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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the RAN1 #110 meeting [1], it was agreed that both direct AI/ML positioning and AI/ML assisted positioning are to be studied and evaluated by RAN1:
	Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning


In our companion contribution [2], we have proposed the following two specific techniques belonging to the two types of agreed sub use cases, respectively:
· Direct AI/ML positioning
· AI/ML-based fingerprint positioning
· AI/ML assisted positioning
· AI/ML-based LOS/NLOS Identification
In the remainder of this contribution, the above sub use cases are discussed and their evaluation methodology, KPIs, and also evaluation results are presented.
Evaluation methodology of the agreed use cases
[bookmark: _Ref110539387]Direct AI/ML positioning
Generic fingerprint positioning mechanism
Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and are no longer applicable in environments where NLOS paths dominate. In these scenarios, the number of gNBs that have LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm cannot meet the requirements of high-accuracy positioning applications. At the same time, existing research shows that, based on a large amount of channel data, a mapping relationship between channel features and location coordinates can be established by using an AI/ML method. This method, namely AI/ML-based fingerprint positioning, can achieve reliable accuracy under heavy NLOS conditions, where the positioning accuracy of traditional methods may be > 10m@90%. 
Figure 1 gives an overview about the AI/ML-based fingerprint positioning process. It exploits that each UE position can be associated with a unique channel characteristic (i.e. the fingerprint). The AI/ML model can learn this relationship for a given environment and then use it to determine the UE coordinates based on the measured channel characteristics. 
	[image: ]


[bookmark: _Ref100767732]Figure 1 AI/ML-based fingerprint positioning process
[bookmark: _Ref115256507]Spatial consistency
In the RAN1 #109-e meeting [3], companies reached consensus that spatial consistency modeling is important for evaluating the feasibility of AI/ML-based fingerprint positioning, with the agreement as follows:
	Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901


It should be noted that spatial consistency is required for channel modelling in the AI/ML-based fingerprint positioning. With spatial consistency, at the same drop of the simulation, two UEs with close locations will have similar channel characteristics. Spatial consistency also reflects the real channel characteristics in deployment, therefore it should be represented in channel modeling at large scale parameters, small scale parameters and absolute time of arrival for dataset generation. This is important for dataset generation used in AI/ML-based fingerprint positioning under heavy NLOS conditions. For modeling the spatial consistency, we adopt 2D-filtering method described as illustrated in Figure 2.
[image: ]
[bookmark: _Ref110520268]Figure 2 2D-filtering spatial consistency modelling according to 3GPP TR 38.901
In 3GPP, a spatial correlation of the small scale fading is introduced in the channel generation. Its procedure is given in TR 38.901 [4], where cluster-specific random variables are simulated spatially consistently for drop-based simulations. To generate spatially consistent random variables at specific coordinates (x, y) using the 2D-filtering method (which is illustrated in Figure 2), the following steps are taken:
· Step 1: Divide the simulation area into correlated grids of custom length and width (usually set to be smaller than correlation distances);
· Step 2: Generate independent and identically distributed random variables for each vertex of one correlated grid; 
· Step 3: Deliver the generated random variables to the exponential decaying filter in the two dimensional horizontal plane, which is used for spatially consistent LSP (Large Scale Parameters) generation in current 3GPP 3D channel model (see [4]). Then the random variables at each grid are correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.
· Step 4: Determine which grid the UE coordinate (x, y) belongs to, and generate the UE’s channel with the random variables of this grid. 
Based on above discussion, the following proposal is made:
Proposal 1 [bookmark: _Ref111139711]: For evaluation on AI/ML-based fingerprint positioning, spatial consistency should be modeled at large scale parameters, small scale parameters and absolute time of arrival as the baseline, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901 
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
[bookmark: _Ref101865042]Baseline for comparison
As agreed in the RAN1 #109-e meeting [3]:
	Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.


