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Introduction
In the last two meetings, RAN1#109-e and RAN1#110, there were productive and insightful discussions on evaluation methodology and KPIs for AI/ML for beam management [1], [2]. During RAN1#110, there was consensus on some of the discussion points and, accordingly, some agreements have been made. It was decided to further discuss some of the involved details. Before proceeding further, we hereby recollect the agreements that were made during RAN1#109-e and RAN1#110 meetings.    
The agreements and conclusions made in RAN1#109e [1]:
	Conclusion (on Generalizability of AI/ML Model)
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement (on KPIs)
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· The definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
 Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
 Latency reduction:
 (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
 Power consumption reduction: FFS on details
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity

· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area
· [image: ]
where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.




Further, the following agreements were made in RAN1#110 [2]:
	Agreement
 The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE distribution

	· FFS 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant
· More UEs per sector/cell for data generation is not precluded. 


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· [Panel structure: (M,N,P) = (1,4,2)]
· panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams



Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor



Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 

Agreement
· [bookmark: _Hlk115180335]Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· [bookmark: _Hlk115180451]Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size



In this document, we further discuss our views on some of the aspects of AI/ML for beam management. 
Generalizability of the AI/ML Model for Beam Management
Many of the AI/ML models work well during the inference phase (i.e., when being used in the field) only when the input data (in case of beam management, it corresponds to beam measurements) has very similar statistical characteristics to that of the training data and when the relation, or, the mapping, between the input data and the desired output (in case of beam management, this is the mapping between beam measurements and the optimal beam) does not change significantly compared to what it has seen during its training phase. In practice, it is desirable that the AI/ML works well under possible shifts in the statistical properties of the input data and the resulting variations in the mapping between input data and the desired output of the AI/ML model. This is especially the case with AI/ML models for wireless cellular networks, as the wireless environment and the cellular network conditions are dynamic in nature. 
Generalizability of an AI/ML model is a measure of its ability to adapt to new, previously unseen statistical variations of the data and it is required that the AI/ML models developed for wireless networks, in general, and beam management, in particular, to adapt to variations in the configurations/scenarios/settings of the wireless cellular network in which the model got deployed. 
The discussions in the past two meetings, helped in making some progress on this topic. What aspects need to be considered for verifying the generalization capability of an AI/ML model for beam management is open for discussion and, here, we present some of our views on this topic. 
In general, testing the performance of an AI/ML model under possible changes in the statistical properties of the input data and different possible mappings between input data and the desired output, can help assess the generalizability of the model. Thus, testing for generalization should be across multiple different scenarios/configurations. 
Some of the different network conditions/scenarios that need to be considered in this regard are as follows: 
a. Different channel model configurations such as LoS/NLoS, Indoor/Outdoor etc., covering both the cases of channels with single dominant path and channels with multipath  
b. Different UE speeds, UE trajectories, and rotation patterns 
· UEs with different speeds (low, medium and high)
· Different UE trajectories: Linear, Linear with abrupt turns by an arbitrary angle, non-linear/curved having arbitrary shape. We note that the consideration of UE trajectories is more relevant for time domain beam prediction.   
· Different possible orientations of the UE.
c. Different antenna configurations at gNB and UE: Number of antenna panels, number of antenna elements, tilt angles, etc.
d. Different beam designs/patterns: Hierarchical beam design, same/different beamwidth, etc.
e. Different number of Tx and/or Rx beams
f. UE distribution: Indoor, Outdoor and a combination of indoor plus outdoor
The above list is not exhaustive and a few other network parameters may also need to be considered. At the same time, we note that it would be more practical and feasible to verify the generalizability of a given AI/ML model within the limited time of this study item, if we consider a limited set of parameters from set of all the possible parameters. Such an approach might lead to having testing for “Limited Generalizability” (or, Conditional Generalizability, or, Restricted Generalizability) as the intermediate metric for the near-term use, wherein we consider only a limited set of parameters to test the generalizability and declare, based on the resulting performance of the AI/ML model under those variations of the parameters, whether the AI/ML model is having limited generalizability or not. Whether an AI/ML model is truly generalizable (or, having “Unrestricted/Unlimited Generalizability”) can be verified, at a later stage, by considering all possible parameters and their possible variations, which might require more time and effort.   
For evaluating the generalizability of an AI/ML model for beam management, the full list of network conditions/scenarios/parameter values need to be discussed and decided. Further, based on the effort and time required for testing an AI/ML model under such different network conditions/scenarios/parameter values, consider a limited set of parameters to for testing whether an AI/ML model is generalizable. 
