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Introduction 
In order to achieve higher performance in downlink (DL) in frequency division duplex (FDD) systems, explicit channel state information (CSI) knowledge at the BS is required. Because the channel in uplink (UL) and DL in FDD systems is not reciprocal, the CSI is first estimated by the user equipment (UE) exploiting the reference signal transmitted from the gNB. Then, the estimated channel is transmitted as feedback to the gNB. Unlike implicit CSI feedback methods e.g., Type I and Type II CSI feedback conducted in Rel. 15 and Rel. 16, in explicit, the whole CSI can be reconstructed at gNB. In order to reduce the total feedback overhead efficient compression methods should be applied at the UE.  The methods based on machine learning (ML) has been gradually developed to compressed and decompressed matrix data based on autoencoders. 
In this document, the performance of some of AI-based autoencoders are compared in different scenarios. The AI-based method CsiNet [2] is assumed as the benchmark. If DFT is applied on the channel matrix before the encoder, the algorithm is referred to as CS-CsiNet which only learns to recover CSI from CS measurements. we assume a single-cell downlink massive MIMO system with  transmit antenna ports at the gNB and  UE antenna ports, and there are  subbands in an OFDM system.
The total channel matrix is represented by . The precoding matrix  is designed based on the received CSI feedback at the gNB. Without any compression the total number of feedback parameters are  complex values which must be reduced by compression methods. To reduce the feedback parameters, the channel matrix can be transformed to the angular-delay domain by a discrete Fourier transform (DFT). For simplicity, we assume that the channel matrix is represented in angular-delay domain unless it is stated otherwise.
In RAN1#109 and RAN1#110, the following agreements on evaluation of AI/ML based for CSI feedback have been achieved [3], [4].

	Agreement
For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification
Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, the throughput in the ‘Evaluation Metric’ includes average UPT, 5%ile UE throughput, and CDF of UPT.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the specific quantization/dequantization method, e.g., vector quantization, scalar quantization, etc.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.




Intermediate KPI for performance comparison 
As agreed in RAN1#109, for the evaluation of the AI/ML based CSI feedback enhancement the GCS/SGCS is adopted as the intermediate KPI as part of the Evaluation Metric defined as follows.  is the eigenvector of the target CSI at resource unit i and K is the rank. is the  output vector of the output CSI of resource unit i.  is the total number of resource units.  denotes the average operation over multiple samples.

As it is stated in Introduction, Type II CSI is an implicit method for CSI feedback and the full channel knowledge is not available at the gNB. Therefore, the traditional Normalized Mean Squared Error (NMSE) defined as 

where  is the reconstructed channel matrix at the gNB, is not a proper measure. However, this metric can be exploited for comparison different AI-based methods.  
The AI-based model is shown in Figure 1. The encoder at the UE side consists of a CNN layer fed by the original CSI matrix, processed by 6 self-attention based blocks and full-connect layer are sequentially introduced before a uniform quantization layer. For the decoder at the gNB side, There is a dequantization layer, then, a full connect layer is applied, followed by residual layer and CNN layer, and 6 self-attention based blocks are introduced. Finally, a reshape layer is implemented to obtain the output with the reconstructed shape of the original CSI.

Figure 1: Architecture of autoencoder for CSI feedback
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In Table 1, the NMSE performance for different neural network (NN) architectures is stated. The channel model parameters are shown in Table 3. The detailed structure of the NNs are described in [5]. In Table 2, the comparison between the proposed AI-based method and Type II CSI is shown. Figure 2 shows the comparison between Type II CSI and CsiNet, which both configurations of CsiNet outperform Type II CSI. 
Table 1: NMSE performance of different NN structures.
	Compression rate
	1/4
	1/16

	CsiNet
	-9.34
	-5.43

	CRNet
	-11.31
	-6.51

	CLNet
	-12.16
	-4.6

	ENet
	-15.41
	-3.76

	TransNet
	-14.35
	-4.41


Observation: The performance of NN are strongly dependent on the architecture of the network and the parameters of the scenario e.g., compression rate. Therefore, for each system parameters there is a specific optimal structure. 
Table 2a: GCS performance of AI-based and Type II CSI.
	Feedback bits
	AI-based
	Type Ⅱ CSI