For the baseline for performance evaluations of AI/ML-based fingerprint positioning in NLOS dominated scenarios, we adopt the positioning accuracy achieved by the traditional UL-TDoA positioning method without LOS detection in Rel-17 as proposed in [5]. 
In the baseline method, the NLOS paths are not removed. In NLOS dominated scenarios, there are hardly at least three LOS paths available at the same time for calculation of the position. This will result in the issue that stronger NLOS paths are mistaken as LOS paths, which leads to poor accuracy. Even if NLOS paths would be identified and removed, then, since the evaluation is under heavy NLOS conditions, there may not be enough number of LOS paths available in most cases. Therefore, under heavy NLOS conditions, the positioning accuracy of the baseline is expected to be significantly low. Based on above discussion, the following proposal is made:
Proposal 2 [bookmark: _Ref111139983]: For evaluation on AI/ML-based fingerprint positioning, support UL-TDoA positioning as a candidate baseline of the legacy non-AI/ML method.
As shown in Table 1 under both heavy (with clutter parameters of {60%, 6m, 2m}) and moderate (with clutter parameters of {40%, 2m, 2m}) NLOS conditions with 4 receiving antennas, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 is more than 10 m. 
[bookmark: _Ref100767594]Table 1. Performance of UL-TDoA fingerprint positioning
	BS receiving antennas
	Positioning
	Positioning Accuracy @90%

	Clutter parameters: 60%, 6m, 2m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m

	Clutter parameters: 40%, 2m, 2m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m


AI/ML-assisted positioning
Generic AI/ML-based LOS/NLOS identification mechanism
By tagging the measurements with LOS/NLOS indicators, the LMF would obtain additional information that can be exploited to improve the positioning accuracy, for example when utilizing the link with a higher LOS probability. NLOS identification has benefits from various aspects as described in [5]:
	NLOS detection is an important method to improve the positioning accuracy. By tagging the measurements with LOS/NLOS indicators, the LMF would have the knowledge of LOS/NLOS status of the measurements. By utilizing the LOS/NLOS measurements correctly, for example utilizing the LOS measurements with higher probability, the positioning accuracy can be improved. In addition, NLOS identification has various benefits from the following aspects:
· Useful for the reference device
· Useful for NLOS dominate scenario
· Useful for Computation complexity
· Useful for calculating the location uncertainty


LOS/NLOS identification is a typical binary classification problem in the AI/ML field and AI/ML models are well suited for extracting different channel characteristics of the LOS or NLOS paths. The Rel-17 mechanisms that have been established for LOS/NLOS identification can therefore be improved significantly with help of AI/ML-based techniques, and especially as shown in this contribution, for a small number of antennas. Based on above discussion, the following proposal is made:
Proposal 3 [bookmark: _Ref111140100]: For AI/ML assisted positioning, AI/ML-based LOS/NLOS identification should be evaluated for positioning accuracy enhancements at least under slight/moderate NLOS scenarios in Rel-18.
Figure 3 shows the TDoA positioning process based on AI/ML-based LOS/NLOS identification. The AI/ML-based LOS/NLOS identification is utilized to remove the NLOS paths from the TOA calculation. It uses the channel’s power delay profile (PDP) as the input and calculates a LOS probability. We use a neural network with a convolutional architecture to learn this relationship. This achieves a much better prediction accuracy than traditional methods, especially when the number of antennas is small, as will be observed from our evaluations results in Section 3.2.
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[bookmark: _Ref100767696]Figure 3 Positioning process based on LOS/NLOS identification
The whole processing flow is illustrated in Figure 4 below. After the channel estimation procedure based on the reference signal, the frequency-domain channel is transformed with an IFFT into the time domain. The amplitude of the time-domain signal is then squared to obtain the PDPs which are then normalized on all antennas on the receiver side. The normalized PDPs are used as the input to the AI/ML model in which the LOS probability is inferred. Afterwards the NLOS components are removed and the LOS components are utilized to calculate the coordinates. The TDoA algorithm is then performed at the LMF which requires the identified LOS links from at least three gNBs.
	[image: ]


[bookmark: _Ref100767705]Figure 4 Pre-processing and positioning based on AI/ML-based LOS/NLOS identification in TDoA positioning
Baseline for comparison
The baseline algorithm for performance comparison with AI/ML-based LOS/NLOS identification could be considered to be aligned across companies for comparison. We select the traditional algorithm as proposed in [6]:
	LOS/NLOS identification algorithm
Check the energy consistency of the first path across different antenna elements within a polarization.
Check the phase consistency of the first path across different antenna elements in both vertical and horizontal direction within a polarization.
If both energy and phase consistency meet the energy/phase consistency, it would be identified as a LOS path, otherwise, it would be identified as a NLOS path.
Different confidence level of LOS/NLOS label may additionally be reported depending on the degree of the consistency.


