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Introduction
In RAN#94e, the new study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface was approved [1]. This is the first AI/ML study for 3GPP RAN1, and explores the 3GPP framework for adopting AI/ML in the air interface. The study needs to investigate AI/ML model characterization, various levels of collaboration between UE and network, data sets for training/validation/testing/inference, life cycle management, etc. The investigation should also consider aspects such as performance, robustness, complexity, and potential specification impact.
One use case identified for the pilot study is beam management:
	RP-213599 (SID):
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels



In this contribution, we will discuss the evaluation methodology and present simulation results for the beam prediction sub use cases. 
Remaining issues on evaluation methodologies
We have identified a few leftover discussions and remaining issues, from RAN1#109e/RAN1#110, that need to be settled to complete the evaluation methodologies (EVM) for the study item.
Evaluation methodology
The following agreement was reached in RAN1#109e. 
	Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded



Regarding the above FFS: Companies should share important details of AI/ML models used in their contributions to enable reproducibility and build trust in reported results. We propose the following:
· Share a high-level, academic-paper style and/or pseudocode, description of the AI/ML model. Sufficient details should be provided so that the AI/ML model can reimplemented. 
· Share relevant simulation parameters used to generate synthetic datasets for training, validation, and testing. Sufficient detail should be provided to enable reproducing the most important characteristics of dataset(s).
· Describe important steps of data preprocessing and/or feature extraction using an academic-paper style and/or pseudocode. 
Optionally, companies can share useful hyperparameters including, for example, the learning rate, learning rate decay, mini-batch size, optimizer details, and any training tricks (such as dropout regularization). The latter may, for example, be important when studying AI/ML model generalizability. 
[bookmark: _Toc115446445]To help enable reproducibility, companies should report relevant information about the AI/ML model architecture, data pre- and post-processing, loss functions, and training procedures using an academic style paper and/or pseudocode.
For the general aspect discussion, it was agreed in RAN1#110 that companies should estimate and report the number of floating-point operations (FLOPs) during inference. For consistency and comparability between the use cases, we propose that FLOPs are also adopted for the BM use case.
[bookmark: _Toc115446446]When presenting results for AI/ML models, the proponent should report a model size (e.g., number of parameters) and an estimate of the number of floating-point operations (FLOPs) for inference. 
[bookmark: _Ref107994676]Evaluation metrics
Beam prediction accuracy
As shown in [4], Section 3.2, the SSB/CSI-RS best beam statistics are highly skewed in the agreed simulation scenarios. For example, beams with azimuth angles pointing towards the horizon will occur more often than beams with other azimuth angles. Companies should take data skewness into account when evaluating beam prediction KPIs. AI/ML models can be trained to work well for common beams (e.g., beams on the horizon), and, potentially, ignore uncommon beams. One method for exploring the ability of AI/ML models to predict the uncommon beams is to visualize their performance on such rare events. For example, companies can highlight tail percentiles (e.g., 99th percentile) when presenting L1-RSRP CDFs results whenever AI/ML models fail to accurately predict uncommon beams.
[bookmark: _Toc115446434]The agreed simulation scenarios might have heavily skewed beam statistics. AI/ML models can be trained to work well for common beams and ignore uncommon beams. The poor performance of AI/ML models on uncommon beams might not be reflected in average beam prediction statistics. Visualizing the edge percentiles of the L1-RSRP CDF could be one method to illustrate the ability to predict uncommon beams
[bookmark: _Toc111114353][bookmark: _Toc111114456][bookmark: _Toc111114506]
[bookmark: _Ref115199556]Overhead reduction
The following agreement was reached in RAN1#109.
	Agreement
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.




Regarding the agreed KPI on RS overhead reduction: The current definition depends on the number of UEs; for example, the RS overhead reductions will decrease as the number of UEs increases. This is an important observation and should be highlighted in the results. However, the benefit of UE measurement reduction is not captured, this could be part of the power reduction KPI yet to be defined, a first step is to define a UE measurement KPI that can be translated into a power reduction KPI in later stages of the study item.
[bookmark: _Toc115446447]Define a RS measurement overhead KPI, e.g. N/M where N is the number of beams measured by a UE, and M is the total number of beams.
Options on selection of set B of beams
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B




Regarding the agreement on the options of set B selection, the option 1 FFS on the beams of set B. The properties of beams in set B are not needed to discuss, the structure of set B is whether it is a subset of A or not, which is already captured in another agreement. 
For option 2, companies are encouraged to investigate a variable number of beams if applicable. For NW-sided models, the option also comprises the situation when the UE might measure a set of beams but report a limited set of beams based on the conducted measurement. In this case we denote the reported set as “set B”. The variable beam does not need to be limited to a fixed number; in case the measurement/reporting overhead is sufficiently presented. 
[bookmark: _Toc115446435]For NW-sided model, the variable number of beams could be due to UE only reporting a subset of the measured beams. 
It might be beneficial to agree on a number of beams in set B for achieving comparable results. However, the number of beams in set A will affect how narrow beams one can form. The number of beams in set B should preferably be discussed as a fraction of beams in set A. 
[bookmark: _Toc115446448]Define the number of beams in set B as a fraction of beams in set A
Simulation parameters
[bookmark: _Ref115203916]Generalization (update based on RAN1#110)
The following conclusion was reached in RAN1#109e.
	Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training



