
[bookmark: _Hlk47552872]3GPP TSG RAN WG1 #110bis-e R1-2208633
e-Meeting, October 10th – 19th, 2022

Source:	vivo
Title:	Discussions on AI/ML framework
Agenda Item:	9.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]At RAN1 #110, some agreements and conclusions have been made as following [1]:
	Agreement
Study the following aspects, including the definition of components (if needed) and necessity, in Life Cycle Management
· Data collection
· Note: This also includes associated assistance information, if applicable.
· Model training
· [Model registration]
· Model deployment
· Note: Terminology is to be defined. This includes process of compiling a trained AI/ML model and packaging it into an executable format and delivering to a target device.
· [Model configuration]
· Model inference operation
· Model selection, activation, deactivation, switching, and fallback operation
· Note: some of them to be refined
· Model monitoring
· Model update
· Note: Terminology is to be defined. This includes model finetuning, retraining, and re-development via online/offline training.
· Model transfer
· UE capability
Note: Some aspects in the list may not have specification impact.
Note: Aspects with square brackets are tentative and pending terminology definition.
Note: More aspects may be added as study progresses.

Agreement
The following is an initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
1. Performance
· Intermediate KPIs
· Link and system level performance
· Generalization performance
1. Over-the-air Overhead
· Overhead of assistance information
· Overhead of data collection
· Overhead of model delivery/transfer
· Overhead of other AI/ML-related signaling
1. Inference complexity
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
· Training complexity
· LCM related complexity and storage overhead
· FFS: specific aspects
· FFS: Latency, e.g., Inference latency
Note: Other aspects may be added in the future, e.g. training related KPIs
Note: Use-case specific KPIs may be additionally considered for the given use-case.

Working Assumption
	Terminology
	Description

	Online training
	An AI/ML training process where the model being used for inference) is (typically continuously) trained in (near) real-time with the arrival of new training samples.
Note: the notion of (near) real-time vs. non real-time is context-dependent and is relative to the inference time-scale.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as online training by commonly accepted conventions.
Note: Fine-tuning/re-training may be done via online or offline training. (This note could be removed when we define the term fine-tuning.)

	Offline training
	An AI/ML training process where the model is trained based on collected dataset, and where the trained model is later used or delivered for inference.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as offline training by commonly accepted conventions.

Note: It is encouraged for the 3gpp discussion to proceed without waiting for online/offline training terminologies.

Working Assumption
Include the following into a working list of terminologies to be used for RAN1 AI/ML air interface SI discussion.
	Terminology
	Description

	AI/ML model delivery
	A generic term referring to delivery of an AI/ML model from one entity to another entity in any manner.
Note: An entity could mean a network node/function (e.g., gNB, LMF, etc.), UE, proprietary server, etc.

Note: Companies are encouraged to bring discussions on various options and their views on how to define Level y/z boundary in the next RAN1 meeting.

In this contribution, we will further discuss the general aspects of AI/ML framework.

Terminologies
At RAN1 #110 meeting, a list of components in life cycle management was agreed. Within them, the definition of model registration and mode configuration are FFS.
For model registration, the UE may need to indicate the model related information to the network in the following scenarios:
· Scenario 1: The UE may indicate which kind of model it can run;
· Scenario 2: The UE may indicate which model is available for use;
· Scenario 3: The UE may indicate whether a model is updated;
The UE may maintain the models when entering the RRC_IDLE and reuse the models after transition to RRC_CONNECTED.
Based on the above analysis, we propose:
Model registration should be defined that through the procedure, UE can indicate:
· Which kind of model it can run;
· which model is available for use;
· Whether a model is updated
For model configuration, it is quite generic. We see at least model transfer related configuration and model management related configuration.
Model configuration at least contain model transfer related configuration and model management related configuration.

Consideration on level y/z boundary
The main difference between level y and level z is whether there is model transfer. Since model transfer is one part of model delivery, the problem is transformed to find the main difference between model transfer and other model delivery methods.
The level y/z boundary can be analyzed from the following aspects.
· Model delivery source.
· For level z, model delivery from a network entity.
· For level y, no model delivery, or model delivery from a proprietary server. If the AI/ML models are stored in UE hardware, there is no need for model delivery.
· Model delivery format.
· For level z, public format. In the definition of model transfer, the model structure is known by two sides. UE should be able to decode the model structure from the AI/ML models delivered from gNB. Then public format is necessary. There are many options for public format, some of which are listed in the following.
· Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. However, 3GPP public format will take great efforts and may not be considered in this release.
· For level y, private format. Unlike model transfer in level z, the model structure is not known by two sides. Then private format for model description is used in this level. There are also some options for private format, some of which are listed in the following.
· Executable and private format. The AI/ML model can be executable format, but this executable format is non-exposed to the public.
· Some private formats for model description. Other than executable format, private formats for model description can also be used in level y. Since the executable format contains the full information of the AI/ML models, sometimes just part of the AI/ML models need to be updated and then the executable format will cause the waste of the transmission resources.
· [bookmark: _Hlk115100623]Model delivery content.	
· For level z, structure and parameter update, or parameter-only update. In parameter-only update, network sends updated parameters and does not change the AI/ML model structure. Since only the parameters are changed, recompilation is not needed. In structure and parameter update, network sends AI/ML model parameter and structure information, in which the model structure can be changed. Dependent on how much the model structure is changed, recompilation may be needed.
· For level y, binary image, or parameter-only update. Binary image is corresponding to Executable and private format, while parameter-only update refers to private formats for model description. In many scenarios, the model structure affects the hardware design and does not need to be changed.
· Model delivery signaling.
· For level z, 3GPP signaling, control plane based solution, or user plane based solution. In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
· For level y, non-3GPP signaling or 3GPP signaling. After offline alignment, two sides may use either non-3GPP signaling or 3GPP signaling for model delivery.
In sum, the main differences between level y and level z can be seen in Table 3-1.
The main differences between level y and level z are listed in Table 3-1.

Table 3-1: The summary of level y-z differences
	
	Level y
	Level z

	Model delivery source
	No model delivery, or model delivery from a proprietary server
	Model delivery from a network entity

	Model delivery format
	· Private format, e.g.,
Executable and private format
· One private format for model description
	Public format, e.g.,
· Current AI/ML frameworks chosen by two sides
· One public format for model description, such as ONNX
· New format for model description defined by 3GPP

	Model delivery content
	Binary image, or parameter-only update
	Structure and parameter update, or parameter-only update

	Model delivery signaling
	Non-3GPP signaling or 3GPP signaling
	3GPP signaling
· Control plane based solution, e.g., RRC signaling
· User plane based solution

Based on the above analysis, we have the following proposals.
Level y/z boundary based on whether the model is hosted at a 3gpp network entity and configurable (in a public format) for the entity.

Comparison between level y and z
In this section, some performance results of AI/ML Model for single cell or multiple cells are provided, to see the possible benefits of level z. Also, evaluations on separate training and joint training in level y are provided for CSI cases.
Some initial results for ray tracing data
To better compare the performance of AI/ML model in level y and level z, we utilize a typical ray-tracing channel model [2] in our experiment. The outdoor scenario map [2] is plotted in Figure 4-1.
[image:]
Figure 4-1: Ray tracing map.
Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [2]. The initial results are presented in Table 4-1.
Table 4-1: Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99

*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model.
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
Observation 1: [bookmark: _Hlk115472852]For data set constructed by ray-tracing method in [2], Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About total outdoor 200000 samples are collected. The detailed parameters are provided in Table 4-2.
Table 4-2: Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About total outdoor 200000 samples.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	About 160bits payload

	eTypeII configuration
	L=4, mv=4, beta=1/2, 8psk phase quantization

There are 4 data collecting areas. Area 1 is flat ground in front of a building. Area 2 is the main road of the industrial park, with many tall trees and cars along the road. Area 3 contains two gardens and there are also many tall trees in these gardens. Area 4 is the road behind several buildings.
[image:]
Figure 4-2: The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 4-3, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. In Table 4-4 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas.
It is seen that all AI/ML models achieve good very good performance compared to eType II codebook. Even one hidden layer full-connected (FC) encoder can provide considerable performance gain, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one hidden layer FC encoder, but the performance gain is small in Area 1 and Area 2. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 4-3: The SGCS results of eType II codebook and multiple AI/ML models trained by the data in each area separately.
	
	eType II codebook
	AI with a area specific model (One layer MLP encoder) ~67kB
	AI with a area specific model (smaller CNN encoder) ~250kB
	AI with a area specific model (larger CNN encoder) ~2.4MB
	AI with a area specific model (Transformer encoder) ~3.6MB

	Area 1
	0.670
	0.9020
	0.9055
	0.9104
	0.9153

	Area 2
	0.576
	0.8504
	0.8559
	0.8647
	0.8746

	Area 3
	0.515
	0.6640
	0.6915
	0.7000
	0.7287

	Area 4
	0.516
	0.6640
	0.7077
	0.7185
	0.7290

Table 4-4: The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas.
	