[bookmark: _Ref102171295]Based on above discussion, the following proposal is made:
Proposal 4 [bookmark: _Ref115429989]: For evaluation of the AI/ML-based LOS/NLOS identification, the achievable positioning accuracy should be compared with the performance of an existing traditional algorithm based on Rel-17 without using AI/ML.
As shown in Table 2, when BS receiving ports is 32, the selected baseline LOS/NLOS identification solution has already achieved a good performance. But when the gNB is configured with a small number of antenna ports (which is reflected by 4 selected receiving ports in the evaluation), the baseline method provides a greatly degraded positioning accuracy error of more than 6m @90%. In contrast, the accuracy of the AI/ML-based LOS/NLOS identification solution with 4 gNB receiving ports can achieve 0.35m. The reason is that for a small number of antennas, the traditional method cannot provide enough resolution to correctly identify with a high probability on whether a path is LOS or NLOS. Therefore, for the widely deployed commercial RF modules with small antenna ports for indoor deployment, using AI/ML-based LOS/NLOS identification solution is meaningful.
[bookmark: _Ref115272100]Table 2. Performance of Rel-17 LOS/NLOS identification-based positioning
	BS receiving ports
	LOS ID method
	Positioning Accuracy @90%

	Clutter parameters: 40%, 2m, 2m

	32
	Baseline LOS ID
	0.484m

	4
	Baseline LOS ID
	6.447m


Evaluation Results
[bookmark: _Ref102060291]Performance evaluations of AI/ML-based fingerprint positioning
Simulation results
In the RAN1 #110 meeting [1], it was agreed that the following table is adopted for reporting the evaluation results by RAN1:
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	



To report the following in table caption: 
· Which side the model is deployed
· Model generalization investigation, if applied
· Short model description: e.g., CNN
Further info for the columns:
· Model input: input type and size
· Model output: output type and size
· Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)
· Clutter parameter: e.g., {60%, 6m, 2m}
· Dataset size, both the size of training/validation dataset and the size of test dataset
· AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs
· Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method
Note: To report other simulation assumptions, if any.


And as agreed in the RAN1 #109-e meeting [3], the dataset is generated from the simulation platform according to the defined scenario assumptions in the Appendix with FR1 settings. The implementation details for our evaluation on AI/ML-based fingerprint positioning are summarized in Table 3. 
The model structure for our implementation is Residual-Network (ResNet) architecture. The input to the AI/ML model is the Channel Impulse Responses (CIR), and the output of model inference is the estimated UE coordinates. And the label for training is the UE coordinates. Accordingly, the pre-processing shown in Figure 1 is to obtain the CIR from the measured channel vector/matrix.
And the dataset composition for AI/ML-based fingerprint positioning is also summarized in Table 3. The dataset used for evaluation is generated with spatial consistency modeling based on the 2D-filtering method described in Section 2.1.2, and modeled at channel modeling parameters including large scale parameters, small scale parameters and the absolute time of arrival. The training dataset consists of 25000 samples, where 1 sample denotes the CIR obtained at each of the 18 gNBs from the transmission by 1 UE, with 4 receiving ports for each gNB. 
Also as shown in Table 1, under both heavy (with clutter parameters of {60%, 6m, 2m}) and moderate (with clutter parameters of {40%, 2m, 2m}) NLOS conditions with 4 receiving antennas, the positioning accuracy error of the AI/ML-based fingerprint positioning solution is around 0.5 m. It is shown in our results that under moderate NLOS conditions the accuracy is now around 0.1 meter worse than for heavy NLOS conditions, which results from the fact that the heavy NLOS provides more diverse channel profiles in the fingerprint pool, which is beneficial for learning.
It can be observed that already with a small receiving antenna number, which is now widely adopted in the commercial RF modules for indoor deployment, the AI/ML scheme already provides remarkable sub-meter level precision.
[bookmark: _Ref115254936]Table 3. Evaluation results for AI/ML model deployed on network-side, without model generalization
	Model structure
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	ResNet
	CIR
	UE coordinates
	UE coordinates 
	{60%, 6m, 2m}
	25000
	5000
	34 K
	10M
	0.492

	
	
	
	