Deciding the list of network conditions/scenarios/parameter values that are to be considered while evaluating the generalizability of an AI/ML model is the first step/phase with respect to the generalizability. The second step/phase is to decide on what should be the precise procedure for evaluating whether a given AI/ML model is generalizable or not. The subsequent proposals, proposals 2 and 3, and the related discussion present our views on this aspect.   
Generalizability can be evaluated by computing all the KPIs for a proposed beam management AI/ML model under different network conditions/scenarios/parameter values that are finalized to be considered for generalizability of beam management.  In such an evaluation, we must consider the achieved gains (e.g., beam prediction accuracy, overhead reduction, latency reduction) as well as the incurred costs (e.g., the computational complexity, cost of any additional hardware needed, additional signaling overhead due to assistance information etc.) of the proposed AI/ML model.  
Generalizability of a proposed AI/ML model for beam management is evaluated by computing all the KPIs, inclusive of all the gains achieved and all the costs incurred, by the model for each of the different network conditions/scenarios/parameter values. 
Once we evaluate and tabulate all the gains and the costs of the proposed AI/ML model under each of the different network conditions/scenarios/parameter values, the question would be, how can we say whether the AI/ML model under consideration is generalizable or not based on the values of these gains and costs? 
For illustrative purposes, consider an AI/ML model and assume we evaluate its performance in two network scenarios (or, network settings, network conditions) A and B, for knowing whether it is generalizable or not. Assume that, for A and B, its gains are  (compared to the agreed baseline), respectively, and its costs are  (compared to the baseline), respectively. Note that, here we consider only two scenarios and only one kind of gain (e.g., beam prediction accuracy), and one cost (e.g., computational complexity) as an example for the purpose of illustration. In practice, we will have to consider multiple scenarios, all kinds of gains and all incurred costs.     
In the ideal case of a truly generalizable, or a universal, AI/ML model,  and . However, in practice,  and  would be different and same would be the case with  and . Based on the values of , ,  and , how to determine whether the given AI/ML model is generalizable across both the settings considered? We need to devise a method to declare whether the AI/ML model can generalize across the considered scenarios. We propose that, such a decision should be based on  and , where  denotes the absolute value of . 
For the example being considered, one way of deciding the generalizability could be as follows: 
· If   and  then the model can be declared generalizable across scenarios A and B, and it is considered as not having the ability to generalize across A and B, if   or . 
Here,  and  are the thresholds chosen for the difference in the gains and difference in the costs, respectively. Note that the value of need not be same as that of . 
The above approach results in a binary decision on whether the model is generalizable or not. A more graded approach, where we categorize generalization capability of an AI/ML model into multiple classes, might prove to be more useful in some situations. For example, the generalization ability of an AI/ML model can be considered as High/Strong/Superior, Moderate or Low/Weak/Inferior by appropriately selecting three threshold values  for the gain where , and three threshold values  for the cost where , and by employing the following decision rule:
· If   and , the generalization ability of the model is High/Strong/Superior
· If    and , the generalization ability of the model is Moderate
· If   and , the generalization ability of the model is Low/Weak/Inferior
Note that we may consider only the gains while quantifying the generalizability. Such a method would be simple to compute and might be relevant in situations where the AI/ML models that are being considered are expected to have costs that do not change considerably across the different scenarios being considered. 
The above stated approaches can be extended for a more realistic situation where we have a greater number of gains and costs which are computed by evaluating the AI/ML model across many network scenarios/settings (rather than in just two scenarios as in the previous example). 
Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of all the gains achieved and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods discussed above for further study. 
[bookmark: _Hlk100228640]KPIs 
In RAN1#109-e meeting, a set of KPIs have been selected for further study and consideration and, though there is some progress in deciding the KPIs in RAN1#110, the discussion is open with regard to some of the KPIs. In the following, we present our views on some of the KPIs that are being considered for evaluating the performance of an AI/ML for beam management. 
As discussed in [5], any beam management scheme should mainly be evaluated on three essential aspects. How accurately it predicts/selects the beam (or Tx-Rx beam-pair), how much time it needs to do the beam prediction/selection and how much overhead it incurs in the process of beam management. 
· Beam prediction accuracy
· Average L1-RSRP difference of Top-1 predicted beam: The difference between the highest ideal L1-RSRP of the Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam [4].
· Beam prediction accuracy (%) for Top-1 beam: The percentage of “the Top-1 predicted beam is same as the Top-1 (or, the best) genie-aided beam” 
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· Overhead: The amount of overhead, or “overhead reduction” where we measure the reduction with respect to exhaustive beam search, is another key KPI of any beam management method. This is due to the fact that even a naive method such as an exhaustive search over all the M beams would predict the optimal beam with high accuracy but at the cost of M beam measurements requiring M reference signals (RS) and M measurement reports. As can be observed, it contains two types of overhead: RS overhead (i.e., overhead related to RS transmission) and measurement overhead (overhead corresponding to measurement reports).  

