\]
	AI Top-1
	87.5

	
	
	
	AI Top-2
	85.94

	
	
	
	AI Top-4
	84.36

	
	
	
	AI Top-8
	81.25

	
	
	
	Top-5
	50



[image: ]
[bookmark: _Ref110618458]Figure 8. CDF of L1-RSRP difference for UE at 30km/h

[image: ]
[bookmark: _Ref110618460]Figure 9. CDF of L1-RSRP difference for UE at 90km/h
Comparing both 30km/h and 90km/h results for different time prediction instances, we can make the following observations:
[bookmark: _Ref111192742][bookmark: _Ref118538495]Observation 12: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed.
· When the time instance is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
[bookmark: _Ref111192769]Observation 13: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time instances are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction instances from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/Ml Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction instances from 0.08s to 0.16s
When comparing different simulation results for different UE speeds and prediction time instances, it can be found that the AI/ML-based approach shows significant robustness against increased speed (i.e., from 30km/h to 90km/h) and prediction time instance (from 0.08s to 0.16s), whereas the performance of the legacy approach deteriorates largely. The gap shown in Figure 9 between the legacy and the AI/ML-based curves becomes wider with increased speed and increased time instances. 
Conclusions
Based on the previous discussions, following observations and proposals are provided.
Proposal 1: For the evaluation of AI/ML-based beam prediction mechanism, 
· Alt.1 (DL Tx beam prediction) should be considered as the starting point.
· Both Case A (best Rx beam) and Case B (same specific Rx beam) can be adopted and reported by companies
· Alt.3 (Tx-Rx beam pair prediction) can be also evaluated to justify potential additional performance gain over Alt.1.
· Alt.2 (DL Rx beam prediction) can be considered with lower priority.
Proposal 2: For evaluation of DL Tx sweeping, the following two baselines can be considered:
· Lower performance bound: A lower performance bound obtained by non-AI/ML-based legacy sparse beam sweeping with the same overhead as the AI/ML-based approach
· Upper performance bound: Exhaustive beam sweeping over all available beams
Proposal 3: For evaluation of DL Tx-Rx beam pair sweeping, the following two baselines can be considered:
· Baseline 1: Non-AI/ML solution with legacy Tx beam sweeping plus legacy Rx beam sweeping, to justify the performance gain over non-AI/ML.
· Baseline 2: AI/ML-based DL Tx beam prediction plus the legacy Rx beam sweeping, to justify the performance gain over DL Tx beam prediction.
Proposal 4: For DL Tx beam (pair) prediction, the definition of Top-1 genie-aided Tx beam (pairs), Option B, the specific Rx beam means that it is one fixed Rx beam out of the available Rx beams during one round of inference.
Proposal 5: For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the following configuration is considered:
· Various Set B of beam (pairs)
Proposal 6: To assess the RSRP gains achievable with 256 Tx beams compared to Exhaustive 64 beam sweeping, companies are encouraged to evaluate a dense codebook with overlapping beams for the construction of Set A. 
Proposal 7: For BM-Case-1 and Case-2, for the selection of Set B, consider Option 1 (Set B is fixed across training and inference) as a starting point.
· For Option 2 (Set B is variable), Option B can be evaluated optionally further.
Proposal 8: For the evaluation of assistance information,
· Information that in Rel-17 is regarded as proprietary and/or privacy shall not be considered as a candidate for assistance information
· The benefits of other potential assistance information should be evaluated in 9.2.3.1 firstly, before a study on potential spec impact is conducted in 9.2.3.2
Proposal 9: The evaluation for beam prediction should focus on a one-sided AI/ML model.
Proposal 10: For the evaluation of the overhead reduction for BM-Case1, 
· Support Option A2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on beam sweeping
· If one of Options A1 or A3 is additionally supported, then for reporting also the RS overhead according to Option B2 (Alt.1) should be reported
Proposal 11: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point.
Proposal 12: For the evaluation of the overhead for temporal domain AM//ML-based BM, the observation and prediction window are jointly considered, and two metrics should be reported
· The RS overhead, consisting of the beams being swept in Set B during observation and the Top-K beams for P-2 beam sweeping during prediction (if applicable)
· for K>1 and  for K = 1
· The RS overhead reduction compared to an exhaustive beam sweep over Set A during observation and the Top-K beams for P-2 beam sweeping during prediction (if applicable)
·  for K > 1 and  for K = 1
· Where: M is beams in Set A of the baseline, N is beams in Set B and K is the number of beams as inference output
Proposal 13: If the AI/ML model outputs predict multiple time instances, if intermediate KPIs are calculated, then they are calculated for each prediction instance.
Proposal 14: For AI/ML-based temporal domain beam prediction, regarding the relationship between Set A and Set B:
· The size of Set B smaller than Set A should be considered as baseline.
· Both can be considered in evaluations: Set B is a subset of Set A; Set B contains wide beams with full direction which are different from Set A with narrow beams.
· Set B equal to Set A can be optionally used for performance comparison in evaluations.
Proposal 15: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.