	{40%, 2m, 2m}
	
	
	
	
	0.606


From the results shown in the table above and the previous discussion, we can make the following observations:
Observation 1 [bookmark: _Ref111140324]: From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under both heavy and moderate NLOS conditions.
Observation 2 [bookmark: _Ref101791354][bookmark: _Ref102043780][bookmark: _Ref102060776]: From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under a small number of receiving ports.
According to companies’ contributions from the last meeting, the CIR is a popular AI/ML model input for the fingerprint positioning case. In our view, it would be helpful for aligning and calibrating the AI/ML model implementation as well as the simulation results across companies, if the preferred solutions are similar with each other and for example have the same input. But we are also open to optionally take other inputs or to take pre-processing into consideration. 
The details of the CIR to describe the time-domain channel between one gNB and one UE have not been discussed yet but it is obvious that each CIR would be associated with a certain overhead. Furthermore, it has not been evaluated yet, how many CIRs and gNBs actually are required to obtain unique fingerprint information that unambiguously can be mapped to the UE location. This is very different from the legacy approach, where gNBs should be ensured to always have a sufficient number of LOS paths.
We are therefore making the following proposal: 
Proposal 5 [bookmark: _Ref111139728][bookmark: _Ref102171111]: For comparison of evaluation on AI/ML-based fingerprint positioning evaluation results, support the channel impulse responses (CIRs) as the model inputs.
[bookmark: _Ref115273351]Generalization studies
In the RAN1 #110 meeting [1], it was agreed that the following aspects of the model generalization capability of the AI/ML based positioning are considered to be studied and evaluated by RAN1:
	Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).


In this section, the dataset composition and the performance results for a series of robustness studies according to the above agreements for AI/ML-based fingerprint positioning are presented.
It should be noted that in last meeting a table format had been agreed how to present results. The agreed table is well suited to capture simulation results without generalization, but we found that for generalization, the agreed table cannot capture well the different settings used for training and inference. We suggest that that in the coming RAN1 meeting some time could be spent to define a unified table structure that can be used for generalization. For example, as suggested in the proposal below: 
Proposal 6 [bookmark: _Ref115430018]: RAN1 should define a unified table structure to present results of generalization studies. It is proposed to have a different table for each dimension of generalization that is investigated, e.g. one for different drops, one for different clutter parameters, etc. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Different Drops
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Drop i
	M
	

	
	
	Test
	Drop j
	N
	


Dimension 1: Different drops.
Dimension 1 is intended for the challenges brought by the loss of spatial consistency when inference happens in a new drop outside the training dataset.
[bookmark: _Ref115277642]Table 4. Evaluation results for AI/ML model generalization capability in the aspect: Different Drops
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	1
	Training
	Drop 1
	25000
	>10

	
	Test
	Drop 2
	5000
	

	2
	Training
	5 Drops mixed
	25000 (5000/drop)
	8.04

	
	Test
	Drop 2(outside of the trained Drops) 
	5000
	

	3
	Training
	5 Drops mixed
	25000 (5000/drop)
	1.28

	
	Test
	Drop 1 (inside the trained Drops)
	5000
	

	4
	Training
	Drop 1 & 2 mixed
	25000 (12500/drop)
	0.69

	
	Test
	Drop 1 (inside the trained Drops)
	5000
	



From the results shown in the Table 4 above, we can make the following observations: 
Observation 3 [bookmark: _Ref115430423]: From the evaluation results of the above evaluated scenario 1, 3, and 4, when the inference dataset and the training dataset are from different drops, AI/ML-based fingerprint positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 4 [bookmark: _Ref115430438]: From the evaluation results of the above evaluated scenario 1 and 2, enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 5 [bookmark: _Ref115430446]: From the evaluation results of the above evaluated scenario 3 and 4, the positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.
We suggest that that in the coming RAN1 meeting some time could be spent to define some typical evaluation cases for verifying the model generalization in the aspect - Different Drops, which helps to better compare the evaluation results among companies. Also, it would be beneficial if companies would study additional cases to further explore and extend the generalization capabilities.
For example, as suggested in the proposal below: 
Proposal 7 [bookmark: _Ref115430032]: RAN1 should define typical evaluation cases for model generalization in the aspect - Different Drops, to better compare results across companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Different Drops
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Drop i
	M
	