[bookmark: _Toc115446143]It is important to understand the generalizability of beam prediction AI/ML models. For example, do AI/ML models need to be trained and deployed to specifically target individual propagation environments, UE mobility patterns, antenna configurations, and system configurations? Such details are important inputs for future discussions on AI/ML model lifecycle management (LCM) functional frameworks. Regarding the FFS on which scenarios and/or configurations should be used to study AI/ML model generalizability: It is too early to fix scenarios, and companies can be free to motivate different alternatives. We believe that it is important to understand whether beam prediction AI/ML models need to be trained and deployed in a per-cell manner, considering, for example, the local propagation environment, UE mobility, and gNB antenna configurations. We think that a starting point is to discuss the generalization in terms of different UE parameters (e.g. speed, antenna config), NW settings (e.g. beam config) ,deployment scenarios (e.g. Uma/Umi) and the propagation environment scenario (e.g. spatial consistency seed). 
[bookmark: _Toc115446449][bookmark: _Toc115446451]Discuss generalization in terms of different UE parameters, NW settings, deployment scenarios and propagation environment scenarios as a starting point
Simulation scenario
For the following discussion, we consider randomly dropped UEs in the 3GPP UMa scenario with 200 m inter-site distance, see Table 5 in the appendix for details. We use spatially consistent channel model, and we fix a common random seed for the propagation conditions for all simulations (unless otherwise stated). The total number of UEs (samples) generated was 20000–40000 per cell. About 90% of the samples were used to train AI/ML model for spatial beam prediction. The remaining channel samples were used for testing/inference. For dataset explorations and visualizations, we used all data (no division into train/dev/test sets), except when leading to too cluttered figures (in which an appropriate subset was used). 
For the gNBs, SSB and CSI-RS beams were defined based on Table 1 and Table 5. No mechanical downtilt is used. The four-panel option (i.e., (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2)), was modelled as a single large panel with 8×16 uniformly spaced antenna elements. We will use the following abbreviations for the gNB antenna array configurations:
· “4x8”: One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ
· “8x16”: Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ

Cell selection: UEs were associated with their best gNB based on link gain. UE-side beamforming: For these initial evaluations, we assume that the best UE-side Rx beam are used. That is, the SSB and CSI-RS L1-RSRPs were calculated assuming the best UE-side Rx beam. These RSRP values were then used as dataset for training and inference. Some evaluations will use additional assistance information to train the AI/ML beam prediction models, see later sections for more details.
The complete set of SSB beams and CSI RS beams, in terms of zenith and azimuth angles, is listed in Table 1. All beams are generated using linearly increasing phase across antennas, with same amplitude on all elements. The prediction target (Set A) is always the complete set of CSI-RS beams. The measurement sets (Set B) considered are illustrated in Figure 1 (4x8 gNB array) and Figure 2 (8x16 gNB array). Set B beams are the same in training and inference unless otherwise stated.

[bookmark: _Ref111022483][bookmark: _Ref111191499]Table 1: gNB SSB and CSI-RS beam directions
	Array size (#elements)
	RS type
	#zenith × #azimuth = total #beams
	Beam width
	List of angles 


	4x8
	SSB
	2×4 = 8
	Half-wide1)
	Zenith angles [deg]: 77.5, 122.5
Azimuth angles [deg]: -45, -15, 15, 45

	
	CSI-RS
	3×10 = 30
	Narrow
	Zenith angles [deg]: 81, 99, 117
Azimuth angles [deg]: -31.5, -22.5, -13.5, -4.5, 4.5, 13.5, 22.5, 31.5, 40.5

	8x16
	SSB
	3×7 = 21
	Half-wide1)
	Zenith angles [deg]: 69, 105, 141
Azimuth angles [deg]: -57, -38, -19, 0, 19, 38., 57

	
	CSI-RS
	7×24 = 168
	Narrow
	Zenith angles [deg]: 76.5, 85.5, 94.5, 103.5, 112.5, 121.5, 130.5
Azimuth angles [deg]: 51.75, 47.25, 42.75, 38.25, 
33.75, -29.25, -24.75, -20.25, -15.75, -11.25, -6.75, 
-2.25, 2.25, 6.75, 11.25, 15.75, 20.25, 24.75, 29.25, 33.75, 38.25, 42.75, 47.25, 51.75


1) Only half of the antenna elements in each dimension are used, i.e. a quarter of all antenna elements.

 [image: ]
[bookmark: _Ref83924636]Figure 1: Beam patterns for 4x8 gNB array, with filled circles indicating the Set B beams (8, 10, or 15).

[image: ]
[bookmark: _Ref110879051]Figure 2: Beam patterns for 8x16 gNB array, with filled circles indicating the Set B beams (21, 48, or 84).
Spatial beam prediction
In this section, we present our evaluation methodology and results for the spatial beam prediction sub use case.

Baseline description 
The baseline scheme uses the Set B beam sets defined in Figure 1 and Figure 2. All beams in Set B are transmitted and reported. The baseline prediction is the best beam (Top-1) in Set B.
Spatial beam prediction description
Options for using beam prediction AI/ML models
The following three options for beam prediction have been considered in evaluations:
[bookmark: _Toc110878155]Option 1) AI/ML model predicts Top-1 beam


[bookmark: _Toc110878156]Option 2) AI/ML model predicts Top-K beams

For example, if Set B is SSB beams, we have the following steps:
P1. Measure the SSB beams
P1*. Predict a set of K CSI-RS beams
P2. Measure the K CSI-RS beams
Option 3) UE position-based prediction 

