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Introduction
A new study item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [1]. One of the study objectives includes the analysis of solutions for CSI feedback enhancements:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project


In this contribution, we express our views on the evaluation methodology for CSI use-case and present a set of initial evaluation results for spatial-frequency domain CSI compression using a two-sided AI model sub use case with different deployment scenarios as well as generalization performance study for different channels and scenarios for that sub use case. Also, performance evaluation results for a non-AI/ML solution (traditional solution) are provided for CSI prediction sub use case using a one-sided model.
Evaluation for spatial-frequency domain CSI compression using two-sided AI model
For evaluation of AI/ML applications to CSI compressions a two-sided autoencoder (AE) model is used and the performance of this AE is compared with that of Rel-16 Enhanced Type II PMI codebook (eType II) with respect to the square generalized cosine similarity (SGCS). The same testing dataset is used to test the performance of the AE as well as the eType II codebook. 
Autoencoder
In this paper the autoencoder implementation is based on the ACRNet implementation in [2]. The model uses channels generated from the SLS as input after a pre-processing step which is discussed in more detail in the following sections.
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Description automatically generated with medium confidence]Data Pre- and Post-processingFigure 1: Dense Urban Macro channel powers for 52 PRBs and 32 Tx Ports in (left) Space-frequency domain and (right) Angular-delay domain

The channel matrix generated from SLS is of size  where  is the number of PRBs for a given BW,  is the number of receive antenna ports at the UE and  is the number of transmit antenna ports. The SLS channel  is generated in the space-frequency domain and is converted to an input matrix  of size  in the angular-delay domain. First, assuming rank-1 transmission, the strongest eigenvector of  is extracted. The power of the coefficients of the strongest eigenvector is shown on the left of Figure 1 as a function of antenna ports (x-axis) and PRBs (y-axis). The eigenvectors are then transformed to the angular-delay domain as shown in the right of Figure 2 (DFT basis vectors in the x-axis and delay taps in the y-axis). The channels are usually sparse in the delay domain and the model input size can be reduced from  to  along the y-axis. The  complex matrix is then decomposed into real and imaginary values and provided as an input to the AE. 
The output from the AE is an estimate of the input matrix, , which is then transformed back to the space-frequency domain to generate an estimate of the dominant eigenvector .

Autoencoder Implementation
The input to AE is passed through two cascaded Encoder Blocks which use 2D convolution layers as shown in Figure 2. Batch Normalization is used after every convolutional layer and the activation function used is the parametric ReLU which has a trainable parameter , which controls how negative values are scaled by the activation. In addition to the two cascaded encoder blocks, a fully connected layer is used for CSI compression which reduces the number of inputs to the quantizer block. At the decoder, two cascaded decoder blocks are used to decode the CSI bits. In general, the decoder complexity is expected to higher than the encoder complexity since the encoder is expected to be at the UE and the decoder at the gNB. 


[bookmark: _Ref111212112]Figure 2: Quantized ACRNet for CSI Compression with M=64, NF = 52 and NT=32. 

Quantization
A uniform B-Bit quantizer is used in the AE as shown in Figure 3. The quantizer is non-trainable i.e., the gradients of the backpropagation during training are passed through the quantizer without any change. A fully connected layer preceding the quantizer reduces the total number of inputs to the quantizer to K channels by compressing it by a factor of . The total number of inputs to the fully connected layer is given by  where  where  are the antenna ports in horizontal and vertical planes and is the number of polarizations. The FC layer outputs K channels where . The quantizer uniformly quantizes each of the  inputs to produce  feedback bits. 



[bookmark: _Ref111212942]Figure 3: Uniform Quantization in ACRNet

The de-quantizer and FC layer in the decoder reverses the operations of the encoder quantizer and FC layer respectively. In this paper, a noiseless wireless channel is assumed i.e., during testing there is no corruption of the feedback bits.
Initial Evaluation Results for Rank-1 
The AE model is trained on 60000 samples with 10000 validation samples and tested on 30000 samples. The output of the AE  is then compared to the original channel eigenvector  to evaluate SGCS. Additionally, the equivalent MSE for unit-norm vectors is presented.  	
In the following sections, the performance of ML AE for different SLS channel models are shown for the case of Rank-1 transmission. 


Indoor Hotspot
Indoor Hotspot channels are consistently very sparse in the angular delay domain enabling the use of smaller input size  and larger compression ratio . The AI/ML easily outperforms the eType II CSI for both high and low overhead values. 