Observation 1: For the AI/ML-based beam prediction mechanism, Alt.1 (DL Tx beam prediction) may also achieve best Tx-Rx beam combination by DL Tx beam prediction and legacy Rx beam sweeping.
Observation 2: The 2 potential AI/ML-model outputs are the probability of the best beam IDs and the predicted L1-RSRP values. 
· The already agreed KPI for the L1-RSRP difference between the ideal L1-RSRP of the predicted beam and the ideal L1-RSRP of the genie-aided best beam is applicable when the AI/ML-model is inferring the probability/best beam ID. 
· The not yet agreed KPI of the L1-RSRP difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of Top-1 genie-aided beam is applicable when the AI/ML-model is inferring the predicted L1-RSRP values.
Observation 3: Using 256 beams in Set A constructed from a dense codebook increases the angular resolution compared to a 64-DFT codebook, while the same sparse sweeping procedure for inference and gNB configurations can be applied.
[bookmark: _GoBack]Observation 4: For the selection of Set B, under Option 2, it is more realistic for the gNB to choose among a set of pre-configured Set B (Option A/B), rather than varying over totally random beams in Set B (Option 2C). 
· Among the pre-configured Sets, Option A can be regarded as special of Option B.
Observation 5: For the evaluation of the overhead for BM-Case1, for reporting RS overhead reduction
· Option A1: For a given scheme, it does not take the overhead of second round beam measurements into account and it relates the overhead reduction to the size of Set A of the given scheme. A fair performance/overhead comparison between schemes with different sizes of Set A is not possible.
· Option A2: For a given scheme, it can take all beams that are needed for measurement (Set B and Top-K) into account. The overhead reduction is related to the size needed for measurements of a baseline scheme. A fair performance/overhead comparison between schemes with different and same sizes of Set A is possible.
· Option A3: For a given scheme, it can take all beams that are needed for measurement (Set B and Top-K) into account. But it relates the overhead reduction to the size of Set A of the given scheme. A fair performance/overhead comparison between schemes with different sizes of Set A is not possible. 
Observation 6: For the evaluation of the overhead for BM-Case1, for reporting RS overhead (Option B)
· Option 1: Only counts the beams that are needed as input to the AI/ML model. Which is misleading, since with different settings of Top-K the performance and total overhead is significantly impacted
· Option 2: Gives the information about the full overhead that is needed to obtain the best beam.
Observation 7: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
Observation 8: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie-aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
Observation 9: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
Observation 10: Variable pattern selected from pre-configured patterns (Option 2B) can achieve close performance as the fixed pattern approach but with better generalization on different patterns.
Observation 11: The AI/ML-based beam prediction based on the Set A with 256 beams provides a considerable gain over the legacy upper bound Exhaustive 64 in achievable L1-RSRP for a small fraction of the overhead associated with an Exhaustive 64 sweep.
Observation 12: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed.
· When the time instance is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
Observation 13: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time instances are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction instances from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/Ml Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction instances from 0.08s to 0.16s
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Appendix
Objectives in SID
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 
……
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI/ML model(s) for calibration
· AI/ML model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
……
Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.


Simulation configuration
Table 11.  Simulation assumptions
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz with SCS of 120 kHz

	Deployment
	200m ISD

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	Spatial domain: 3km/h
Temporal domain: 30km/h, 90km/h

	UE distribution
	FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded. 
Spatial domain and temporal domain: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline] 
Spatial domain: number of BS beams equals to 64 and 256 for different types
Temporal domain: number of BS beams equals to 64

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,1)]
        single panel 
Number of UE beams equals to 4

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Traffic Model
	Full buffer

	Inter-panel calibration for UE
	Ideal

	Control channel decoding
	Ideal 

	BF scheme
	EZF

	Other potential impairments
	Not modelled (assumed ideal).

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



image3.png
0ss
0s
oss
os
Bon
o
oes
o

055

05
o

(CDF of LI-RSRP difference for Top-K predicted beams (64 codebock)

1

Prediction with
sparse narrow
beams

0ss
os
oss
os
Bon
o
oes

05,

055 —AiTop1]
—AiTop3
—AITop5
05
3 45 6 7 8 0 0 1 2 3 4 5 6 7 8 9 10

LLRSRP difference (d8)

LI-RSRP difference (d8)




image4.png
56
57
58
59
63

49

4351

39 |47 |55

29 |37 [l 53 [ 61

16 [ 24 BBl 20 [ 48
17 |25 |33 |
RN 26 |34 |22 (B

19 [ 35
12 (20 | 28 BRI 44 | 52 | 60

N 21

14 B 30 |38 |46 JEEN 62

15 |23 8

8
9
10
1

0
1
2
3
4
5
6
7

28 (36 (44 (52 |60

E B B
B El E}
1 (19|27 (35|43 (51|59

12|20

B EA EX
14 (22 30 (S84 46 S 62
1523|3139 |47 (55|63

1
2
3
4
5
6
7

17 RSN 33 I 49 SN

10 |18 | 26 | 34 |42 (50 |58
11 SN 27 IS8 43 IS 59
12 |20 |28 | 36 |44 52 | 60
13 BRI 29 SN 45 JSE 61
15 (23 |31 (39 (47 |55 (63

