3GPP TSG RAN WG1 #110bis-e


   R1-2209332
e-Meeting, October 10th – 19th, 2022
Source:
CMCC

Title:
Discussion on evaluation on AI/ML for positioning accuracy enhancement
Agenda Item:
9.2.4.1
Document for:
Discussion and Decision
1  Introduction

In RAN1#110 meeting [1], the following agreements were made for evaluation on AI/ML for positioning accuracy enhancement.

Agreement

For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:

· Direct AI/ML positioning
· AI/ML assisted positioning
Agreement

For AI/ML-based positioning, study impact from implementation imperfections.

Agreement

For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 

Agreement

To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:

(a) Different drops

· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.

(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});

(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;

· Other aspects are not excluded.

Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement

When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:

· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)

· Percentage of training data without label, if incomplete labeling is considered in the evaluation

· Imperfection of the ground truth labels, if any

Agreement

For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.

Agreement

For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 

· training dataset setting (e.g., training dataset size necessary for performing model finetuning)

· horizontal positioning accuracy (in meters) before and after model finetuning.

Agreement

For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 

	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	


To report the following in table caption: 

· Which side the model is deployed

· Model generalization investigation, if applied

· Short model description: e.g., CNN

Further info for the columns:

· Model input: input type and size

· Model output: output type and size

· Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)

· Clutter parameter: e.g., {60%, 6m, 2m}
· Dataset size, both the size of training/validation dataset and the size of test dataset

· AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs

· Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method

Note: To report other simulation assumptions, if any.

Agreement

For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.

· FFS: Detailed definition of the intermediate performance metric of the model output

Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:

(d) UE/gNB RX and TX timing error. 

The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).
In this contribution, we present our views on the evaluation methodology for AI/ML based positioning accuracy enhancement, and some initial evaluation results are also provided.
2  Evaluation methodology and performance results 
2.1 Dataset generation
We construct three different datasets for model training and performance evaluation. The parameters of the three different datasets are given in Table I. For datasets generated by one drop, uniform distribution is assumed as the distribution of UE location. Other common evaluation parameters are set according to the agreed parameters of InF-DH scenario, as illustrated in Appendix. Network synchronization error is not considered.
Table I. Simulation assumption for dataset generation
	Dataset
	the# of drop(s)
	the # of UE(s) per drop
	spatial consistency of

large scale parameters
	spatial consistency of

small scale parameters

	Dataset 1
	1
	80000
	enabled
	enabled

	Dataset 2
	1
	80000
	enabled
	not enabled

	Dataset 3
	80000
	1
	/
	/


2.2 AI model and simulation results
In our simulation, we focus on direct AI/ML positioning. Different kinds of model input are considered for AI/ML model training, and the results are illustrated in Table II. We use Dataset 1, i.e., the data from one drop, for model training and testing.
Table II. Simulation results
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	3.71 M
	7.41 M
	0.7 m

	CIR+
RSRP
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	3.71 M
	7.42 M
	0.35 m

	TOA
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.5 m

	TOA+

RSRP
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.34 m

	TDOA
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.41 m

	TDOA+RSRP
	UE location
	UE coordinates
	{60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.16 m


In Table I, the TOA measurement or TDOA measurement is obtained from the existing mechanism. From the results, we can see that for the above kinds of model input, the positioning accuracy is smaller than 1 meter, and take RSRP as an additional model input to CIR/TOA/TDOA can improve the positioning accuracy.

Observation 1: Take RSRP as an additional model input to CIR/TOA/TDOA, the positioning accuracy can be improved.

For each kind of model input, a one sided model with CNN-based architecture is assumed to be applied at the UE side for AI/ML based positioning.  For example, if CIR is taken as the model input, each sample size of the model input is 18×256×2, which corresponds to 18 BSs, the CIR of 256 length with the real part and the imaginary part. The architecture of the AI model is shown in Fig.1
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Fig. 1 Architecture of AI/ML model for positioning
The related parameters for training phase are given in Table III.
Table III. Parameters for model training
	Loss function
	MSE

	Optimizer
	Adam

	Initial learning rate
	0.0001

	Batch size
	256


2.3 Generalization capability for different drops
To verify the generalization capability of different drops, we respectively use the Dataset 1/2/3 in Table I to train the AI models. For all the three models, we take CIR as the model input, and the CDF for positioning accuracy of the three datasets is shown in Fig.2. 
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Fig. 2 Positioning accuracy

The positioning accuracy achieved for 90% UEs for dataset generated by the three datasets are 0.7 m, 1.9 m, and 5.9 m, respectively. From the simulation results, it can be noted that the positioning accuracy is sensitive to the generalization and spatial consistency of the small-scale parameters. For the datasets constructed by 1 drop, if spatial consistency of the small-scale parameters is enabled, the positioning error can be reduced from 1.9 m to 0.7 m. For the dataset constructed by 80000 drops, the positioning accuracy is 5.9 m. How to improve the generalization capability of AI based positioning approach over different drops should be studied.
Observation 2: The positioning accuracy is sensitive to the generalization and spatial consistency of the small-scale parameters.
Observation 3: For AI/ML based positioning schemes, how to improve the generalization capability over different drops should be studied.
3 Conclusion

In this contribution, we share our views on the evaluation methodology for AI/ML based positioning accuracy enhancement, and some initial evaluation results are also provided. The observations and proposals are summarised as follows:
Observation 1: Take RSRP as an additional model input to CIR/TOA/TDOA, the positioning accuracy can be improved.

Observation 2: The positioning accuracy is sensitive to the generalization and spatial consistency of the small-scale parameters.
Observation 3: For AI/ML based positioning schemes, how to improve the generalization capability over different drops should be studied.
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Appendix
Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)

	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 

(baseline) 120x60 m



	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

-
for the small hall (L=120m x W=60m): D=20m

-
for the big hall (L=300m x W=150m): D=50m

[image: image3.emf] 



	
	Room height
	10m

	
	
	

	Total gNB TX power, dBm
	24dBm
	24dBm

EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1

One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m

	Clutter parameters: {density [image: image5.png]


, height [image: image7.png]


,size [image: image9.png]A.rorerer



}
	High clutter density:

- {40%, 2m, 2m} 

- {60%, 6m, 2m}

· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:
According to Table A.2.1-7 in TR 38.802
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