Table 1: AI/ML Performance for Indoor Hotspot
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	SGCS
	Equivalent NMSE (dB)

	32
	32
	2
	16
	64
	0.758
	-5.622

	20
	
	2
	
	102
	0.823
	-7.050

	16
	
	2
	
	128
	0.850
	-7.772

	16
	
	3
	
	192
	0.884
	-8.853

	12
	
	3
	
	255
	0.906
	-9.871

	10
	
	3
	
	306
	0.922
	-10.525
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Figure 4: Cosine Similarity and MSE comparison of InH for AI/ML AE vs Rel-16 eType II Codebook

Dense Urban Macro with Outdoor UEs Only
For Dense Urban Macro with outdoor UEs only and LOS/NLOS channels the model input data size needs to be larger than InH to avoid reconstruction loss. As shown in Table 2 and Figure 5, the AE outperforms the eType II CSI cases with large gains seen in the low overhead regime. 


Table 2: AI/ML Performance for Dense Urban Macro with 100% Outdoor UEs
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	Cosine Similarity
()
	Equivalent NMSE (dB)

	32
	32
	2
	12
	48
	0.519
	-2.129

	48
	
	2
	24
	64
	0.577
	-2.773

	32
	
	2
	
	96
	0.632
	-3.452

	24
	
	2
	
	128
	0.678
	-4.058

	24
	
	3
	
	192
	0.712
	-4.509

	10
	
	2
	
	306
	0.739
	-5.058
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Figure 5: Cosine Similarity and MSE comparison of Dense Urban Macro with Outdoor UEs Only for AI/ML AE vs Rel-16 eType II Codebook

Dense Urban Macro with 80% Indoor + 20% Outdoor UEs
For Dense Urban Macro with both outdoor and indoor UEs, the overall performance degrades, but the AE can still outperform eType II. Only for L=6, eType II performance is comparable to AE however, L=6 corresponds to more complex UE implementation. 

Table 3: AI/ML Performance for Dense Urban Macro with 80% Indoor and 20% Outdoor UEs
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	Cosine Similarity
()
	Equivalent NMSE (dB)

	48
	32
	2
	24
	64
	0.472
	-1.752

	32
	
	2
	
	96
	0.545
	-2.502

	24
	
	2
	
	128
	0.612
	-3.187

	24
	
	3
	
	192
	0.650
	-3.705

	20
	
	3
	
	228
	0.664
	-3.897

	18
	
	3
	
	255
	0.675
	-4.059
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[bookmark: _Hlk115363332]Figure 6: Cosine Similarity and MSE comparison of Dense Urban Macro with 80% Indoor UEs and 20% Outdoor UEs Only for AI/ML AE vs Rel-16 eType II Codebook

Observation 1 ML based Autoencoder can outperform Rel-16 eType II codebook for Rank-1 case in almost all overhead regimes for InH and Dense Urban Macro deployments.

Generalization performance  
The performance of an AI-ML model depends not only on the model implementation (e.g. pre-/post-processing and neural network structure) but also on the datasets used for training and testing (inference) of the neural network. If there is a mismatch in the statistical properties between the datasets used for training and inference, then some performance loss is expected. The ability to apply the network for different channel statistics (e.g. scenario. configuration) can be measured by generalisation performance. At the last RAN1 meeting it was agreed to consider the following 3 cases to evaluate the generalisation performance. 
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.

UMa/UMi
The 3 cases for AI/ML model generalization performance was evaluated for UMa and UMi scenarios with the autoencoder neural network described in section 2.1 above. For the evaluation neural network with the same parameters was trained on 3 datasets: UMa, UMi and UMa + UMi. Mixed dataset (UMa + UMi) has equal distribution of channel matrixes (50% UMa and 50% UMi)
The SGCS results for different PMI reporting overhead (96 bits, 128 bits and 192 bits) are presented in figure 7 for inference on UMa dataset and figure 8 for inference on UMi dataset. 

Figure 7: SGCS values for the autoencoder trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMa channel matrixes

Figure 8: SGCS values for the autoencoder trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMi channel matrixes

As it can be seen from the above evaluation results, there a small performance loss for autoencoder with misaligned datasets for training and inference (Case 2) comparing to autoencoder with aligned datasets (Case 1). If dataset with both UMa and UMi channel models is used for training (Case 3) then performance loss is marginal comparing to Case 1.
Observation 2 If dataset with both UMa and UMi channel models is used for training (Case 3) then performance loss is marginal comparing to training and testing on aligned dataset (Case 1)
UMa/InH
The 2 cases for AI/ML model generalization performance was evaluated for UMa and InH scenarios with the autoencoder neural network described in section 2.1 above. For the evaluation neural network with the same parameters was trained on 2 datasets: UMa and InH. 
[bookmark: _Hlk115383323]The SGCS results for different PMI reporting overhead (96 bits, 128 bits and 192 bits) are presented in figure 9 for inference on UMa dataset and figure 10 for inference on InH dataset. 