RS Overhead:

With exhaustive search as the baseline, as discussed in RAN1#109-e and RAN1#110, the following definition of RS overhead reduction may serve the purpose of quantifying the overhead reduction:

The RS overhead reduction, for at least top-1 spatial-domain beam prediction, is given by 
,
where N is the number of beams (with reference signal, i.e., (SSB and/or CSI-RS)) required for measurement and M is the total number of beams.

Note that this metric is meaningful for reference signals and there would not be any RS overhead reduction when only SSBs are considered, because M SSBs would be transmitted on M beams.
To accommodate the AI/ML models that perform varying number of beam measurements in each time slot, the above metric may be modified as follows [4], [6]:
   				, 
Where  is the number of beam measurements in  time slot and the  is the total number of time slots.
Thus, the above metric is a general version of the first metric for RS overhead reduction.  
Reporting Overhead:

To account for the other kind of overhead, it is required to account for the number of UCI reports and the size of each UCI report (in bits). These quantities (i.e., the no. of UCI reports and the size of such reports) need to be compared with the case of exhaustive search for arriving at a meaningful measure of the amount of reporting overhead reduction offered by the AI/ML model under consideration.   

Any other signals that need to be exchanged between UE and gNB to support the AI/ML model, such as signaling in another carrier (e.g., FR1), UE location information, spatial features of the environment etc., should also be considered accounted for.

· Latency: Latency, or latency reduction should quantify, 
· How much time it takes for the unconnected/initial access users to find the best beam pair 
· How much time it takes to switch beams for the connected users when the existing beam pair becomes sub-optimal due to changing channel conditions
Time taken for beam search, or, the latency, should be considered as one of the key KPIs as any simple scheme would also be able to find the optimal beam if given enough time for beam search. Taking the exhaustive search as the baseline, the reduction in the latency can be defined as follows: 

where N is the number of beams in set of beams required for measurement and M is the total number of beams.
In our opinion, the above three KPIs should be considered as the key KPIs in evaluating any AI/ML method for beam management. Further, we are open to consider other KPIs as well, as per the need. 
Consider Beam Prediction Accuracy, Overhead Reduction and Latency Reduction as the key KPIs in evaluating an AI/ML model for beam management and consider adopting the definitions proposed above. 
Regarding “Selection of Set B of beams” 
With Set A denoting the set of all beams (or, beam pairs) and Set B representing the set of beams (or, beam pairs) that are to be measured for the purpose of beam selection, the following agreement was made in RAN1#110:

Further study the following options on the selection of Set B of beams (or, beam pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Here, we would like to put forward some of our observations/thoughts regarding both the options.