	Training SGCS on data from all 4 areas
	Testing SGCS in area1
	Testing SGCS in area2
	Testing SGCS in area3
	Testing SGCS in area4

	One hidden layer full-connected encoder
	0.7721
	0.8903
	0.8360
	0.6639
	0.6610

Models specific for the sampled area demonstrate 30%~50% performance gains compared to eType II codebook in real field data, while a generic NN encoder and decoder optimized non-specifically for the area may only provide less than 10% gains (as in SLS case).
Performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.

Level y performance: separate training and joint training for CSI
The performance of joint training of the two-sided model at network and UE side for CSI compression is evaluated first.
We consider joint training for one common CSI reconstruction part to two/three CSI generation parts of different UEs, where the basic model structures for CSI generation parts are Transformer, CNN, and MLP, while a Transformer CSI reconstruction part is adopted. Each involved UE generates its forward-propagation results based on datasets with the same configurations (i.e., the same number of subbands, antenna ports, antenna configurations, etc.). We optimize all involved CSI generation parts equally by using the average SGCS as the loss function. However, the optimizer and learning rate scheduling policy for different CSI generation parts are different, as UEs are considered to have their own training implementations. Joint training of one to one CSI reconstruction and generation part serves as the baseline. Results are presented in the following table.
Table 4-5: Performance of one common CSI reconstruction part to two/three CSI generation parts of different UEs
	[bookmark: _Hlk114146280]
	Transformer CSI Generation part
	CNN CSI Generation part
	MLP CSI Generation part

	Baseline of Rel-16 Type II
	0.795

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI reconstruction part to Transformer and MLP CSI generation part
	0.8601
	/
	0.8137

	Transformer CSI reconstruction part to Transformer and CNN CSI generation part
	0.8599
	0.8485
	/

	Transformer CSI reconstruction part to Transformer, CNN, and MLP CSI generation part
	0.8475
	0.8364
	0.8125

From Table 4-5, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. Besides, performance of CSI generation part with MLP structure is lower than those of CSI generation part with CNN and Transformer structure, indicating that certain structures are more suitable for CSI compression.
One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456437]Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.
Then we consider one common CSI generation part to two/three CSI reconstruction parts in our experiments. The basic model structures for CSI reconstruction parts are Transformer, CNN, and MLP, while a Transformer CSI generation part is adopted. All involved CSI reconstruction parts equally by using the average SGCS as the loss function. The optimizer and learning rate scheduling policy for different CSI reconstruction parts are also different, as networks are considered to have their own training implementations.
Table 4-6. Performance of one common CSI generation part to two/three CSI reconstruction parts of different networks
	
	Transformer CSI reconstruction part
	CNN CSI reconstruction part
	MLP CSI reconstruction part

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI generation part to Transformer and MLP CSI reconstruction part
	0.8526
	/
	0.8350

	Transformer CSI generation part to Transformer and CNN CSI reconstruction part
	0.8633
	0.8582
	/

	Transformer CSI generation part to Transformer, CNN, and MLP CSI reconstruction part
	0.8563
	0.8525
	0.8434

Results in Table 4-6 demonstrate that one common CSI generation part to multiple CSI reconstruction parts of different networks also suffer from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification.
One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456456]Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
The performance of separate training of the two-sided model at network and UE side for CSI compression is evaluated in the following.
The detailed separate training mechanism can be found in [3]. Some evaluation results of separate training for CSI compression are provided in this subsection.
Table 4-7. Results for separate training in CSI compression.
	Samples in exchanging dataset
	Joint training with 300000 samples in step1
	600000
	300000
	100000
	50000
	25000
	10000
	5000
	2500
	1000

	Test SGCS for setting0
	0.830
	0.832
	0.827
	0.815
	0.804
	0.793
	0.776
	0.761
	0.733
	0.650

	Test SGCS in setting1
	/
	/
	0.830
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting2
	/
	/
	0.800
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting3
	/
	/
	0.712
	/
	/
	/
	/
	/
	/
	/

Table 4-7 presents the results, and the details of each setting are given as follows:
1) Setting0: Decoder1 and decoder0 share the same model design as well as the hyperparameters in training. The dequantization method in decoder1 also matches the quantization method in encoder. Note that Setting0 is an ideal baseline as gNB could not know any information about the decoder0 which is at UE side.
2) Setting1: Decoder1 and decoder0 share the same model backbone structure, but decoder1 has more parameters than decoder0, i.e., decoder1 is an enlarged decoder0. The dequantization method in decoder1 also matches the quantization method in encoder.
3) Setting2: Decoder1’s structure is completely different from decoder0. But the dequantization method in decoder1 matches the quantization method in encoder.
4) Setting3: Decoder1’s structure is completely different from decoder0 (but the same with the decoder1 in Setting2), and the dequantization method in decoder1 does not match the quantization method in encoder.
Generally, performance of separate training could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, we find that it is possible to train a pair of encoder and decoder subject to different structures, e.g., an MLP encoder and a Transformer decoder, to a reasonable performance. It is not necessary to fully align the model structure of encoder at UE and decoder at network. Finally, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model.
[bookmark: _Ref111217210] With the assumption that the model structure is aligned from the two sides, when the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
It is possible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For sequential training starting with UE side training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. Supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs is also not difficult.
To this end, we try to verify the performance of this case. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated, and the results are presented in Table 4-8.
Table 4-8. Performance of one common CSI reconstruction part to multiple CSI generation parts of different UEs for UE-active separate training.
	
	Transformer CSI generation part
	CNN CSI generation part
	MLP CSI generation part

	SGCS for Baseline
	0.8528
	0.8424
	0.8025

	SGCS for Setting0
	0.8128
	0.8021
	0.7637

	SGCS for Setting1
	0.8358
	0.8303
	0.7942

	SGCS for Setting2
	0.8434
	0.7999
	0.7631

	SGCS for Setting3
	0.8439
	0.7957
	0.6983

	SGCS for Setting4
	0.7313
	0.8016
	0.7938

Table 4-9. The data sample number in Table 4-8.
	
	Data samples from Transformer CSI generation part
	Data samples from CNN CSI generation part
	Data samples from MLP CSI generation part

	Setting0
	50,000
	50,000
	50,000

	Setting1
	300,000
	300,000
	300,000

	Setting2
	300,000
	50,000
	50,000

	Setting3
	300,000
	50,000
	10,000

	Setting4
	10,000
	50,000
	300,000

Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases.
One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.