	48
	0.88
	0.80

	60
	0.90
	0.82

	120
	0.92
	0.87



Table 2b: SGCS performance of AI-based and Type II CSI.
	Feedback bits
	AI-based
	Type Ⅱ CSI

	48
	0.79
	0.64

	60
	0.81
	0.70

	120
	0.86
	0.73


Figure 2: GCS comparison between Type II CSI and CsiNet
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The main drawback of the CSI feedback methods based on the autoencoders is the offline overhead. In other words, the UE and the gNB need to be informed about the encoder and the decoder parameters before any transmission. In addition, when the channel environment or the system parameters (e.g., antenna configurations at UE or gNB side, number of subbands, etc.) change, different network parameters are required which increases the offline overhead. In order to reduce the overhead cost, it is proposed to train the network globally for all scenarios and observe how the performance degrades. The floating point operations (FLOPs) for the encoder and the decoder are approximately in order of  and , respectively. In addition, the total trainable parameters of the encoder and decoder are in order of  and , respectively.
In Figure 3, the comparison between the performance of CsiNet which is trained separately for each scenario and the Global CsiNet (G-CsiNet) trained once for all channel environments and one parameter set is shown. It is observed that Global CsiNet still outperforms Type II CSI for medium-to-high total overhead bits, however, it has worse performance than CsiNet.

[image: ]Figure 3: Performance comparison of Global CsiNet.







Observation: Global CsiNet still outperforms Type II CSI for medium-to-high total overhead bits, however, it has worse performance than CsiNet. 
According the results obtained in this contribution, AI-based approaches, especially CsiNet, have great potential for CSI feedback enhancements, however, more investigations and evaluations are necessary for further evaluations. 
Observation: The trained AI-based method outperforms Type II CSI when the compression rate is not small.
Proposal:  Further studies on the link-level based on block error rate (BLER) and system-level are required for comparison between AI-based schemes and Type II CSI. Offline overhead and coordination between the UE and gNB for the parameters of the encoder and the decoder should be studied as well. 
Conclusions
Based on the above discussions, we have the following observation about the advantages of AI-based methods.
Observation: To obtain the best performance, different AI-based models and parameters should be applied for different scenarios, configurations e.g., compression rate. 
Observation: AI-based method outperforms Type II CSI based on NMSE and cosine similarity at the cost of offline training and the offline overhead. The suboptimal version G-CSiNet is proposed for all channel environments to reduce the training overhead when offline training for each scenario is not possible.
On the other hand, ML-based methods based on autoencoders have some fundamental challenges as follows.
Observation: The offline training has two issues, large number of trainable parameters and high training complexity.
Observation: The encoder and the decoder are trained and designed simultaneously offline for each set of channel parameters e.g., number of transmit and receive antenna ports, number of subnands and the compression ratio. In other words, if one of these parameters changes, the NN should be trained completely which costs extra offline overhead. 
Proposal: GCS is used as metric for intermediate result calibration. For SGCS calculation for rank>1, average over all layers is proposed as baseline.
Proposal: For channel estimation, the realistic channel estimation is used as the baseline for eventual SLS performance evaluation in inference stage and ideal channel estimation for dataset construction in AI/ML model training stage.
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	Parameter
	Value

	Carrier frequency
	4 GHz

	Bandwidth
	10MHz

	SCS
	15 kHz

	PRB
	52

	Sub-band
	13

	Channel model
	UMa

	UE distribution
	70% indoor + 30% outdoor

	UE speed
	3 km/h indoor,30 km/h outdoor

	Tx antennas
	32 Tx (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8), directional

	Rx antennas
	4 Rx (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.8), omni-directional

	Rank
	1, 2

	Channel Estimation
	ideal
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