Use option 1 + UE location
As already mentioned, in the evaluations in this contribution, the UE is assumed to always select the best UE-side Rx beam, except in Section 4.3.1.2, where joint Rx/Tx beam prediction is investigated. Note that with K = 1, Option 2) reduces to Option 1).
Conventional beam prediction
The conventional beam prediction evaluated has the same structure as the AI/ML model Option 2 described in previous section. The difference is only in how the set of K CSI-RS beams for step P1* is determined. In the conventional scheme, every CSI-RS beam is given an association with its closest SSB beam in terms of beam angle difference (defined as squared zenith angle difference plus squared azimuth angle difference). The set of CSI-RS beams for step P1* is then all the CSI-RS beams associated with the best SSB beam found in step P1. Since different SSB beams may have different number of associated CSI-RS beams, K may vary from UE to UE depending on which SSB beam the UE is in.
Neural network architectures
We will use the two neural network models illustrated in Figure 8, labelled NN A and NN B. NN A is low-complexity and is used in all evaluations except a few evaluations indicated by an asterisk (*) in tables/figure legends, which use the more complex NN B.
The number of nodes in the dense layers equals the number of beams  in Set A. A softmax cross-entropy function is used. Normalization is based on scaling the beam RSRP values in dB per sample to yield the range 0.0 to 1.0 for RSRP values for each sample.
In case assistance information, such as UE location information, is also used as input to the neural network, that information is concatenated to the RSRP values after being separately scaled by a fixed scaling factor designed to yield values with maximum magnitudes in the order of 1.
[image: ]
[bookmark: _Ref110878964]Figure 3: Neural networks used in the evaluations. Unless otherwise indicated with an asterisk (*), NN A is used in the evaluations. For the dense layers, the number of nodes is indicated in the figures.
An overall description of our evaluation methodology and its complexity is provided in the Table 2. 

[bookmark: _Ref115343387]Table 2: AI/ML evaluation parameters, methodology, and complexity KPIs
	Parameters
	Potential Values

	Dataset description (Training/Test data)
	· Number of samples: Up to ~60000 per sector (depending on scenario)
· Training on single sector, inference on same sector, unless otherwise stated

	Model validity area
	· Sector-specific training 

	Model description
	· Neural network, 2–3 dense layers, ReLU, dropout
· Model hyperparameters: learning rate 0.001–0.01

	Model input description
	· RSRP from SSB and/or CSI RS (one real value per measured beam unless otherwise stated), normalized based on min and max values per sample
· UE location assistance information (where explicitly stated)

	Model output description
	· Likeliness of beam being strongest beam, used to derive top-K beams

	Training methodology
	· Loss function: Softmax cross-entropy

	Model complexity KPIs
	· Number of parameters: 1)
· 4x8 gNB array with 8 SSB beams in Set B:
· NN A: ~1200
· NN B: ~9000
· 8x16 gNB array with 21 SSB beams in Set B:
· NN A: ~32000
· Floating point operations for inference: 1)
· 4x8 gNB array with 8 SSB beams in Set B:
· NN A: ~2500 FLOPs
· NN B: ~17000 FLOPs
· 8x16 gNB array with 21 SSB beams in Set B:
· NN A: ~64000 FLOPs


1) Numbers refer to gNB (Tx) beam finding. The joint Tx/Rx beam finding in Section 4.3.1.2 has higher complexity.
Results
[bookmark: _Ref115199518]Beam prediction KPIs
Based on agreements and discussion in previous sections, we report the following KPIs:
· Beam prediction accuracy (%) for Top-1 (and in some cases also Top-3) beams, with 0 dB margin and 1 dB margin
· We use the Option 2 interpretation of “Top-K”; that is, the beam prediction accuracy (%) is the percentage of the Top-1 genie-aided beam is one of the Top-K predicted beams.
· CDF of L1-RSRP difference for Top-1 (and in some cases also Top-3) predicted beams
· RS transmission overhead
· We report overhead for a cell with 5 UEs and a cell with 10 UEs, and additionally report the RS measurement overhead per UE (monitoring need / energy consumption, see Section 2.2.2)
In all cases, the RS transmission overhead is defined as N/M, where N is the number of beams (SSB and/or CSI-RS) that are transmitted in the beam finding procedure (sum of steps P1 and P2), and M is the total number of (CSI-RS) beams in Set A. 
For the AI/ML and baseline schemes, for per-cell RS overhead, N is calculated as

where  is the number of UEs per cell (5 or 10 UEs, as indicated in the figure captions). Note that this can be seen as a worst case, where no UEs have any overlap between their respective top-K sets, or where transmission of same CSI-RS beam to multiple UEs jointly is not possible for other reasons. Note also that the baseline scheme used does not employ a multi-step procedure, and hence effectively has K = 1. The per-UE RS overhead (UE monitoring need) is obtained by setting #UEs = 1.
For the conventional scheme, the number of CSI-RS beams associated with a Set B SSB beam may be different for different SSB beams, and hence K may vary depending on which beam direction the UE is in. N was therefore calculated as an average based on the actual beam direction statistics in the simulations. Consequently, N may for the conventional scheme be different for different propagation scenarios.
As mentioned above, we trained one model for each sector (cell) in the network. Performance varies somewhat from sector to sector depending on shadow fading etc, and we show results for one representative sector.
ML KPIs TX-beam prediction
ML KPI results for 4x8 gNB array are provided in Table 3 and Figure 4, for a representative sector in the network. Table 3Table 3 shows the beam prediction accuracy (with 0 dB and 1 dB margins) along with corresponding beam transmission overhead. Figure 4 provides CDFs over the differences between RSRP for the predicted beam and the RSPR for the optimal beam, over all UEs in a cell, for various scenarios and schemes.
The results show that AI/ML schemes can outperform the baseline/conventional schemes. For example, from Table 3, it can be seen that in a scenario with 100% outdoor users, the trained low-complexity AI/ML model NN A can with just 27% overhead (using 8 SSB beams in Set B vs. 30 CSIRS beams in Set A) predict the optimal beam within 1 dB for >95% of the users, while the baseline and conventional schemes reach only about 67% correct prediction, and at a substantially larger overhead. The more complex AI/ML model, NN B, performs even better. The corresponding CDFs can be seen in Figure 4(a). 
The prediction problem can be expected to be more challenging for scenarios with many indoor UEs. This is confirmed in Table 3 and Figure 4(b). Although the Top-3 schemes can give good prediction accuracy, they lead to large overhead, for the case of 10 UEs/cell even exceeding the overhead of a full sweep of all Set A beams (N/M > 100%).
Analogous results for 8x16 gNB arrays are shown in Table 4 and Figure 5Table 4. In this case, the Top-3 schemes lead to rather small overhead and can be used to achieve good accuracy also in scenarios with predominantly indoor users. For example, with 5 UEs/cell, 21% RS overhead is sufficient to have 93% of the users reach an RSRP within 1 dB of optimal beam RSRP.
[bookmark: _Toc115446436]In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy, both for 4x8 (30 beams in Set A) and 8x16 arrays (168 beams in Set A).
[bookmark: _Toc115446437]In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.