Model transfer considerations and specification impact
As discussed in Section 3, 3GPP signaling is used for model transfer. One is control plane based solution, and the other is user plane based solution. In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
If arbitrary AI/ML is transferred from network to UE, there is possibility that UE can not compile this AI/ML model into executable format, since some complexity AI/ML structures or new AI/ML techniques may be not supported by UE. UE can only compile certain AI/ML structures.
From current simulation results and field test results in Section 4 and our other contributions [3], it is seen that simple model structures, such as full-connected network or CNN, are good enough for typical per single cell or multiple cell operations.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Except activation function, full-connected layers or convolutional layers only contain addition and multiplication operations, which are very easy to run and have been supported in current UE chipset. The code of one full-connected layer can be written into the matrix multiplication of weight matrix and input vector of this layer, and then the result of matrix multiplication is added with bias vector. The operations are matrix dimension or vector dimension, which can be calculated parallel. The hardware design and optimization will be largely simplified and there will be no compiling problem if only full-connected layers or convolutional layers are used.
Simple model structures, such as full-connected layers or convolutional layers, have been supported in current UE chipset and will not cause compiling problem.
Another concern in model transfer is the model proprietorship. There are two key aspects of AI/ML models, where one aspect is model structure and the other aspect is model parameters. If full-connected layers or convolutional layers are used, the privacy of the model structure is not so important since these models have been widely used for a lot of areas. Thus, simple model structures also have low proprietorship risk for model transfer.
Simple model structures, such as those with full-connected layers or convolutional layers, have low proprietorship risk for model transfer.
From the above analysis, simple model structures have good performance, low complexity and already supported in current UE chipset
The most important spec impact of model transfer is the model delivery format. There are many options for public format, some of which are listed in the following.
· Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. However, 3GPP public format will take great efforts and may not be considered in this release.
All these mentioned public formats have
Study the following public formats for model transfer.
· Executable but public format;
· Current AI/ML frameworks chosen by two sides;
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	
There can be two types of 3GPP model delivery signaling solutions:
· CP-based model transfer over SRB, point-to-point between UE and RAN node/CN entity.
· UP-based model transfer over DRB, point-to-point between UE and server via UPF.
Both two solutions have some advantages and disadvantages that can be summarized in below Table 5-1.
Table 5-1: Pros and Cons of CP- and UP-based model transfer
	
	Pros
	Cons

	CP-based model transfer
	· Benefits are foreseen if the network may timely transfer and update the model, especially when the model is per cell.
· [Less or no signaling impact for model registration.]
	· Study how to transfer the model, e.g., dedicated SRB and RRC message
· Study how to address the model size issue, in case of huge model size.

	UP-based model transfer
	· Limited or no specification impact on RAN,
· Model transfer on DRB, thus the existing RRC signaling transfer is not affected.
	· Potentially new SA2 design, e.g. IMS server-like solution.
· [Extra signaling of model registration.]
· The model is transferred from a server via UPF, thus more latency.
· Even if the model is trained by the RAN node, the model cannot be transferred to UE directly.

[bookmark: _Hlk115473003]LS to RAN2 to study the solutions of model transfer, including CP- and UP-based solutions, and coordinate with relevant WG(s), e.g., SA2, about UP-based model transfer, if necessary.

Whole Procedures of LCM and expected specification impact for different levels
Expected specification impact of level x
In this level, the AI/ML is fully transparent and is all by implementation. The AI/ML model training, model deployment, model updating and performance monitoring are done by just one side. Other side does not know whether this side is using AI/ML or not. UE vendor is only responsible for AI/ML models on UE, and gNB vendor is only responsible for AI/ML models on gNB. Then only one side model can work in this level.
In the following, lifecycle management of level x is analyzed.
· Data collection: Use current CSI reporting or enhanced CSI reporting. Not support large amount of collected data reporting.
· Model deployment: The procedure is unseen from specification perspective. The AI/ML model needs to be well pre-trained by UE vendor or g-NB vendor or jointly and deployed to UE or g-NB before usage.
· Model registration: Not support.
· Model updating: Not support.
· Model activation/deactivation/selection: Not support.
· Performance monitoring: Not support or transparent performance monitoring.
Hence, we have the following proposal.
No specification impact is expected for level x.

Expected specification impact of level y
In the following, lifecycle management of level y is analyzed.
· Data collection: To better train the AI/ML model, training data collection is needed in this level. UE can use current CSI reporting, enhanced CSI reporting, or new report format to send the collected data. Large amount of collected data reporting could be specified for better reporting efficiency.
· Model deployment: Not support on air interface, since model transfer only works in level z. The AI/ML model can be well pre-trained by UE vendor or g-NB vendor or jointly and deployed to UE or g-NB before usage. Or, the AI/ML model is not well pre-trained and updated mainly by online training.
· Model training: Support in this level, due to UE capacity. There are different training options. The expected effort for level y mainly lies in this aspect.
· Joint training: Support. To use two-sided model, UE vendor and gNB vendor do not need to align the model offline before usage. The model can be trained online or offline by exchanging the label and the gradient information, with high frequency but a small amount of information in each time.
· Separate training: Support. To use two-sided model, UE vendor and gNB vendor do not need to align the model offline before usage. The model can be trained online or offline by exchanging the input and the output of encoder or decoder, with low frequency but a large amount of information in each time.
· Model registration/ Model ID: Support in this level, since model ID is necessary during model updating to distinguish the old model and the new updated model. UE can send the model registration signaling to gNB and then gNB responds with a model ID.
· Model activation/deactivation/selection: Support in this level, since the model can be selected or switched using model ID.
· Model updating: Support on air interface, since model training is supported. Two-sided model can be updated using joint training or separate training. One side model can be updated with data collected in real network and with assistance information of other 3GPP entities.
· Performance monitoring: The model can be managed together by UE and gNB during lifecycle management, since gNB knows whether UE is using AI/ML model or not. The intermediate KPIs of AI/ML model and the final system performance can be both monitored by UE and gNB.
Based on the above analysis, we have the following proposals.
Expected specification impacts of level y are:
· Capability report
· Data collection assistance
· Model registration and model switching
· Model updating procedures, including separate training or joint training
· Assistance information for inference
· Signaling-based model management
· Model activation and deactivation
· Performance monitoring

Lifecycle management under level z
In the following, lifecycle management of level z is analyzed.
· Data collection: Similar to level y.
· Model transfer: It is supported over air interface. The AI/ML model can be pre-trained before usage. There are two options of model transfer as follows.
· Network sends updated parameters and does not change the AI/ML model structure. The AI/ML model structure needs to be aligned before model transfer. This has been already supported by nowadays typical chipset implementations.
· Network sends AI/ML model parameter and structure information. Here the model structure can be changed. Dependent on how much the model structure is changed, recompilation may be needed.
· Model activation/deactivation/selection: Similar to level y.
· Performance monitoring: Similar to level y. Since network knows the AI/ML model information, the performance of AI/ML model can be monitored better with more details.
Based on the above analysis, we have the following proposals.
Expected specification impacts of level z are:
· Model transfer
· Other necessary parts in level y, except specified model update procedures
In Appendix A, model updating granularities for different collaboration levels have been analyzed. Based on the preliminary analysis, we propose:
Study lifecycle management for different granularities of model training and update.

Consideration on UE capabilities
Computation power at the UE side is growing fast in recent years. Figure 7-1 shows the AI capability of NPU in mobile phones in recent years. The capacity of one typical NPU used in current mobile phone is 22.5T operations (OPs) per second. One OP denotes one addition or one multiplication. From 2017Q1, the capacity of typical NPU in mobile phone is growing very fast year by year. This trend is expected to continue for the coming years.
[image:]
Figure 7-1: The growing capacity of NPU in mobile phone.
In this section, we provide some tested results for typical models and UE chipsets. The following aspects are considered.
Model transfer capability. This is the main capability to support collaboration level z. The model transfer is one of the key tools to resolve generalization problem. In the model transfer procedure, UE needs to receive the new AI/ML model transferred from network, decode the information of the new AI/ML model, and then load the new AI/ML model in the chipset.
Model training capability. The model training of one side model can be done by UE using its own collected data, or with the assistance of network. For the two-sided model, the model training needs the cooperation of UE and network.
Data collection capability. There are different ways of data collection, which would have different overheads and latencies. One way is direct collection of data, and another way is collection of processed data or data characteristics.
Latency. One part of latency comes from the inference of AI model, which is unavoidable. If AI models run in other hardware modules, such as NPU, GPU, or FPGA, there is extra latency of data exchange between the AI module and the non-AI module. In the initial test, we focus on the inference latency.
Complexity. Complexities that UE can handle within several milliseconds are another valid metric from UE implementation perspective. It should be noticed that there are quite a lot of different implementations for the same model thus the expected model complexity should be explicitly stated when under comparison.
Power consumption. Power consumption is relevant to user experience. Different modules that are responsible for neural network related operations would have different power consumption, e.g., NPU typically consumes the least while CPU consumes the most. When compared, this should also be clarified.

Model transfer capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP.
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation may be not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure offline or online before usage.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, we have the following proposal on model transfer capability.
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.