	
	
	Test
	Drop j
	N
	

	
	2
	Training
	k Drops mixed
	M (M/k per drop)
	

	
	
	Test
	Drop i (outside of the trained Drops) 
	N
	

	
	3
	Training
	k Drops mixed
	M (M/k per drop)
	

	
	
	Test
	Drop j (inside the trained Drops)
	N
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


[bookmark: _Ref101888779][bookmark: _Ref101897960]Dimension 2: Clutter parameters.
Dimension 2 is intended for the challenges brought by the loss of spatial consistency plus the unlearned channel characteristics when inference happens with a different distribution of obstacles than in the training dataset.
[bookmark: _Ref115270305]Table 5. Evaluation results for AI/ML model generalization capability in the aspect: Clutter parameters
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	1
	Training
	Clutter paras: {40%, 2m, 2m}
	25000
	>10

	
	Test
	Clutter paras: {60%, 6m, 2m}
	5000
	

	2
	Training
	Clutter paras: {60%, 6m, 2m} & {40%, 2m, 2m} mixed
	25000 (12500/ paras)
	0.86

	
	Test
	Clutter paras: {60%, 6m, 2m}
	5000
	

	3
	Training
	Clutter paras: {60%, 6m, 2m} & {40%, 2m, 2m} mixed
	25000 (12500/ paras)
	0.88

	
	Test
	Clutter paras: {40%, 2m, 2m}
	5000
	


From the results shown in the Table 5 above, we can make the following observations: 
Observation 6 [bookmark: _Ref111140362][bookmark: _Ref115430457]: From the evaluation results of the above evaluated scenario 1, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based fingerprint positioning model provides poor generalization performance.
Observation 7 [bookmark: _Ref111140395][bookmark: _Ref115430472]: From the evaluation results of the above evaluated scenario 2 and 3, when the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.
We suggest that that in the coming RAN1 meeting some time could be spent to define some typical evaluation cases for verifying the model generalization in the aspect - Clutter parameters, which helps to better compare the evaluation results among companies. Also, it would be beneficial if companies would study additional cases to further explore and extend the generalization capabilities.
For example, as suggested in the proposal below: 
Proposal 8 [bookmark: _Ref115430044]: RAN1 should define typical evaluation cases for model generalization in the aspect - Clutter parameters, to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Clutter parameters
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Clutter paras: a
	M
	

	
	
	Test
	Clutter paras: b
	N
	

	
	2
	Training
	Clutter paras: a&b mixed
	M (M/2 per paras)
	

	
	
	Test
	Clutter paras: a
	N
	

	
	3
	Training
	Clutter paras: a&b mixed
	M (M/2 per paras)
	

	
	
	Test
	Clutter paras: b
	N
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Dimension 3: Network synchronization error.
In the RAN1 #110 meeting [1], it was agreed that impact from implementation imperfections should be studied:
	Agreement
For AI/ML-based positioning, study impact from implementation imperfections.


Dimension 3 is intended for the challenges brought by the non-ideal assumptions affecting the time-domain channel characteristics when a random synchronization error occurs in channel measurement. 
[bookmark: _Ref115270519]Table 6. Evaluation results for AI/ML model generalization capability in the aspect: Network synchronization error
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	1
	Training
	Without network synchronization error
	25000
	>10

	
	Test
	With network synchronization error @50ns
	5000
	

	2
	Training
	With network synchronization error @50ns
	25000
	3.02

	
	Test
	
	5000
	

	3
	Training
	With network synchronization error @0&30&40&50ns
	25000 (6250/ paras)
	2.51

	
	Test
	
	5000 (1250/ paras)
	

	4
	Training
	With network synchronization error @0&30&40&50ns
	25000 (6250/ paras)
	4.28

	
	Test
	With network synchronization error @50ns
	5000 (1250/ paras)
	