[bookmark: _Ref110880393]Table : Beam-finding accuracy and overhead, 4x8 gNB array
	Scheme 1)
	Beam accuracy [%]
	RS transmission overhead N/M [%]
	Meas. over-head N/M [%]

	
	100% outdoor
	80%/20% in/outdoor
	

	
	0 dB margin
	1 dB margin
	0 dB margin
	1 dB margin
	Cell with 5 UEs
	Cell with 10 UEs
	Meas.Per UE

	AI/ML, 8 SSB (Top-1)
	89.3
	95.1
	71.3 
	81.7
	26.7
	26.7
	26.7

	AI/ML, 8 SSB (Top-3)
	98.7
	99.2
	92.4
	95.8
	76.7
	(126.7)
	36.7

	AI/ML*, 8 SSB (Top-1)
	92.7
	97.6
	78.1
	88.2
	26.7
	26.7
	26.7

	AI/ML*, 8 SSB (Top-3)
	99.6
	99.8
	95.7
	97.9
	76.7
	(126.7)
	36.7

	AI/ML, 10 CSI-RS (Top-1)
	93.8
	98.2
	79.7 
	89.8
	33.3
	33.3
	33.3

	AI/ML, 10 CSI-RS (Top-3)
	99.6
	99.9
	96.5
	98.4
	83.3
	(133.3)
	43.3

	Baseline, 10 CSI-RS
	42.9
	51.9
	40.5
	53.7 
	33.3
	33.3
	33.3

	Baseline, 15 CSI-RS
	54.6
	67.0
	52.3 
	70.7
	50.0
	50.0
	50.0

	Conventional, 8 SSB
	60.3
	66.7
	62.0
	69.6
	79.2 / 90.5 2)
	(131.7) / (154.4) 2)
	37.2 / 39.4 2)


1) “n SSB” / ”n CSI-RS” indicates the type and number of beams in Set B in accordance with  and . Complete beam sets are given by . Asterisk (*) means NN B was used.
2) First number is 100% outdoor UEs, second number is 80%/20% in/outdoor UEs, cf. Section 4.3.1.

[image: ][image: ]
(a) 									(b)
[bookmark: _Ref115201413][bookmark: _Ref115344263]Figure 4: RSRP difference CDF, for 4x8 array, for (a) 100% outdoor UEs and (b) 80%/20% in/outdoor UEs. Asterisk (*) means NN B was used.

[bookmark: _Ref110880514]Table 4: Beam-finding accuracy and overhead, 8x16 gNB array
	Scheme
	Beam accuracy [%]
	RS transmission overhead N/M [%]
	Meas. over-head N/M [%]

	
	100% outdoor
	80%/20% in/outdoor
	
	

	
	0 dB margin
	1 dB margin
	0 dB margin
	1 dB margin
	Cell with 5 UEs
	Cell with 10 UEs
	Per UE

	AI/ML, 21 SSB (Top-1)
	87.3
	95.5
	60.5
	77.6
	12.5       
	12.5
	12.5

	AI/ML, 21 SSB (Top-3)
	98.7
	99.6
	88.4
	93.3
	21.4
	30.3
	14.3

	AI/ML, 48 CSI-RS (Top-1)
	92.7
	98.0
	73.5
	87.7
	28.6
	28.6
	28.6

	AI/ML, 48 CSI-RS (Top-3)
	99.5
	99.9
	92.4
	97.6
	37.5
	46.4
	30.4

	Baseline, 48 CSI-RS
	20.4
	33.0
	33.9
	52.6
	28.6
	28.6
	28.6

	Baseline, 84 CSI-RS
	52.2
	75.2
	49.4
	74.7
	50.0
	50.0
	50.0

	Conventional, 21 SSB
	86.1
	90.7
	80.2
	87.8
	54.6 / 52.6 1)
	96.7 / 92.7 1)
	20.9 / 20.5 1)



1) First number is 100% outdoor UEs, second number is 80%/20% in/outdoor UEs, cf. Section 4.3.1.

[image: ][image: ]
(a) 									(b)
[bookmark: _Ref115202093]Figure 5: RSRP difference CDF, for 8x16 array, for (a) 100% outdoor UEs and (b) 80%/20% in/outdoor UEs.