Model training capability
Model training or model updating is another key tool to fight against the AI/ML generalization problem, in addition to model transfer. It is known that AI/ML is a technology of data and the AI/ML model is memorizing the features of the training set. For some unseen samples with new features, the performance of AI/ML model is unpredictable. By collecting or transferring the unseen samples, the AI/ML model can be updated to adapt to the new environment.
There are mainly three categories of model training as follows.
· Transparent model training using its own collected data. In this category, UE can collect some samples in real network from time to time, considering its power consumption and data service. Then using these collected samples, the one-sided model of UE can be fine-tuned to alleviate the generalization problem.
· Model training for one-sided model with the assistance of other sides. In this category, network can send some assistance information to UE, to assist the AI/ML model training. Network can collect a large number of samples and select some representative samples from them. The number of the selected samples is much smaller, while they represent the main features of the environment nearby. The assistance of other sides will speed up the AI/ML model training.
· Model training for two-sided model with the assistance of other sides. In this category, the training of two-sided model is considered. Taking CSI compression as an example, the encoder of UE can not be trained without the assistance of network, since the loss of encoder output is not available for UE. There are two methods of two-sided model training. One is joint training and the other is separate training. In joint training, the label and the gradient information are exchanged between two sides, with high frequency but a small amount of information in each time. In separate training, the input and the output of the encoder or decoder are exchanged between two sides, with low frequency but a large amount of information in each time.
Since the capability of model training is challenging from UE side. It is expected that the model training would need some offline effort based on computing resources from UE. These offline efforts can also be dimensioned from UE capability perspective, e.g., time needed for model training. Size of dataset would also need to be considered for model training.
Based on the above analysis, we have the following proposal on model training capability.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.

Data collection capability
Different UE capabilities would be needed for the expected pre-processing, data storage, feature extraction and report for data collection. Some UEs may have the ability to collect a large amount of data while others would be limited. Depending on the reference point definition, some UEs may leave some interfaces for collection in the corresponding reference point while others may not. These should also be discussed in UE capability.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.

Typical UE performance for latency and complexity
Typical physical layer modules have strict requirements for latency. The latency of AI/ML operation should be within several milliseconds, otherwise, the AI model would not be applicable for air interface use cases. Since latency is highly correlated with complexity, they are discussed together in this subsection. For this important issue, we have collected some latency information from the area of image processing. Figure 7-2 shows the inference performance of typical AI models for image and video in typical chipsets. The latency of the AI models in Figure 7-2 is about 0.9ms~5.1ms. The AI models for air interface would be much simpler than the listed AI models and the latency of AI models for air interface will be much smaller. Then AI models for air interface would be likely to meet the latency requirement.

Figure 7-2: The latency of typical AI models for image and video in typical chipsets.
Initial test of typical models for latency on typical chipsets in Figure 7-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.

Power consumption
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal.
The actual power consumptions of typical AI models are listed in Table 7-1. From the discussion of power saving, the UE power consumption model for FR1 is shown in Table 7-2, in which the basic unit would be assumed as 5 mA. It is seen that the power consumptions of complex AI models are comparable with typical physical layer operations.
Table 7-1: The actual power consumptions of typical AI models in typical chipsets.	
	
	Electron current (mA)

	AI Model 2 (1.14 GOPs)
	291

	AI Model 4 (11.5 GOPs)
	420

Table 7-2: UE power consumption model for FR1 from the discussion of power saving.
	Power state
	Relative power

	Deep sleep
	1*5 (Optional: 0.5)

	Light sleep
	20*5

	Micro sleep
	45*5

	PDCCH-only
	100*5

	SSB or CSI-RS proc
	100*5

	PDCCH+PDSCH
	300*5

	UL
	250*5 (0dBm)
700*5 (23dBm)

Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Performance of model is not directly related to FLOPs, but specifically tuned for models. Even with the similar FLOPs, the performance may be drastically different. For example, as shown in Figure 7-3, the complexity of AI model 1 is 77.2% of AI model 2, and then the expected latency of AI model 1 is 77.2% of AI model 2. However, the actual latency of AI model 1 is 152% of AI model 2 in Chipset 2. For another example, the complexity of AI model 2 is 9.9% of AI model 4, while the power consumption of AI model 2 is 69.3% of AI model 4.

Figure 7-3: The complexity and latency comparison between AI models.
Even with the similar FLOPs, the performance of different models would be different for latency and power consumption.

Quantization level
Float point is usually used in study and initial evaluation. Fixed point is usually used in implementation, where the parameters of AI model are transformed to integer value and the complexity could be reduced. Some kinds of hardware only support fixed point.
For float point or fixed point, there are also different levels of bits used for one number. It is clear that the overhead of 32 bits is twice of 16 bits, and 4 times of 8 bits. Considering the overhead reduction of model transfer, low quantization level would be better than high quantization level. The actual complexities of different quantization levels would be slightly different from the overhead, due to the practical hardware design and AI model structure.

Figure 7-4: The latency ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.

Figure 7-5: The power consumption ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.
Some evaluation results of different quantization levels are shown in Figure 7-4 and 7-5. INT8 denotes integer value with 8 bits, FP16 denotes float point value with 16 bits. The performance of NPU-INT8 is about 1.8 times of NPU-FP16, 4.8~17 times of GPU-FP32, and 4.5~17 times of CPU-FP32. INT8 is suitable for service with high complexity and power consumption, such as photographing and video. FP16 is suitable for service with high accuracy and low power consumption, such as pixel-wise image processing.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Since the quantization level has such large impact on the latency and power consumption of AI model, companies are expected to report the quantization level of the model used for better calibration.
Study UE capability on supported quantization levels.

UE capability design
As discussed above, there will be various kinds of UEs supporting different level of AI models with different latency performance and power consumption. Different UEs with different capabilities should be considered in the same use case. Based on the discussion, we have the following proposal.
Study mechanisms of allowing different UEs with different implementations/capabilities to serve the same use case, e.g., by defining flexible capability exchange mechanisms.
It is also possible that the available resources for AI/ML operations might be time varying, thus it is proposed to study dynamic report of computation resources and latencies.
Study procedures that allow UE to dynamically report its status for computation resources and corresponding computation latencies.

Consideration on model registration and configurations
During model registration, some essential model information is exchanged between UE and network, including model storage, downloading, uploading, updating related information. UE can indicate the availability information of stored model to the network, and exchange the model information via UE request and network response. Optionally, the network will assign a model ID for each model. Using model ID, network can directly indicate the right AI/ML model to be activated, deactivated, switched or selected.
It is also possible that UE needs to indicate whether a model is updated by itself to the network through this model registration procedure.
Study the essential information exchange in model registration procedure for model registration procedure.
Model configuration can be further split to model delivery related configuration and model management related configuration.
Model delivery related configuration. Where and when to obtain the delivered AI/ML model should be configured in this configuration.
Model management related configuration. As discussed above, model ID is needed in model management and needs to be assigned. The model function is also important so that this AI/ML model can work in the right place. Considering the generalization limitation, one model may work in some kinds of channel conditions, which can be called as model validity criteria. The model validity criteria will assist the management of AI/ML models. Also, the performance monitoring related configuration is needed here, scu as the monitoring KPIs and frequency.
Study the essential information for both model delivery based and model management based in model configuration procedure, e.g., model ID, model function, validity criteria, and monitoring configuration.