From the results shown in the Table 6 above, we can make the following observations: 
Observation 8 [bookmark: _Ref115430481]: From the evaluation results of the above evaluated scenario 1, when the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 9 [bookmark: _Ref115430489]: From the evaluation results of the above evaluated scenario 2, when the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 10 [bookmark: _Ref115430502]: From the evaluation results of the above evaluated scenario 3 and 4, when the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.
According to the evaluation results of the above evaluated scenario 1 to 4, the positioning performance of the AI/ML model with CIR input will degrade when the network synchronization error exists. In order to improve the generalization performance of the AI/ML model, we need to find solutions that can address the impact of the network synchronization error.
We therefore make the following proposal: 
Proposal 9 [bookmark: _Ref115430061]: For AI/ML-based positioning, study potential solutions to address the issues of network synchronization error on positioning performance. 
We suggest that that in the coming RAN1 meeting some time could be spent to define some typical evaluation cases for verifying the model generalization in the aspect - Network synchronization error, which helps to better compare the evaluation results among companies. Also, it would be beneficial if companies would study additional cases to further explore and extend the generalization capabilities.
For example, as suggested in the proposal below: 
Proposal 10 [bookmark: _Ref115430193]: RAN1 should define typical evaluation cases for model generalization in the aspect - Network synchronization error, to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Network synchronization error
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Without network synchronization error
	M
	

	
	
	Test
	With network synchronization error @A ns
	N
	

	
	2
	Training
	With network synchronization error @A ns
	M
	

	
	
	Test
	
	N
	

	
	3
	Training
	With network synchronization error @ B paras mixed
	M (M/ B per paras)
	

	
	
	Test
	
	N (N/ B per paras)
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Dimension 4: UE timing error.
Dimension 4 is intended for the challenges brought by the non-ideal assumptions affecting the time-domain channel characteristics when a random UE timing error occurs in channel measurement.
[bookmark: _Ref115278026]Table 7. Evaluation results for AI/ML model generalization capability in the aspect: UE timing error
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	1
	Training
	Without UE timing error
	25000
	3.12

	
	Test
	With UE timing error @10ns
	5000
	

	2
	Training
	With UE timing error @10ns
	25000
	0.61

	
	Test
	
	5000
	

	3
	Training
	With UE timing error @0&10&20&30ns
	25000 (6250/ paras)
	0.68

	
	Test
	
	5000 (1250/ paras)
	

	4
	Training
	With UE timing error @0&10&20&30ns
	25000 (6250/ paras)
	0.89

	
	Test
	With UE timing error @30ns
	5000 (1250/ paras)
	


From the results shown in the Table 7 above, we can make the following observations: 
Observation 11 [bookmark: _Ref115430511]: From the evaluation results of the above evaluated scenario 1, when the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 12 [bookmark: _Ref115430520]: From the evaluation results of the above evaluated scenario 2, when the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 13 [bookmark: _Ref115430528]: From the evaluation results of the above Test scenario 3 and 4, when the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.
As described in TS 38.305 [7], the Tx/Rx timing errors are defined as follows: 
	· Tx timing error: Result of Tx time delay involved in the transmission of a signal. It is the uncalibrated Tx time delay, or the remaining delay after the TRP/UE internal calibration/compensation of the Tx time delay, involved in the transmission of the DL-PRS/UL SRS signals. The calibration/compensation may also include the calibration/compensation of the relative time delay between different RF chains in the same TRP/UE and may also possibly consider the offset of the Tx antenna phase centre to the physical antenna centre..
· Rx timing error: Result of Rx time delay involved in the reception of a signal before reporting measurements that are obtained from the signal. It is the uncalibrated Rx time delay, or the remaining delay after the UE/TRP internal calibration/compensation of the Rx time delay, involved in the reception of the DL-PRS/UL SRS signals. The calibration/compensation may also include the calibration/compensation of the relative time delay between different RF chains in the same UE/TRP and may also possibly consider the offset of the Rx antenna phase centre to the physical antenna centre. 


While for fingerprint positioning, the synchronization error of the transmission link between gNB and UE should also be considered. Therefore, the typical standard deviation value for modelling the UE timing error should also take this into consideration. We are therefore making the following proposal: 
Proposal 11 [bookmark: _Ref115430220]: For evaluation on the AI/ML-based positioning, the synchronization error of the transmission link between gNB and UE should also be considered. 
We suggest that that in the coming RAN1 meeting some time could be spent to define some typical evaluation cases for verifying the model generalization in the aspect - UE timing error, which helps to better compare the evaluation results among companies. Also, it would be beneficial if companies would study additional cases to further explore and extend the generalization capabilities.
For example, as suggested in the proposal below: 
Proposal 12 [bookmark: _Ref115430281]: RAN1 should define some typical evaluation cases for evaluate the generalization in the aspect - UE timing error to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: UE timing error
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Without UE timing error
	M
	