1
2
3
4
5
7

52 e
B 61

17 S 41 | 49 | 57

BN 18 |26 | 34 | 42 BN 58
12|20 (28 (36 |44
RN 21 (29 |37 (45
14 | 22 IUREREN 46 (54 | 62
15 RSN 31 | 39 [N 55 | 63

1
2
4
5
6
7

16 (24 (32 | 40 (48 NS

17 |25 |33 | 41 |49 IO
10 SN 26 | 34 RN 50 | 58
11|19 RIS 43 | 51 | 59
12 | 20 EEERESEN 44 | 52 | 60
13 IR 29 (37 SN 53 | 61
14|22 |30 (38 |46 | 54 NS
15 (23 |31 39 |47 |55

o
1
2
3
4
5
6
7





image5.png
0.95 - —
0.9 —
0.85 - -
0.8 B
w
00.75 B
Q
0.7 B
0.65 4
0.6 4
—— Al Top-8
—— Al Top-5
0.55 ——— Al Top-4[
—— Al Top-3
—— Al Top-2
—— Al Top-1
0.5 I I I I I I T
0 2 8 10 12 14 16 18 20

RSRP difference (dB)




image6.png
bl

09

os

o7

06

os

0a

03

CDF of L1-RSRP difference for Top-K predicted beams (256 codebook)
1

Prediction with
sparse narrow

beams

—aTop1)
—aTop3)
—

coF

—aiTop1.
—aTop3
—aiTops,

03

o

1

2

3 4 5 6 7 8 9
LL-RSRP difference (d8)

10

o 1 2 3 a4 5 6 7 8 o
LLRSRP difference (d8)

10




image7.png
Al/ML model at NW side

1. Full-beam sweep

2. Obtain training inputs (e.g.
RSRP, optimal beam ID)

3. Feedback training inputs Training inputs

collection and
model training
phase

5. Sparse/wide SSB beam sweep

H R >
2 CRCR 6. RSRP feedback
s [ Observation
5 < phase, fix
E pattern SSB
H 7. Repeat step 5, 6 for N time intervals | beam sweep.
g —
H
S
i
'
'
'
'
H : - 9. Top-k CSI-RS beam sweep o
2 ]
2 B
H | 70. Determine optimal
s H CSI-RS beam pair
§< !
' 11. Feedback optimal CSI-RS ID
' phase, CSI-RS
'
| 12. Transmit optimal CSI-RS beam beam sweep
| »| for each time
' interval
'
| 13. Repeat step 8-12 for M time intervals
!





image8.png
0.95
0.9
0.85
0.8

W
00.75

Q
0.7
0.65

0.6

CDF of L1-RSRP difference for Top-K predicted beams (30km/h)

Time interval = 0.08s

1
0.95
0.9
0.85
0.8
W
00.75
Q
0.7

0.65

Time interval = 0.16s

b 0.6 b
—— Baseline
—— Baseline
A Topsl] 055 —— Al Top-8 |
—— Al Top-4 —— Al Top-4
—— Al Top-2 —— Al Top-2
—— Al Top-1 —— Al Top-1
I I T 0.5 I I T
5 10 15 20 0 5 10 15 20

L1-RSRP difference (dB)

L1-RSRP difference (dB)




image9.png
0.6

0.5

0.4

CDF of L1-RSRP difference for Top-K predicted beams (90km /h)

1

Time interval = 0.08s

CDF

0.6

0.5

Time

interval = 0.16s

—— Baseline —— Baseline
—— Al Top-8 —— Al Top-8
-~ Al Top-4 -~ Al Top-4
—— Al Top-2 —— Al Top-2
—— Al Top-1 —— Al Top-1
| | T 0.4 I | T
5 10 15 20 0 5 10

L1-RSRP differ

nce (dB)

L1-RSRP differen

20




image1.png
((A)

Time (bN+1)  Time ()  RSRPwuy Topken  ToPken  Topkenn
wemem LEL T S :
EEEEEE oo momoE 3 Top-kit- .
mmiml mmml RS0, kg
= 2 "
2 Y
o/ 29/ " oase
e AR N
Q* & "ffb §§
5_ & T S time
N





image2.png
AI/ML model at NW side

1. Full-beam sweep

2. Obtain training inputs (.9
RSRP, optimal beam ID)

3. Feedback training inputs

Training inputs

5. Sparse/wide SSB beam sweep

collection and
model training
phase

6. RSRP feedback

8. Top-k CSI-RS beam sweep

»>|

9. Determine optimal
CSI-RS beam

10. Feedback optimal CSI-RS ID

11, Transmit with optimal CSLRS beam |