Figure 9: SGCS values for the autoencoder trained on different datasets with UMa/InH channel matrixes and tested on dataset with UMa

Figure 10: SGCS values for the autoencoder trained on different datasets with UMa/InH channel matrixes and tested on dataset with InH channel matrixes 

From the above results significant performance loss is observed for non-aligned datasets for testing and training (Case 2), especially for lower PMI reporting overhead case (96 bits). Autoencoder trained on a dataset with InH channels significantly outperforms an autoencoder trained on a dataset with UMa channels for inference on InH channels.  
Observation 3 Autoencoder trained on a dataset with InH channels significantly outperforms an autoencoder trained on a dataset with UMa channels for inference on InH channels
UMa Indoor/Outdoor and LoS/NLoS
The generalization performance tested on different scenarios (e.g. UMi/UMa/InH) is important to understand whether the same neural network can be used by different gNBs in different places (e.g. at the street in a city or indoor). On top of that for the same gNB there might be different categories of the UEs with different channel statistics. So, different neural networks may be used for different UE categories. However, it might be challenging to categorise UEs and obtain a dataset for the neural network training with particular UE category. Also, it might be challenging to distinguish UE types to configure proper neural network. So, considering the above, case 3 (training on mixed dataset) can be considered to assess the generalization performance on the different UE categories (indoor/outdoor, LoS/NLoS) for one scenario.
The GCS results for different PMI reporting overhead (96 bits, 128 bits and 192 bits) are presented in figure 11 for inference on different datasets with autoencoder trained on UMa dataset with 80% indoor UEs, 20% outdoor UEs and LoS probability according to the corresponding channel model.

Figure 11: SGCS values for the autoencoder trained on UMa dataset and tested on different datasets (UMa with Indoor/Outdoor, LoS/NloS UEs) 

Based on the above results it can be observed that similar performance is observed for LoS and NLoS channels while small performance gain (0.05 GCS difference) is observed for Outdoor UEs comparing to Indoor UEs.
Observation 4 For an autoencoder trained on UMa dataset with Indoor/Outdoor, LoS/NLoS UEs, similar performance is observed for LoS and NLoS channels while small performance gain (0.05 GCS difference) is observed for Outdoor UEs comparing to Indoor UEs

Remaining details on evaluation assumptions
The traffic model which is used for SLS evaluations is still under discussion. In our view traffic model, which is agreed for CSI enhancements evaluation for Rel-18 MIMO work item shall be considered as baseline for AI/ML CSI. At the same time, in our view some observations can be also done based on results obtained with full buffer evaluations, if needed. 
Proposal 1: FTP model 1 with packet size 0.5 Mbytes is considered as a baseline
· Full buffer traffic model is not precluded for evaluations
It was agreed by RAN1 to use realistic channel estimation. However, it is not clear whether realistic channel estimation should be considered for training dataset or inference only. Since it is not yet clear how training procedure will look like in practice, assumption on noise and interference is not clear as well. Hence, we propose to support ideal channel estimation for dataset construction for training. 
Proposal 2: Ideal channel estimation is assumed for dataset construction for training
The following agreement is made at the last RAN1 meeting on intermediate metrics for the evaluation of AI/ML CSI performance. 
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted



Based on the above agreement, the intermediate KPI is still has not been defined. In our view SGCS can be used as intermediate KPI for evaluation with one spatial layer (rank 1). For evaluations with rank > 1 throughput metrics can be directly used, or per-layer SGCS results can be provided. 
Proposal 3: SGCS is supported as intermediate metrics for rank 1
· For rank > 1 throughput results can be used or per-layer SGCS can be provided
Other sub use-cases
One of the sub use-cases which is being discussed in RAN1 for AI/ML CSI is CSI prediction using one-sided model. For this sub use-case it is assumed that channel or precoder prediction is done at the UE side or at the gNB side to improve the performance by reducing the impact of channel aging. Similar issue is considered in Rel-18 MIMO WI, where it is assumed that channel prediction is done at the UE for the set of precoding matrixes reported to the gNB via CSI considering Doppler-Domain compression for PMI codebook. Since the focus of the Rel-18 MIMO WI is specification of new PMI codebook, there is no study for channel/precoder prediction algorithms, and it is assumed that channel/precoder prediction design is up to UE implementation. 
However, if CSI prediction sub use-case is considered for the Rel-18 AI/ML study item it is important to understand the detailed design of AI/ML model and compare it to a non-AI/ML solution. In figure 12 SGCS results are presented for non-AI/ML channel prediction based on autoregressive model with different N and P parameters for rank 1 PDSCH transmission. The parameter N corresponds to number of consecutive slots used for measurements, P corresponds to autoregressive model order. SGCS in this case corresponds to the average SGCS for prediction for 1,2,…,10 slots per PRB. 