[bookmark: _Ref115102623]ML-specific KPIs for joint TX/RX beam prediction
In this section, we investigate joint TX/RX beam prediction, and compare it with a reference case where the optimal UE beam is assumed like in previous sections (i.e. where the UE implicitly is assumed to scan all of its RX beams for each TX beam, and only report the best value).
For the joint TX/RX prediction, we evaluate a configuration with Set A consisting of 30 TX CSI-RS beams and 4 RX CSI-RS beams, i.e. Set A consists of 30 × 4 = 120 TX/RX beam pairs. For Set B, two cases are evaluated: 
· Set B = 16 TX/RX beam pairs defined as follows: There are 8 TX SSB beams defined in accordance with Figure 1, and 4 RX beams (2 per UE panel), but each RX beam is only used to measure 4 of the TX SSB beams, i.e. in total there are 4 x 4 = 16 TX/RX beam pairs measured. 
· Set B = 20 TX/RX beam pairs defined as follows: There are 10 TX CSI-RS beams defined in accordance with Figure 1, and 4 RX CSI-RS beams (2 per UE panel), but each RX beam is only used to measure 5 of the TX CSI-RS beams, i.e. in total there are 5 x 4 = 20 TX/RX beam pairs measured.
For a Top-1 scheme, this leads to RS overhead 16/120 » 13% (SSB) and 20/120 » 17% (CSI-RS).
For the reference case, we consider a configuration with the same number of Set A beams and the same number of TX beams in Set B (8 and 10, respectively), but assume that the UE scans all its RX beams for each TX beam in Set B, like in Section 4.3.1.1. For a Top-1 scheme, this leads to RS overhead (8 x 4)/120 » 27% (SSB) and (10 x 4)/120 » 33% (CSI-RS), i.e. twice as high as for joint prediction.
The results are illustrated in Table 5 and Figure 6, and show that although there is some performance degradation from joint TX/RX compared to TX-only prediction, performance remains good.

[bookmark: _Toc115446438]Joint TX/RX prediction can give good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.

[bookmark: _Ref115110212]Table 5: Joint TX/RX beam prediction, 4x8 gNB array, 100% outdoor, Top-1
	Scheme
	Beam accuracy [%]
	RS measurement overhead N/M [%]

	
	0 dB margin
	1 dB margin
	

	AI/ML, 8 TX SSB, TX prediction
	90.2
	96.2
	27%

	AI/ML, 8 TX SSB, joint TX/RX prediction
	86.1
	93.3
	13%

	AI/ML, 10 TX CSI-RS, TX prediction
	95.3
	98.6
	33%

	AI/ML, 10 TX CSI-RS, joint TX/RX prediction
	92.8
	97.7
	17%



[image: ]
[bookmark: _Ref115110191]Figure 6: RSRP difference CDF, for 4x8 array, Top-1, with or without joint TX/RX prediction. 

System level performance for TX-beam prediction
Results of full-buffer system-level simulations for 4x8 gNB array are presented in Figure 7. Performance with AI/ML is compared with baseline algorithm and genie algorithm (always select best beam). In all cases, Set B consists of 10 CSI-RS beams, and Set B of 30 CSI-RS beams. The AI/ML scheme uses  (Top1), i.e. the RS overhead is the same as for the baseline scheme. The percentages in Figure 7 refer to the throughput drop in percent relative to the genie case. 
AI/ML clearly performs better than baseline algorithm, with the drop in percent compared to genie being 4–5 times smaller for mean user throughput, and about 2–3 times smaller for cell-edge users (5th percentile).
[bookmark: _Toc115446439]The gains from AI/ML over baseline algorithm in terms of basic KPIs translate well to gains in full-buffer system-level evaluations.
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(a)                                             (b)
[bookmark: _Ref115439602][bookmark: _Ref115083385]Figure 7: System-level simulations results, full buffer, for 4x8 array, (a) mean user throughput and (b) 5th percentile (cell-edge) user throughput.

Variable number of beams in Set B (reduced reporting) 
It has been agreed to investigate variable number of reported/measured beams in Set B. In this section, we focus on the case where a fixed set of beams is measured, but the number of reported beams for NW-sided model inference is variable due to pre-processing of measurements at the UE-side.
We consider a scheme with gNB-side inference where the UE measures a fixed set of beams, but only reports beams with RSRP exceeding a certain threshold relative to the strongest beam, i.e. only beams with an RSRP at most X dB below the RSPR of the strongest measured beam are reported. This is valuable as it reduces reporting overhead. Figure 8 shows results with X = 10 dB and X = 15 dB, for the measured set consisting of SSB or CSI-RS, in comparison with the case where all measured beams are reported. The average reporting overhead reduction obtained in simulations is indicated in the legend, but note that the number of reported beams may vary significantly between UEs. As can be seen, despite the rather large reporting overhead reduction (up to almost 80%), performance degradation is small, and in case of Set B consisting of 8 SSBs, even negligible. 
[bookmark: _Toc115446440]By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.


[image: ]
[bookmark: _Ref110879900]Figure 8: RSPR difference CDF, for 4x8 array, 100% outdoor, Top-1, for different average number of reported beams. Y SSB / CSI-RS indicates the measured set.
UE assistance information
As was shown in [4], the UE location is strongly correlated with the best beam. This correlation is particularly strong for outdoor UEs. It is, therefore, of interest to make use of UE location as assistance information. A few different approaches have been evaluated in this section. One approach was to feed the UE location directly into the neural network, alongside the RSRP values, in terms of three numbers: gNB zenith/azimuth angles towards the UE (in radians) and the gNB–UE distance in the x-y plane (normalized by ISD). This approach did not yield significant gains (using the previously described NN architectures; however, a more complex network might help).

Another approach was to pre-process the UE location information. A method based on the k-nearest neighbor algorithm was employed, as follows:
1. For each UE (sample) in the dataset, pre-processing was performed as follows:
a) The k closest neighbor UEs in the training set were found. In the evaluations, k = 15 was used.
b) For those UEs, a “histogram” over the optimal beam directions in Set A was derived; that is, the result is a set of  integers summing to k.
c) This histogram was normalized and stored alongside the other data for the UE (sample).
2. During training and inference, the respective UE histogram ( numbers) was fed into the first layer of the neural network together with the  RSRP values for the UE.

The result of the k-nearest neighbor approach is shown in . As can be seen, prediction performance is substantially improved, showing the potential of UE location as assistance information. We have left complexity estimation and/or reduction for FFS.