Consideration on model selection, activation, deactivation, switching, and fallback
As a data driven technology, the AI/ML models may not apply on every scenario. Thus, the model on/off related operations should be carefully designed to make AI/ML operations quickly adapted to fast changing wireless environments. The model on/off related operations include model selection, activation, deactivation, switching, and fallback. Take the AI/ML models on UE as an example. These AI/ML models can be selected, activated, deactivated and switched by the decision of UE itself, or after receiving the decision from network.
Study both UE-initiated and network-initiated model selection, activation, deactivation, switching, and fallback.
If the AI/ML models inference operation is on UE and the model on/off related operations are initiated by network, there would be unavoidable latency. One part of the latency is caused by the transmission of performance monitoring KPIs from UE to network. Another part of the latency comes from the signaling transmission from network to UE. To avoid the latency, some event trigged mechanisms can be studied. For example, network can define a fallback event and send the trigger condition to UE. During the performance monitoring, UE finds that the fallback condition has been satisfied, then the AI/ML is deactivated and non-AI module is used instead. It is seen that the fallback operation is faster in event trigged mechanisms than that in signaling based mechanisms.
Study event trigged model selection, activation, deactivation, switching, and fallback.
Model activation, deactivation and fallback are suitable for only one AI/ML model available for the sub use case. However, model selection and switching only exist in the scenario that there are multiple AI/ML models available for the sub use case. Model ID or other signaling may be needed to indicate the right model. Depended on use cases and target scenarios, model ID based or functionality based on/off mechanisms can be used. In cases where a single model is active or transferred for use for a specific functionality, functionality based model activation, deactivation, and fallback procedures can be considered.
Study the following two kinds of model activation, deactivation, switching and fallback mechanisms
· Consider functionality based AI/ML activation, deactivation and fallback designs where a single model is available for use for a specific functionality or number of models are irrelevant for LCM.
· Consider model ID based AI/ML activation, deactivation and fallback designs where multiple models are available for use or relevant for LCM

Consideration on performance monitoring
Considering the relationship between model inference and performance monitoring, performance monitoring can be categorized into 4 cases.
Case 1: Inference and monitoring at UE. During model inference, UE collects its performance KPIs and makes the decision.
Case 2: Inference and monitoring at network. During model inference, network collects its performance KPIs and makes the decision.
Case 3: Inference at UE, monitoring at network. UE runs the AI/ML model, collects its performance KPIs for monitoring, feedbacks these KPIs to network, and network makes the decision.
Case 4: Inference at network, monitoring at UE. Network runs the AI/ML model, collects its performance KPIs for monitoring, feedbacks these KPIs to UE, and UE makes the decision.
In case 1 and case 2, the collection of performance KPIs may be done by implementation, and the there is no feedback of performance KPIs. However, the decision may be model deactivation, model switching or model updating, and so on. In case 3 and case 4, the performance KPIs need to be sent to the other side. But case 4 may be not appropriate in practical system. First, network has much higher computation capability than UE. Second, there are so many UEs in one cell or multiple cells, which will result in the conflict of different decisions from different UEs. In sum, case 1, case 2 and case 3 are proposed to be studied.
Consider the following cases for AI/ML performance monitoring:
Case 1: Inference and monitoring at UE.
Case 2: Inference and monitoring at network.
Case 3: Inference at UE, monitoring at network.
For the study of each use case, the 3 cases for AI/ML performance monitoring can be selected for specific scenario. Take the performance monitoring for CSI prediction as an example. If the CSI prediction is done at UE, then case 1 and case 3 can be considered, while if CSI prediction is done at network, case 2 and case 3 are involved.
There are mainly two kinds of the performance KPIs. One is intermediate KPIs and the other is final system performance. Intermediate KPIs usually are the direct performance KPIs of the AI/ML models. For example, cosine similarity of reconstructed channels and original channels can be used for CSI compression. Also, MSE or MAE of RSRPs can be used for beam management. BLER and Tput are usually used for final system performance.
Consider the following metrics for AI/ML performance monitoring:
Intermediate KPIs, e.g., the direct performance KPIs of the AI/ML models.
Final system performance, e.g., BLER and Tput.
For each use case, suitable intermediate KPIs can be selected to measure the direct performance KPIs of the AI/ML models. The final system performance may be the same for all sub use case, except positioning.

Consideration on data collection
One of the key elements for AI/ML evolution is large amount of data to extract useful features. To have an effective model trained for real-world problems, quite a few aspects need to be considered.
The quality of datasets needs to be considered. The only criteria to determine whether a specific dataset satisfies the expectations is whether the real-world problem can be effectively resolved. The following table shows some initial evaluation results for different scenarios for CSI compression. It can be seen that for a target scenario InH, if the training dataset is only constructed by the data collected from UMi, then the performance of the model would be poor. It is also true the other way around. If the dataset is properly adjusted to include more data from InH, then the performance would be much better for the target scenarios. If the representativeness is not good enough the performance of the trained model would not be useful for the target scenarios.
Table 11-1: The impact of different data constructions for CSI compression
[image:]
Dataset construction would influence the performance of trained models. The collected data set should be representative for the scenarios where the model is applied.
From above observation, the collected dataset for training should be representative for the expected applicable scenarios. Such applicable scenarios for the model would also depend on collaboration levels. For example, for level z with model transfer, the model could be flexibly updated and thus the applicable area of the model could be specific. The collected dataset for level z would thus be representative for this specific area. But for level y, offline procedures are needed for such model update, which would lead to larger latency. The applicable area for the model would also need to be large. Thus, the collected data set would need to be representative for a larger area.
Study how to construct a representative dataset (including matching between training and inference) for real-world problems for each use case/sub use case.
Study impact of collaboration level on construction of dataset for model training.
The data can be collected by both UE and network. For TDD system, the channel of uplink and downlink have reciprocity and the channel data can be just collected by side without data feedback. For example, network can get both uplink and downlink channel information by receiving SRS. For FDD system, there is only partial reciprocity for uplink and downlink channels, and then network can not obtain the full channel characteristic of downlink channel by receiving SRS. The data of down channel information needs to be sent from UE to network.
Some kinds of data may not be obtained by the assistance of reference signal sent by the other side, and then one side has to collect data from the other side. For example, the accurate positioning information can be only reported by UE.
Study the following two directions of data collections:
Network collects data from UE
UE collects data/assistance information from network
Study the assistance of reference signal for data collections.
One of the possible ways to have a representative dataset is to collect real-world data and mix the data with pre-defined synthetic dataset. Such mixture of dataset can be used to train a model with good generalization performance.
Study model training performance based on mixture of real world collected data and synthetic data.
To collect data from real world, there are several ways as below. These different ways of data collection would have different overheads and latencies.
· Direct collection of data.
· The data is collected at one entity and then exchanged between multiple entities.
· Overhead of this collection would be large since size of the raw data would be huge. Sometimes direct collection of data would be of very high cost, if possible. Rewarding in actors for reinforcement learning can also be viewed as direct collection of data. Overhead of such data collection would be relatively small.
· Latency of this way of data collection can be small if the data is collected in real time very few samples interval.
· Collection of processed data or data characteristics.
· For example, distribution information for the channel can be collected and exchanged between entities. Based on the characteristics, the data is re-generated at different entities.
· Overhead of the collection can be small but may cause performance degradation if not properly designed.
· Latency of this way of data collection would be dependent on how many samples are needed for the compression.
Study the following two kinds of data collection from overhead and latency perspective.
· Direct collection of raw data over air-interface
· Techniques to reduce data collection overhead should also be studied
· Collection of data characteristics/statistics over air interface
Aligned understanding between two sides would be needed to use the collected data. For example, whether the CSI-RS channel information is in frequency domain or time domain, or whether some de-noise function is needed or not. Dependent on how far the specification of AI/ML over air interface can go, it may be allowed to have several ways of pre-processing for the collected data for one sub use case, or only one fixed preprocessing is allowed. If fixed reference input is specified, the data collection may focus on those reference point where the specification is defined. But if for a specific use case, different pre-processings are allowed, it would be necessary to be aligned on how the data is preprocessed and where the reference point is for the data collection. The detailed formats for the reference point should be clarified.
Study how to align the reference point for data collection between different parties.
The interactions between data collection and data training would also need to be considered. It is possible that dataset is constructed first by synthetic data mixed with some real-world data. Then after validating the model in the real-world and based on the validation performance, more data can be collected. The model is finetuned further with the newly collected data. Based on further iterations, the models can be further finetuned. Further data collection is also possible if more data is collected.
When deployed for use, the model performance can always be monitored, based on monitoring, more data/failure analytics can be collected for learning from the analytics.
[image:]
Figure 11-1: Iterative procedures for data collection and data training.
Consider different data collection scenarios for model generation and finetuning.
· Data collection for initial deployment
· Data collection for finetuning
For different use cases, the entities involved in the data collection would be different. The collected data would need to be transferred to those entities responsible for training. Thus, properly choosing the involved entities could save the effort of moving data from/to different entities. Currently, UEs, gNBs, LMF, NWDAF, OAM are all possible options. Some of the interactions between these entities may go beyond the scope of RAN1. But common understanding of what these interactions are like may well impact RAN1 discussion on the framework and use cases.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc.