While an AI/ML model based on supervised learning/training can work with option 1, an AI/ML model based on online learning method may certainly require option 2. For example, in reinforcement learning, what beam to be probed in the next time instant depends on what beams have been measured so far (i.e., the actions taken so far) and what are their RSRP values (i.e., what are observed rewards). Thus, the beams to be measured are required to be selected on the fly, in a dynamic nature, making such methods difficult to work with option 1. Further, in such online methods, the cardinality of set B as well as the elements of set B vary for each instance of beam selection. 

Option 2 corresponds to a more generic way of selecting set B. Option 1 is a special case of option 2, where the cardinality (i.e., size) of set B is constant and set B contains the same beams all the time (in each measurement/reporting instance and during training and inference). Let  denote the set B at time  and let  denotes the cardinality of set . In option 2,  need not be equal to  for  and in option 1,   for all times .
 
The AI/ML model should be given the flexibility of choosing what beams need to be measured from set B for determining the best beam in set A during every instance of beam management. An end-user or a system designer should be concerned mainly about the number of beam measurements performed by the AI/ML model, because this number determines the cost incurred by the AI/ML model (such as the amount of overhead, latency etc.), but not what beams are being measured. Thus, what is more important is the cardinality (i.e., size) of set B (as it determines the amount of overhead and latency of the beam management procedure) but the actual elements of set B should be left for the AI/ML model to select as per its requirement, in a dynamic manner. 

Further, we think that there is no need to fix the cardinality of set B beforehand. As the number of beam measurements (i.e., the cardinality of set B) performed by an AI/ML model for the purpose of beam management are accounted for in at least one of the KPIs that measure the cost incurred by the AI/ML model, we can still have a fair comparison of AI/ML models that employ different sets of beams, having different cardinality and different elements, for beam measurements.  

Based on the above points, we think there is no need to fix the number of beams in set B. Set B may be allowed to have a variable number of beams and elements of set B may be allowed to change at each instant of time.  
 
Allow set B to have variable number of beams at each instant of time during training and/or inference and allow the beams in set B to be variable and change across time during training and/or inference.     
[bookmark: _Toc100923943]Baseline Performance for Spatial Beam Prediction
While evaluating an AI/ML method for beam management, a natural choice of the baseline should be the exhaustive search where all the possible beams in the set are measured and the best beam is selected. As the performance of exhaustive search can be computed under all possible scenarios/configurations (e.g., different beam patterns, channel conditions, UE speeds etc.) and it is a straightforward exercise without requiring any more clarifications/definitions (such as defining the measurement set B) we recommend adopting exhaustive search as the baseline for spatial beam prediction.     
“Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)" as the baseline for spatial beam prediction.  
Conclusion
[bookmark: _Hlk100923477][bookmark: _Toc100924111][bookmark: _Toc100924138][bookmark: _Toc100924174]We have presented our views on Generalizability of the AI/ML model for beam management and the KPIs to be considered for evaluating an AI/ML model for beam management. We have the following proposals:
1. For testing the generalizability of an AI/ML model for beam management, the full list of network conditions/scenarios/parameter values need to be discussed and decided. Further, based on the effort and time required for testing an AI/ML model under such different network conditions/scenarios/parameter values, consider a limited set of parameters to for testing whether an AI/ML model is generalizable.
1. Generalizability of a proposed AI/ML model for beam management is evaluated by computing all the KPIs, inclusive of all the gains achieved and all the costs incurred, by the model for each of the different network conditions/scenarios/parameter values.
1. Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of all the gains achieved and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods discussed above for further study.
1. Consider Beam Prediction Accuracy, Overhead Reduction and Latency Reduction as the key KPIs in evaluating an AI/ML model for beam management and consider adopting the definitions proposed.
1. Allow set B to have variable number of beams at each instant of time during training and/or inference and allow the beams in set B to be variable and change across time during training and/or inference.
1. “Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)" as the baseline for spatial beam prediction.  
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