[bookmark: _Toc115446441]UE location as assistance information can substantially improve prediction performance for outdoor UEs.
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[bookmark: _Ref110879920]Figure 9: RSPR difference CDF, for 4x8 array, 100% outdoor UEs, Top-1, with and without UE location information as assistance information.


Impact from measurement errors 
All evaluations in previous sections have been performed under the assumption of no RSRP measurement errors. However, there are always measurement errors in the UE. Excerpts from 3GPP TS 38.133 on UE L1RSRP measurement requirements are shown in the following table.
[image: Table

Description automatically generated]
The above values are defined for SSB based L1-RSRP, however, the same values are specified for CSI-RS based L1-RSRP to be found in the TS 38.133.
To exemplify the impact of RSRP measurement errors, evaluations with varying level of errors have been performed, also the same values agreed for CSI-RS. According to the discussion in RAN4 for determining the L1-RSRP accuracy requirement, the contributing elements for agreed above range consist of 4dB RF impairments, 1dB fading condition, and other factors like additive noise at the receiver side. RF impairment model is composed of different elements, including I/Q imbalance, Quantization noise, Phase noise, Filters/Ripple noise, RF PA distortion noise. Adding fading and additive thermal noise at receiver on top of this, for the sake of simplicity and counting for many different types of noise factors, we assume Normal distribution for modelling the RF impairments in our evaluations. The variance of normal distribution is set so that the 95% of the density function lay within the specified accuracy range in the evaluations. we also provide the results with RF impairments modelled as uniformly distributed random offsets in the dB domain. 
[bookmark: _Toc115446146][bookmark: _Toc115446185][bookmark: _Toc115446222][bookmark: _Toc115446452][bookmark: _Toc115446453]For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise 
Furthermore, the errors are independently selected for each gNB beam, according to the following:
· During training: Errors were applied to model input as well as to targeted model output (ground truth).
· During inference: Errors were applied to model input but not to targeted model output (ground truth).
In Figure 10, evaluation results for different distributions and noise ranges are provided. We can observe that although for measurement inaccuracy error up to 2dB the results can be tolerable with 1dB deviation margin from measurements without error. For 4dB and 6dB inaccuracy error we can have up to 4dB and 7dB degradation in performance. Thus, such measurement errors can have a significant impact on performance and need to be considered for realistic evaluations. It may also be necessary to further discuss UE measurement accuracy modelling, e.g., correlations between errors for different gNB beams. It may be helpful for the network to have better knowledge of the accuracy of the UE measurements.
[image: Chart
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[bookmark: _Ref115439999]Figure 10: L1-RSRP error when having imperfections in model input and ground truth due to measurement noise

[bookmark: _Toc115446454]Study the impact of measurement imperfections on model performance for the considered beam prediction use cases.
The natural solution to this problem is to tighten the require on measurement accuracy. However, this may not be applied to the legacy UEs, so to mitigate this issue, different capability of UEs could be defined with different measurement accuracy. In this way, the ML algorithm can take into account the level of L1-RSRP measured value when training the ML model, e.g. RSRP values that have higher accuracy can get higher importance when calculating the training loss metric. 
[bookmark: _Toc115446149][bookmark: _Toc115446188][bookmark: _Toc115446225][bookmark: _Toc115446455][bookmark: _Toc115446457]Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
0. [bookmark: _Toc115446458]Possibility to tighten requirements on L1-RSRP measurement accuracy
0. [bookmark: _Toc115446459]Define different UE capability based on their capability in fulfilling a measurement accuracy requirement. 

[bookmark: _Ref115203946]Generalization evaluations 
Results where the AI/ML model is trained in one cell (i.e., sector) which is 1 out of 21 cells (i.e., 7 sites) and used for beam prediction in another cell in the network (without additional training) are shown in Table 6. The table further presents the generalization performance when the model is tested in scenarios with another UE distribution or different ISD in comparison to the training. 

When considering the same ISD (i.e., ISD=200) for both training and testing, only the case when having only outdoor UEs in the training data does not work well comparing to other three case. Similar findings are found when considering the different ISDs for training and testing (i.e., ISD=200 and ISD=500 for training and testing, respectively). So, the results suggest that a trained model can generalize quite well to other cells except for the case of training on an outdoor only UE distribution, and testing on a mix of indoor/outdoor. 

It is also found that a trained model can generalize quite well to most of the cells (19 or 20 out 21 cells in 7 site scenario). Only 1 or 2 cell have relatively bad performance. In the simulation, it is found that the cell [1] always have the worst or second worst performance when the model is trained based on the data from cell [2]. Therefore, it is important to have proper model monitoring procedures in place to detect such underperforming cells. 

	Test case
	Trained Model using data from 1 out of 21 Sectors
	Prediction in one of all Sectors 
(i.e., 1 out of 21 Sectors) with 1 dB margin for Top-1 scheme
Beam accuracy [%]
	Prediction in one of all Sectors 
(i.e., 1 out of 21 Sectors) with 1 dB margin for Top-3 scheme
Beam accuracy [%]

	 Same UE distribution with same ISD, i.e., ISD=200

	Inter-sector
	100% outdoor

Sector [2]
	100% outdoor
Reference Sector [2]:  95.4%
Best Sector [2]:        95.4%
Worst Sector [1]:       77.2% 
Average accuracy:    89.7% 
	100% outdoor
Reference Sector [2]:  99.62%  
Best Sector [18]:       99.64% 
Worst Sector [1]:       91.7% 
Average accuracy:     98.1%

	Inter-sector
	80%/20% in/outdoor

Sector [2]
	80%/20% in/outdoor
Reference Sector [2]:  82.3%  
Best Sector [0]:        82.5%
Worst Sector [1]:       76.4%
Average accuracy:     79.9%
	80%/20% in/outdoor
Reference Sector [2]:  96.7%  
Best sector [2]:        96.7% 
Worst sector [1]:       94.5% 
Average accuracy:     95.9%