Consideration on model training
There are mainly three categories of model training as follows.
· Transparent model training using its own collected data. In this category, UE can collect some samples in real network from time to time, considering its power consumption and data service. Then using these collected samples, the one-sided model of UE can be fine-tuned to alleviate the generalization problem.
· Model training for one-sided model with the assistance of other sides. In this category, network can send some assistance information to UE, to assist the AI/ML model training. Network can collect a large number of samples and select some representative samples from them. The number of the selected samples is much smaller, while they represent the main features of the environment nearby. The assistance of other sides will speed up the AI/ML model training.
· [bookmark: _Hlk115101392]Model training for two-sided model with the assistance of other sides. In this category, the training of two-sided model is considered. Taking CSI compression as an example, the encoder of UE can not be trained without the assistance of network, since the loss of encoder output is not available for UE. There are two methods of two-sided model training. One is joint training and the other is separate training. In joint training, the label and the gradient information are exchanged between two sides, with high frequency but a small amount of information in each time. In separate training, the input and the output of the encoder or decoder are exchanged between two sides, with low frequency but a large amount of information in each time.
All the three categories of model training are important and suggested to be studied. Model training category 1 is expected to have no spec impact but can be used as baseline when evaluating the performance of Model training category 2 and 3.
Study the following model training categories.
· Category 1: Transparent model training using its own collected data.
· Category 2: Model training for one-sided model with the assistance of other sides.
· Category 3: Model training for two-sided model with the assistance of other sides.
For model training category 1, the training data is all collected by itself. There is no training data exchange between network and UE.
For model training category 2, the training data can be collected by the network and then sent to UE. Since network can gather the samples from multiple UEs for one cell or multiple cells by a long time, network can obtain the wireless channel characteristic and select representative training samples from all collected samples. To obtain similar AI/ML model training performance, smaller overhead is expected in model training category 2, compared to model training category 1.
Model training category 3 is mainly for two-sided model. Currently, the most discussed sub use case of two-sided model is CSI compression. In CSI compression using two-sided model use case, the AI/ML model training collaborations are being studied and an agreement has been made. Similar classification of model training category 3 can be defined.
In model training category 3, difference types acquire different kinds of exchanged information. In type 1 and type 2, training data samples may be share between network and UE. In type 2, the label and the gradient information need to be exchanged between network and UE.
In model training category 2 and 3, network can use current CSI framework to gather the samples. However, current CSI report is not design for AI/ML model training. Enhanced CSI report or new CSI report format can be studied.
Study the enhanced CSI report or new CSI report format for model training with the assistance of other sides.

Common evaluation methodologies for three use cases
In this section, common evaluation methodologies for all use cases are discussed, including KPIs, field data, intermediate results, generalization performance, ONNX and simulation calibration.
KPIs
The following is an initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Performance
· Intermediate KPIs
· Link and system level performance
· Generalization performance
· Over-the-air Overhead
· Overhead of assistance information
· Overhead of data collection
· Overhead of model delivery/transfer
· Overhead of other AI/ML-related signaling
· Inference complexity
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
· Training complexity
· LCM related complexity and storage overhead
In the following, the above aspects will be discussed.
Performance
Previously, MIMO evaluations are conducted typically without exposing absolute spectral efficiency. There may potentially be a large difference between companies on the baseline performance. It would be difficult for companies to align on whether AI/ML have gains if there are large differences on the baseline performance.
To alleviate such misaligned understanding on the baseline performance, some intermediate results can be considered for performance evaluation. For example, the results of spectral efficiency for CSI feedback enhancement depend significantly on the design of scheduler and MU pairing, which would make the performance results from different companies drastically different. If intermediate results such as cosine similarity are provided, the chances for companies to align the results would be much higher, which could be helpful for the group to achieve consensus on the final conclusions.
How to measure the AI/ML model performance is being discussed for each sub use case.
Table 13-1: Example intermediate KPIs for each use case
	Sub use case
	Intermediate KPIs

	CSI compression
	Cosine similarity of reconstructed channels and original channels

	CSI prediction
	Cosine similarity of predicted channel and real channels

	Positioning
	MSE or MAE of TOAs

	Beam
	Average L1-RSRP difference of Top-K predicted beam
Beam prediction accuracy (%) for Top-K beam

Consider intermediate results for performance comparison between companies.
However, intermediate KPIs only show the performance of one module but there are multiple modules in LLS and SLS. The improvement of the AI/ML model for the whole system can not be seen by intermediate KPIs. If possible, companied can provide BLER, Tput or spectrum efficiency results of LLS or SLS, to obtain the impact of AI/ML model on the whole system.
It is encouraged for companies to provide BLER, Tput or spectrum efficiency results of LLS or SLS.
How to measure the generalization is being discussed in CSI compression. Similar classification can be used for other use case.
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· [bookmark: _Hlk115197190]Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, e.g., Scenario#B/Configuration#B/Drop#B/Cell#B/Area#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A and a different dataset than Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, e.g., Scenario#B/Configuration#B/Drop#B/Cell#B/Area#B, Scenario#A/Configuration#B/Drop#B/Cell#B/Area#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Over-the-air Overhead
The over-the-air overhead includes overhead of assistance information, overhead of data collection, overhead of model delivery/transfer, overhead of other AI/ML-related signaling and so on. Since these aspects are still in discussion, the over-the-air overhead can be discussed later after these aspects have clear conclusions.
The over-the-air overhead evaluation can be discussed later after these aspects having clear conclusions.

Inference complexity
It is known that complex model would achieve better performance than simple model. There will be a tradeoff between complexity and performance. Using a very complex model for a simple task is not befitting. For the use case study, if companies could provide results for complexities and latencies for the models used in the contributions, it is very helpful for aligning the views of UE capabilities.
The complexities of AI models would be easily obtained by the API of AI/ML platform. Floating-point operations per second (FLOPs) could be used the KPI of complexity. The latency could be calculated using the capabilities of hardware and the complexities of AI models. Also, companies are encouraged to provide the latency information of model update and data transfer.
Companies are encouraged to provide results in the following table for complexities and expected latencies (under certain base chipset computation power assumption) or latency requirements (for the target use case) for the models used for each use case.
Table 13-2: Expected complexities of AI models from companies.
	
	Company 1
	Company 2
	Company 3
	…

	AI Model 1
	
	
	
	

	AI Model 2
	
	
	
	

	AI Model 3
	
	
	
	

	…
	
	
	
	

	…
	
	
	
	

	
	
	
	
	

Table 13-3: Expected latencies of AI models from companies.
	
	Company 1
	Company 2
	Company 3
	…

	AI Model 1
	
	
	
	

	AI Model 2
	
	
	
	

	AI Model 3
	
	
	
	

	…
	
	
	
	

	….
	
	
	
	

	
	
	
	
	

The inference complexity can be split into following aspects.
· Computational complexity of model inference. As discussed in UE capability, FLOPs can be used to measure the computational complexity of model inference
· Computational complexity for pre- and post-processing. Since pre- and post-processing are also computational operation, they can also be measured by FLOPs. The algorithm details are encouraged to be provided.
· Model complexity. Model size is a direct indicator of model complexity and then can be used here.
Then we have the following proposal for inference complexity KPIs.
Inference complexity can be measured by following aspects.
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing: FLOPs
· Model complexity: model size (e.g. Mbyte)
AI model size is very important and influences evaluation performances. An upper limit for the evaluation should be set thus companies can compare the performance in a fair way.
Consider setting up an upper limit for model size for a fair comparison between companies. 1~10Mega parameters size can be considered.
As discussed in Subsection 7.5, since power consumption is so important in this area, enough information of power consumptions for the AI models is very necessary. And then for the AI models used for each use case, companies are encouraged to provide results for power consumptions.
Companies are encouraged to assess power consumptions for the models used for each use case for KPI evaluation and also for defining feasible options for the reported latency/complexity values of AI/ML capabilities.

Training complexity
As discussed in Section 12, model training categories and methods are still being discussed. The training complexity evaluation can be discussed later after model training categories and methods having clear conclusions.
The training complexity evaluation can be discussed later after model training categories and methods having clear conclusions.

LCM related complexity and storage overhead
Currently, how LCM works is still under discussion. The LCM related complexity and storage overhead evaluation can be discussed later after LCM and storage having clear conclusions.
The LCM related complexity and storage overhead evaluation can be discussed later after LCM and storage having clear conclusions.