Figure 12: SGCS values for non-AI/ML based CSI prediction with different parameters

As it can be observed from the above results, there is a significant performance difference for prediction with different parameters N and P. Thus, it is important to make an agreement on the baseline non-AI/ML solution considered for channel prediction sub use case. Or, at least to disclose the used prediction algorithm so the results can be reproduced by other companies.
Observation 5 There is a significant performance difference for non-AI/ML-based prediction with different parameters N (number of measurements used to derive predictor) and P (prediction order)

Proposal 4: Baseline non-AI/ML based channel prediction method which is used for comparison with AI/ML based prediction method is disclosed by each company
Conclusion
In this contribution, we provided our views on the aspects of EVM related to AI/ML-based CSI enhancement. In summary, we have following proposals and observation:
Observation 1: 
· ML based Autoencoder can outperform Rel-16 eType II codebook for Rank-1 case in almost all overhead regimes for InH and Dense Urban Macro deployments
Observation 2: 
· If dataset with both UMa and UMi channel models is used for training (Case 3) then performance loss is marginal comparing to training and testing on aligned dataset (Case 1)
Observation 3: 
· Autoencoder trained on a dataset with InH channels significantly outperforms an autoencoder trained on a dataset with UMa channels for inference on InH channels
Observation 4: 
· For an autoencoder trained on UMa dataset with Indoor/Outdoor, LoS/NLoS UEs, similar performance is observed for LoS and NLoS channels while small performance gain (0.05 SGCS difference) is observed for Outdoor UEs comparing to Indoor UEs
Proposal 1: 
· FTP model 1 with packet size 0.5 Mbytes is considered as a baseline
· Full buffer traffic model is not precluded for evaluations
Proposal 2: 
· Ideal channel estimation is assumed for dataset construction for training
Proposal 3: 
· SGCS is supported as intermediate metrics for rank 1
· For rank > 1 throughput results can be used or per-layer SGCS can be provided
Observation 5: 
· There is a significant performance difference for non-AI/ML-based prediction with different parameters N (number of measurements used to derive predictor) and P (prediction order)
Proposal 4: 
· Baseline non-AI/ML based channel prediction method which is used for comparison with AI/ML based prediction method is disclosed by each company
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Appendix
System level simulation evaluation assumptions for Dense Urban Macro and Indoor Hotspot scenarios can be found in the tables below. 
Table 4 System level simulation assumptions for Dense Urban Macro
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	  32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	44dBm for 20MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h), if not stated otherwise

	Evaluation Metric
	SGCS and Equivalent NMSE 



Table 5 System level simulation assumptions for Indoor Hotspot
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	20m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	  32 ports: (8,8,2,1,1,4,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	23dBm for 20MHz

	BS antenna height
	3m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	Evaluation Metric
	SGCS and Equivalent NMSE 



Table 6 System Level simulation assumptions foe Dense Urban (Micro)
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	44dBm for 20MHz

	BS antenna height
	10m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)

	Evaluation Metric
	SGCS and Equivalent NMSE 



Inference: UMa

Train: UMa	
96 bits	128 bits	192 bits	0.54500000000000004	0.61199999999999999	0.65	Train: UMa + UMi	
0.54700000000000004	0.61	0.64900000000000002	Train: UMi	
0.53800000000000003	0.57299999999999995	0.61	
SGCS




Inference: UMi

Train: UMi	
96 bits	128 bits	192 bits	0.56000000000000005	0.59099999999999997	0.628	Train: UMa + UMi	
0.55600000000000005	0.58799999999999997	0.61699999999999999	Train: UMa	
0.54300000000000004	0.58499999999999996	0.61799999999999999	
SGCS




Testing: UMa

Train: UMa	
96 bits	128 bits	192 bits	0.54500000000000004	0.61199999999999999	0.65	Train: InH	
0.47599999999999998	0.59	0.64200000000000002	Train: UMa + InH	

SGCS




Testing: InH

Train: InH	
96 bits	128 bits	192 bits	0.89700000000000002	0.91	0.93400000000000005	Train: UMa	
0.67700000000000005	0.82	0.87	Train: UMa + InH	

SGCS




Indoor, LoS+NLoS	
96 bits	128 bits	192 bits	0.70840000000000003	0.75309999999999999	0.7782	Outdoor, LoS+NLoS	
96 bits	128 bits	192 bits	0.75829999999999997	0.79590000000000005	0.81740000000000002	Outdoor+Indoor, LoS	
96 bits	128 bits	192 bits	0.72370000000000001	0.7641	0.78779999999999994	Outdoor+Indoor, NLoS	
96 bits	128 bits	192 bits	0.71150000000000002	0.75890000000000002	0.78380000000000005	
GCS





No Prediction	N = 20, P = 3	N = 50, P = 5	N = 200, P = 7	0.49830000000000002	0.65049999999999997	0.70850000000000002	0.7732	
SGCS
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