	Different UE distribution with same ISD, i.e., ISD=200

	Inter-sector + UE distribution 
	100% outdoor

Sector [2]
	80%/20% in/outdoor
Reference Sector [2]:  74.9%
Best Sector [9]:        78.7%
Worst Sector [6]:       71.3%
Average accuracy:    74.8%
	80%/20% in/outdoor
Reference Sector [2]:   87.9%
Best sector [0]:         92.9%
Worst sector [6]:        85.8% 
Average accuracy:     89.4%

	Inter-sector + UE distribution 
	80%/20% in/outdoor

Sector [2]
	100% outdoor
Reference Sector [2]:  90.5%
Best sector [14]:       92.0%
Worst sector [1]:       73.6%
Average accuracy:     87.6%
	100% outdoor
Reference Sector [2]:  99.2%
Best sector [18]:       99.7%
Worst sector [1]:       94.2%
Average accuracy:     98.9%

	Same UE distribution with different ISD, i.e., ISD=200 -> ISD=500

	Deployment scenario 


	80%/20% in/outdoor
ISD=200
Sector [2]
	80%/20% in/outdoor
ISD=500
Sector [2]:             80.2%

	80%/20% in/outdoor
ISD=500
Sector [2]:             95.4%


	Deployment scenario 

	100% outdoor
ISD=200
Sector [2]
	100% outdoor
ISD=500
Sector [2]:             81.9%
	100% outdoor
ISD=500
Sector [2]:             95.4%

	Different UE distribution with different ISD, i.e., ISD=200 -> ISD=500

	Deployment scenario + UE distribution 
	80%/20% in/outdoor
ISD=200
Sector [2]
	100% outdoor
ISD=500
Sector [2]:             83.8%

	100% outdoor
ISD=500
Sector [2]:             96.8%


	Deployment scenario + UE distribution 
	100% outdoor
ISD=200
Sector [2]
	80%/20% in/outdoor 
ISD=500
Sector [2]:             73.1%
	80%/20% in/outdoor 
ISD=500
Sector [2]:              88.1%



[bookmark: _Ref115360809][bookmark: _Ref115360772]Table 6: Generalization evaluations of inter-site test w or w/o different UE distribution for the setting with 4x8 gNB array having 8 SSB beams 

Observation 1 [bookmark: _Toc115446442]With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well to another cell except for one or two fixed cells.  
Temporal beam prediction	
In this section, the objective for a trained Neural Network (NN) is to predict the CSI-RS beam that is most likely to have the maximum L1-RSRP value, from the L1-RSRPs measured at the observation time instances. 



CSI report arrival time instances at the gNB.
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AI/ML Input 
AI/ML output(s) 


Figure 11. CSI report arrival time at the gNB and evaluated AI/ML input/output. 



Figure 11 shows the measurement report arrival time instances and timeline at the gNB. The assumed CSI report periodicity is 40ms. Time instances considered for the inputs and outputs of the NN at training are shown. It is assumed that at each time instance there are 32 CSI-RS and 8 SSB L1-RSRPs for each user. 

The NN’s inputs at training and inference are the L1-RSRPs selected from 5 consecutive time instances. So, the observation duration T1=5*40ms=200ms. Prediction is at the time instance immediately following the last observation window time instance, and also a prediction at 160ms ahead for comparison. Hence the time duration for the best beam evaluation is T2= 40 ms or 160 ms.

Simulation scenario
[image: Table, timeline
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Figure 12b) Percentage of occasions the CSI-RS beam is strongest 
Figure 12a) Beam grid for CSI-RS and SSB

Figure 12a shows the beam grid, i.e., azimuth and zenith angle combinations, for the assumed single panel gNB antenna configuration. The following are defined wrt the beam grid in Figure 12a.
· Set A: The set with all the 32 CSI-RS L1-RSRP values, i.e., |Set A|=32.
· Set B: The set of beam indices (either SSB or CSI-RS), that are measured in T1 and serve as NN’s input. The optimal and the best beams may or may not be present in Set B. Depending on the complexity requirement, more than one Set B can be formed. Few alternatives include,  
· Alt 1: Set B ≠ Set A. |Set B|=8,
· Alt 2: Set B ⊆ Set A. |Set B|= 16, 8 or 4,
· Alt 3: Set B = Set A. |Set B|=32.	
Alt 1 is SSB based training and inference, while Alt 2 and Alt 3 are CSI-RS based. Figure 13 shows the assumed fixed beam patterns for various cases of selecting Set B in Alt 2. The patterns were selected based on the beam statistics in the evaluated cell shown in Figure 12b. For a given case, the cardinality of Set B and the selected beam pattern remain fixed at training and inference.
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Description automatically generated]Figure 13. (blue = Set A) full CSI-RS beam grid. (red = Set B) selected CSI-RS indices as NN inputs. 