Field data
Field data is collected from practical wireless systems and include the actual wireless features. Since AI models in commercial products should match the practical wireless environment, field data is necessary for the commercial stage. For study purposes, field data can provide rough performance gain of AI/ML. On the other hand, there are some factors which are not considered in simulation data but are involved in field data, for example, the path moving in CSI prediction. Take another example, from the field test in Subsection 4.2, the frequency domain sparsity of field data is much worse than SLS, which results in the performance decrease of eType II codebook. The performance degeneration of AI/ML model is much smaller than eType II codebook.
The field data test results can be used as a reference and provide valuable insights.
[bookmark: _Hlk111228048]Furthermore, to evaluate real world performances and extract the potential gains provided by AI/ML, map-based hybrid channel model in 38.901 can also be considered to construct dataset for training and testing. The map can be based on open data set as in [2] or based on company proposed ones which mimic the actual deployment scenarios.
Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.

Evaluation methodology
To align the performance gain for each sub use case between different companies, simulation calibration is important and should be done in the evaluation stage. Dataset is one aspect that influences the aligned understanding on the performance of AI/ML over air interface. If the dataset for AI/ML model training is different for different companies, it would be impossible for companies to be aligned on the performance of AI/ML. There are two ways on the table for companies to be aligned on this issue:
Alt1: Provide details as much as possible for the generation of datasets.
Alt2: Directly provide publicly accessible dataset for training and testing.
It is preferable to go with Alt1+Alt2 since this would resolve the misalignment between companies to the largest extent.
For better simulation calibration, our datasets of each use case have been uploaded in [4]-[7].
It is encouraged for companies to provide publicly accessible datasets for training and testing for cross-checking purposes. Our datasets of each use case have been uploaded in [4]-[7].
Yet another aspect is model training and design aspect. If companies have different structures of models or different ways of training, the AI/ML performance would also be different. AI model should thus also be calibrated. Several levels of AI model alignment could be considered.
· At least for the baseline performance calibration, a simple and fixed model could be used for each sub use case. The full-connected network is one of the simplest AI models that could be used for this purpose. Companies could align on the hyper-parameters used for the fully connected models.
· For the second level, selected and recommended models for evaluations for applied areas could be collected from company inputs. The provided models include both model structures and ways of training.
· For the third level, companies could directly provide the model itself in a typical file format together with above mentioned publicly accessible dataset. Other companies could use the model and dataset together to cross-check the performance. For example, the above mentioned ONNX is an option.
It is encouraged for companies to provide model description files in pre-defined file format for cross-checking purposes (e.g. ONNX). With the help of ONNX and the corresponding dataset, all companies can choose their own tools (e.g. TensorFlow or PyTorch) to verify the performances.

Initial consideration on RAN4 aspects
For RAN4 tests on AI/ML over air interface, there would be two general principles.
· Focus on performance/functionality of model inference test. AI/Model training is done offline before test is conducted. No model training and model update during the test.
· Different methodologies need to be considered for one- and two-sided models
Non-AI algorithms are based on communication theories and then have strong physical meanings. Their performances on communication systems are robust and predictable to some extent.
AI/ML algorithms are based on machine learning and have weak physical meanings. They could work very well on scenarios similar to the scenario that generates training data. But if the scenarios for test is different from the scenario where the training data is generated, the performance would degrade. The channel conditions of real environment are complex and diversified. It is necessary in RAN4 to discuss whether and how to test the generalization performance of AI/ML algorithms.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
For UE side only AI/ML model test framework, AI/ML inference is similar to the legacy UE internal algorithm. Then similar test procedure could be used in this case. Candidate sub-use cases are CSI prediction combined with legacy codebook, spatial domain beam prediction, and temporal beam prediction.
Two-sided AI/ML model test framework is very challenging from a test feasibility perspective. Candidate sub-use cases are CSI compression using two-sided model, and joint CSI prediction and CSI compression. It should be discussed how TE could be involved considering different collaboration levels. could TE/UE train the paired AI/ML model. Separated training or joint training is used to train the two-sided model, but model training and model updating are not preferred in RAN4 test. Would it be feasible for TE to implement a paired model emulating gNB side model, especially would it be feasible to be used to verify performance in practical NW to some extent? These issues should be fully discussed in RAN4.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

Conclusions
1. [bookmark: _GoBack]Model registration should be defined that through the procedure, UE can indicate:
· Which kind of model it can run;
· which model is available for use;
· Whether a model is updated
Model configuration at least contain model transfer related configuration and model management related configuration.
Level y/z boundary based on whether the model is hosted at a 3gpp network entity and configurable (in a public format) for the entity.
1. For data set constructed by ray-tracing method in [2], Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
Models specific for the sampled area demonstrate 30%~50% performance gains compared to eType II codebook in real field data, while a generic NN encoder and decoder optimized non-specifically for the area may only provide less than 10% gains (as in SLS case).
Performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss.
Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.
One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
With the assumption that the model structure is aligned from the two sides, when the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Simple model structures, such as full-connected layers or convolutional layers, have been supported in current UE chipset and will not cause compiling problem.
Simple model structures, such as those with full-connected layers or convolutional layers, have low proprietorship risk for model transfer.
Study the following public formats for model transfer.
· Executable but public format;
· Current AI/ML frameworks chosen by two sides;
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	
LS to RAN2 to study the solutions of model transfer, including CP- and UP-based solutions, and coordinate with relevant WG(s), e.g., SA2, about UP-based model transfer, if necessary.
No specification impact is expected for level x.
Expected specification impacts of level y are:
· Capability report
· Data collection assistance
· Model registration and model switching
· Model updating procedures, including separate training or joint training
· Assistance information for inference
· Signaling-based model management
· Model activation and deactivation
· Performance monitoring
Expected specification impacts of level z are:
· Model transfer
· Other necessary parts in level y, except specified model update procedures
Study lifecycle management for different granularities of model training and update.
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.
Initial test of typical models for latency on typical chipsets in Figure 7-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Even with the similar FLOPs, the performance of different models would be different for latency and power consumption.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.
Study mechanisms of allowing different UEs with different implementations/capabilities to serve the same use case, e.g., by defining flexible capability exchange mechanisms.
Study procedures that allow UE to dynamically report its status for computation resources and corresponding computation latencies.
Study the essential information exchange in model registration procedure for model registration procedure.
Study the essential information for both model delivery based and model management based in model configuration procedure, e.g., model ID, model function, validity criteria, and monitoring configuration.
Study both UE-initiated and network-initiated model selection, activation, deactivation, switching, and fallback.
Study event trigged model selection, activation, deactivation, switching, and fallback.
Study the following two kinds of model activation, deactivation, switching and fallback mechanisms
· Consider functionality based AI/ML activation, deactivation and fallback designs where a single model is available for use for a specific functionality or number of models are irrelevant for LCM.
· Consider model ID based AI/ML activation, deactivation and fallback designs where multiple models are available for use or relevant for LCM
Consider the following cases for AI/ML performance monitoring:
Case 1: Inference and monitoring at UE.
Case 2: Inference and monitoring at network.
Case 3: Inference at UE, monitoring at network.
Consider the following metrics for AI/ML performance monitoring:
Intermediate KPIs, e.g., the direct performance KPIs of the AI/ML models.
Final system performance, e.g., BLER and Tput.
Dataset construction would influence the performance of trained models. The collected data set should be representative for the scenarios where the model is applied.
Study how to construct a representative dataset (including matching between training and inference) for real-world problems for each use case/sub use case.
Study impact of collaboration level on construction of dataset for model training.

Study the following two directions of data collections:
Network collects data from UE
UE collects data/assistance information from network
Study the assistance of reference signal for data collections.
Study model training performance based on mixture of real world collected data and synthetic data.
Study the following two kinds of data collection from overhead and latency perspective.
Study how to align the reference point for data collection between different parties.
Consider different data collection scenarios for model generation and finetuning.
· Data collection for initial deployment
· Data collection for finetuning
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc.
Study the following model training categories.
· Category 1: Transparent model training using its own collected data.
· Category 2: Model training for one-sided model with the assistance of other sides.
· Category 3: Model training for two-sided model with the assistance of other sides.
Study the enhanced CSI report or new CSI report format for model training with the assistance of other sides.
Consider intermediate results for performance comparison between companies.
It is encouraged for companies to provide BLER, Tput or spectrum efficiency results of LLS or SLS.
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, e.g., Scenario#B/Configuration#B/Drop#B/Cell#B/Area#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A and a different dataset than Scenario#A/Configuration#A/Drop#A/Cell#A/Area#A, e.g., Scenario#B/Configuration#B/Drop#B/Cell#B/Area#B, Scenario#A/Configuration#B/Drop#B/Cell#B/Area#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
The over-the-air overhead evaluation can be discussed later after these aspects having clear conclusions.
Companies are encouraged to provide results in the following table for complexities and expected latencies (under certain base chipset computation power assumption) or latency requirements (for the target use case) for the models used for each use case.
Inference complexity can be measured by following aspects.
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing: FLOPs
· Model complexity: model size (e.g. Mbyte)
Consider setting up an upper limit for model size for a fair comparison between companies. 1~10Mega parameters size can be considered.
Companies are encouraged to assess power consumptions for the models used for each use case for KPI evaluation and also for defining feasible options for the reported latency/complexity values of AI/ML capabilities.
The training complexity evaluation can be discussed later after model training categories and methods having clear conclusions.
The LCM related complexity and storage overhead evaluation can be discussed later after LCM and storage having clear conclusions.
The field data test results can be used as a reference and provide valuable insights.
Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.
It is encouraged for companies to provide publicly accessible datasets for training and testing for cross-checking purposes. Our datasets of each use case have been uploaded in [4]-[7].
It is encouraged for companies to provide model description files in pre-defined file format for cross-checking purposes (e.g. ONNX). With the help of ONNX and the corresponding dataset, all companies can choose their own tools (e.g. TensorFlow or PyTorch) to verify the performances.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

References
[bookmark: _Ref101427648]Chair's notes of RAN1#110, August 22-26, 2022.
A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available at ‘https://deepmimo.net/’.
vivo, R1- 2208634, “Evaluation on AI/ML for CSI feedback enhancement”, RAN1 #110bis-e, October 10-19, 2022.
[bookmark: _Ref102033778]vivo, “Dataset for AI CSI feedback”, https://commonbox.vivo.xyz/s/VkhgUFG2hhd.
[bookmark: _Ref102074620]vivo, “Dataset For AI CSI Prediction”, https://commonbox.vivo.xyz/s/1qv4tjQ5efk.
vivo, “Dataset for beam management”, https://commonbox.vivo.xyz/s/gMEadbdyFtd.
vivo, “Dataset for AI Positioning”, https://commonbox.vivo.xyz/s/UQnWAcqp2DL.

Appendix A: Model updating granularities for different collaboration levels
One of the key issues for lifecycle management is how often the model needs to be updated. In this section, we have some preliminary analysis on the granularities of model update.
In most cases, the parametric model defines a distribution and we simply use the principle of maximum likelihood. This means we use the cross-entropy between the training data and the model’s predictions as the cost function, as described

where is the input data vector, is the known data vector (or label), is the coefficient vector or the weight vector, acquired by the training procedure, all in a given AI neural network.
It is worthwhile noting that, the training set associated with any input pair of can be expressed as

In such a procedure, accordingly, the AI model can be trained by means of the off-line training manner under the condition of the statistic wireless channel model and can be considered as a universal AI model for any UE or gNB uses.
However, the channel factors influenced by gNB are comparatively stable, while the channel factors influenced by UE are unpredictable, with respect to the antenna direction and location. In addition, the channel model utilized for performance evaluation mainly refers to TR 38.901, where the long-term channel factors such as receive antenna field patterns (i.e., AoA and ZoA), receive antenna location vector, transmit antenna field patterns (i.e., AoD and ZoD), and transmit antenna location vector update statically, while the short-term channel factors such as Doppler frequency update dynamically. Consequently, therefore, a universal AI model purely trained by a statistic wireless channel model may be not feasible in terms of the complexity of neural network and the overall AI-based system performance. Somewhat UE assistance mechanism in addition to cell-based training model may be necessary.
Thanks to the unique wireless channel behaviors, we believe that the training set can be possibly divided into training subsets relying on the long-term statistic channel parameters. If we assume that the -th subset is associated with the parameter of , the training set can be represented as

where can be seen as the assisted parameter vector, , and the -th training subset can be expressed as
;			for	 .
If the subset and subset are completely independent, i.e., , for , and the distribution associated with the parameter of is approximated as

Then, the cross-entropy between the training data and the model’s predictions can be

If the parameter vector of is given, the cross-entropy in the training procedure for the parametric model with the pre-known can be individually represented as
 Eq. 1
where , and is the total number of training models.
It is worthwhile noting that, the AI models can be trained by means of offline manner and utilized by each UE accordingly. This does imply that each AI-model can be seen as a sub model, and the K sub models form a cell-specific AI model which can be operated by all the UEs if connected with the corresponding gNB.
As one specific example, by geographically dividing the network area, AI models associated with different areas can be distinguished and the related tasks associated with AI models would be limited. This results in the improvement of the accuracy and effectiveness of the AI model, and the reduction of the complexity of AI neural networks. To achieve the above purpose, the network may perform regional division of geographic coordinates through a zone identification (i.e., Zone-ID). The network determines the network coverage area related to the maximum communication range according to the geographic location of the gNB, which is further divided into multi-zones represented by Zone-ID. As illustrated in Figure B-1, the size of each zone with is configurable according to the use-cases and the deployed scenarios, where is the zone length and is the zone width. During the AI model training procedure, the training dataset can be distinguished by the Zone-ID in the network coverage area. Therefore, the trained AI model behaves the characteristics of the zone indicated by Zone-ID.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the Zone-ID within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network.
[image:]
Figure A-1: Schematic diagram of distinguishing AI models based on geographic information
By dividing different orientations of the network, alternatively, AI models associated with different orientations from gNB can be distinguished and the related tasks associated with AI models can be limited. This also results in the improvement of the accuracy and effectiveness of the AI model and the reduction of the complexity of AI neural networks.
As illustrated in Figure B-1, the area covered by the network is divided into orientations (or azimuths), and each orientation forms a pie-shaped directional sub area, denoted by , where is the ID of the gNB and is the subregion-orientated index. Optionally, the widths of the pie-shaped sub regions formed by the orientation of each sub region could be the same or different and determined by high-level configuration. More specifically, each sub region orientation can be regarded as an orientated beam (i.e., directional beamforming), where the orientated beam width is . During the AI model training procedure, if the gNB or UE can roughly acquire the geographic location of the UE or the AoA/DoA associated with the gNB, the AI training dataset can be distinguished by the orientation of each sub region. In such a case, the gNB or UE only uses the data related to the orientation of the sub region to train the AI model, which behaves the orientation features.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the subregion-orientated index within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network as well.
[image:]
Figure A-2: Schematic diagram of distinguishing AI models based on direction information

Appendix B: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwires officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.
The latency (ms) of typical AI models for image and video in typical chipsets

Chipset 1	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.1001100110011	1.1299435028248588	2.0491803278688527	1.8214936247723132	Chipset 2	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.3698630136986301	0.90009000900090008	3.3003300330033003	2.6315789473684208	Chipset 3	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.5105740181268883	1.5105740181268883	3.3670033670033668	5.1020408163265305	
The latency (ms)

The complexity and latency comparison between AI models

AI Model 1 (0.88 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	0.77200000000000002	1.522	1	AI Model 2 (1.14 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	1	1	1	

The latency ratio of typical AI models of different quantization levels

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.02	5.9171597633136092E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	3.2051282051282048E-2	0.11764705882352941	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.6153846153846159E-2	1	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.0090090090090086E-2	1	
The latency ratio

The power consumption ratio of typical AI models of different quantization

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	2.0593080724876441E-3	1.029654036243822E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	6.1779242174629318E-3	3.130148270181219E-2	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	1.9769357495881382E-2	0.23929159802306421	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.10378912685337727	1	
The power consumption ratio

image1.png

image2.png

image3.png

image4.png

image5.png

image6.emf
TrainingZonegNB-nUE

image7.emf
gNB-nDirectionalSub-area,