Figure 12b shows the beam grid for the optimal CSI-RS L1-RSRP, taken at each time instance, over all the users (~70k users). For the assumed setup, the CSI-RS beams at the elevation angle 102 degrees are most likely to be picked, which is about 81%. Based on the visualization of Figure 12b, various fixed beam subset selections for Set B, as shown in Figure 13 were separately considered.	
AI/ML model architecture
An all outdoor UMa scenario is considered here. Each randomly dropped user is moving in a straight line at 30kmph with no user panel rotation. The NN considered has two LSTM layers, a Dropout layer, Dense-Relu, Dense-softmax, sequentially connected. The total number of trainable parameters ~30,000. The dataset consists of L1-RSRPs from ~70,000 users (or data points), of which ~10,000 users are for inference, ~60,000 users are split between training and validation in the ratio as 80:20. In addition, categorical cross entropy loss function, a batch size of 100, 1000 epochs, adaptive learning rate (1e-3 à 1e-6) were used.
Except for the input layer, which changes with Set B, the to be trained model retains the hidden layers and the output layer for various cases considered here. The NN functions as a classifier, hence the output layer is length 32 softmax output vector. The NN’s input size is (Nip, 5), where Nip is the number of selected L1-RSRPs as explained above.
Prediction time instances
By keeping the duration T1 unchanged, it is expected that the trained NN must predict deeper into the future than what was considered at training. For this, T2 is varied relative to the T1 of training. As an example, for the assumption in Figure 11, for the testing inputs taken at the instances {0,1,2,3,4}, the prediction
· for the instance {5} implies T2=40ms, and
· for the instance {8}, T2=4*40ms=160ms. i.e., further deep into the future when compared to the above unchanged value of T2 relative to training input and output windows.
 Beam prediction KPIs
For performance evaluation, the considered KPI is the mean absolute L1-RSRP difference at the predicting time instance between the best beam of Set B and the NN’s predicted beam. To keep the same level of complexity wrt the input size (Nip) and various selected patterns of Set Bs (subcases with 32, 16, 8, 4 beams), only the L1-RSRPs of respective Sets Bs are considered while selected the best beam. As a result, the best beam may or may not be the optimal, unless for Alt 3 (subcase with 32 beams). So, the KPI for each of the Alt 2 subcases must not be compared with each other here.


	[image: ]

Figure 14a) Comparison varying prediction duration T2, 40ms and 160 ms. KPI wrt various CSI-RS based Set B.
	[image: ]
  
 Figure 14b). Comparison with baseline. T2=40ms. KPI wrt various CSI-RS based Set B.


For each of the subcases in Alt 2 and Alt 3, Figure 14a compares NN’s performance with the best beam of the corresponding Set B at two different T2 values, 40ms and 160ms. In all the considered cases, the KPI at 160ms is about 0.3 dB higher when compared to the KPI at 40ms. This likely is a result of a correlation between samples at successive time instances, leading to a more outdated input samples for 160ms when compared to the 40ms. For comparison, a baseline setup is derived from Alt 2 and Alt 3. The best beam of Set B at the last instance of T1 is reused as the best beam at T2. Baseline changes with Set B. As in Figure 14a, Figure 14b compares the NN’s performance with the corresponding Set B baseline at T2=40ms. Both the NN and the baseline have a similar performance for Alt 3 and Alt 2. This indicates that the prediction performance is mainly due to the ability in predicting in the spatial domain rather than the temporal domain.
[bookmark: _Toc115446443]The observed prediction performance improvement over baseline when number of beams in set B is <=8 is mainly due to the spatial domain prediction ability 
[bookmark: _Toc115446444]With set A equal to set B and having 30 km/h straight line moving UEs with no rotation, AI/ML temporal prediction at T2=40ms shows no gain over baseline method due to the slow-varying channel.
Conclusions
In the previous sections we made the following observations: 
Observation 1	The agreed simulation scenarios might have heavily skewed beam statistics. AI/ML models can be trained to work well for common beams and ignore uncommon beams. The poor performance of AI/ML models on uncommon beams might not be reflected in average beam prediction statistics. Visualizing the edge percentiles of the L1-RSRP CDF could be one method to illustrate the ability to predict uncommon beams
Observation 2	For NW-sided model, the variable number of beams could be due to UE only reporting a subset of the measured beams.
Observation 3	In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy, both for 4x8 (30 beams in Set A) and 8x16 arrays (168 beams in Set A).
Observation 4	In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.
Observation 5	Joint TX/RX prediction can give good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
Observation 6	The gains from AI/ML over baseline algorithm in terms of basic KPIs translate well to gains in full-buffer system-level evaluations.
Observation 7	By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.
Observation 8	UE location as assistance information can substantially improve prediction performance for outdoor UEs.
Observation 9	With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well to another cell except for one or two fixed cells.
Observation 10	The observed prediction performance improvement over baseline when number of beams in set B is <=8 is mainly due to the spatial domain prediction ability
Observation 11	With set A equal to set B and having 30 km/h straight line moving UEs with no rotation, AI/ML temporal prediction at T2=40ms shows no gain over baseline method due to the slow-varying channel.
Based on the discussion in the previous sections we propose the following:
Proposal 1	To help enable reproducibility, companies are encouraged to report relevant information about the AI/ML model architecture, data pre- and post-processing, loss functions, and training procedures using an academic style paper and/or pseudocode.
Proposal 2	When presenting results for AI/ML models, the proponent should report a model size (e.g., number of parameters) and an estimate of the number of floating-point operations (FLOPs) for inference.
Proposal 3	Define a RS measurement overhead KPI, e.g. N/M where N is the number of beams measured by a UE, and M is the total number of beams.
Proposal 4	Discuss the number of beams in set B as a fraction of beams in set A
	
Proposal 5	Discuss generalization in terms of different UE parameters, NW settings, deployment scenarios and propagation environment scenarios as a starting point
Proposal 6	For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise
Proposal 7	Study the impact of measurement imperfections on model performance for the considered beam prediction use cases.
Proposal 8	Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
a.	Possibility to tighten requirements on L1-RSRP measurement accuracy
b.	Define different UE capability based on their capability in fulfilling a measurement accuracy requirement.
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Appendix
[bookmark: _Ref111030355]Table 5: Evaluation scenario
	[bookmark: _In-sequence_SDU_delivery]Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	·         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
·         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
·         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



Measure beams in Set B, predict Top-1 beam in Set A


Select final/data beam as Top-1 beam in Set A


Measure beams in Set B, predict Set A


Measure Top-K beams from Set A


Select final/data beam based on meas. on Top-K beams
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