	
	
	Test
	With UE timing error @A ns
	N
	

	
	2
	Training
	With UE timing error @A ns
	M
	

	
	
	Test
	
	N
	

	
	3
	Training
	With UE timing error @ B paras mixed
	M (M/ B per paras)
	

	
	
	Test
	
	N (N/ B per paras)
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Model updating
In addition to mixing the datasets, performance gain brought by fine-tuning is also studied in this paper. 
[bookmark: _Ref115278236]Table 8. Model update evaluation results for AI/ML model generalization capability
	Evaluated aspects
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Before model update
	After model update

	Different Drops
	Training
	Drop 1
	25000
	>10
	3.2

	
	Fine-tuning
	Drop 2
	1000
	
	

	
	Test
	Drop 2
	5000
	
	

	Clutter parameters
	Training
	Clutter paras: InF-DH {60%, 6m, 2m}
	25000
	>10
	3.1

	
	Fine-tuning
	Clutter paras: InF-DH {40%, 2m, 2m}
	1000
	
	

	
	Test
	Clutter paras: InF-DH {40%, 2m, 2m}
	5000
	
	

	Network synchronization error
	Training
	Without network synchronization error
	25000
	>10
	8.47

	
	Fine-tuning
	With network synchronization error @50ns
	5000
	
	

	
	Test
	With network synchronization error @50ns
	5000
	
	

	UE timing error
	Training
	Without UE timing error
	25000
	7.24
	1.13

	
	Fine-tuning
	With UE timing error@20ns
	5000 
	
	

	
	Test
	With UE timing error@20ns
	5000
	
	


In the above evaluated aspect - Different Drops, the model trained with 25000 samples in Drop 1 with {60%, 6m, 2m} setting is fine-tuned with 1000 samples in Drop 2 with {60%, 6m, 2m} setting. And then the fine-tuned model is inferred in the inference dataset in Drop 2 with {60%, 6m, 2m} setting. 
In the above evaluated aspect - Clutter parameters, the model trained with 25000 samples in Drop 1 with {40%, 2m, 2m} setting is fine-tuned with 1000 samples in Drop 1 with {60%, 6m, 2m} setting. And then the fine-tuned model is inferred in the inference dataset in Drop 1 with {60%, 6m, 2m} setting. 
While in the above evaluated aspect - Network synchronization error, the model trained with 25000 samples without network synchronization error is fine-tuned with 5000 samples with network synchronization error @50ns. And then the fine-tuned model is inferred in the inference dataset with network synchronization error @50ns. 
And in the above evaluated aspect - UE timing error, the model trained with 25000 samples without UE timing error is fine-tuned with 5000 samples with UE timing error@20ns. And then the fine-tuned model is inferred in the inference dataset with UE timing error@20ns. 
From the results shown in the Table 8 above, we can make the following observations: 
Observation 14 [bookmark: _Ref115430539]: From the model update evaluation results of the above aspect - Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance. 
Observation 15 [bookmark: _Ref115430547]: From the model update evaluation results of the above aspect - Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance. 
Observation 16 [bookmark: _Ref115430571]: From the model update evaluation results of the above aspect - Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.
Observation 17 [bookmark: _Ref115430581]: From the model update evaluation results of the above aspect - UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance. 
According to the evaluation results of the above evaluated scenarios for model updating, the positioning performance of the AI/ML model is improved significantly except for the presence of a network synchronization error. In order to further improve the generalization performance of the AI/ML model, we need to find solutions that can alleviate the impact of this factor.
We therefore make the following proposal: 
Proposal 13 [bookmark: _Ref115430300]: Model updating is supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings. 
· FFS how to improve the performance under the presence of network synchronization errors.
We suggest that that in the coming RAN1 meeting some time could be spent to define some typical evaluation cases for verifying the fine-tuning performance, which helps to better compare the evaluation results among companies. 
For example, as suggested in the proposal below: 
Proposal 14 [bookmark: _Ref115430315]: RAN1 should define typical cases to evaluate cases the performance gain brought by fine-tuning to better compare results among companies. One example is given in the template below.
Table X. Model update evaluation results for AI/ML model generalization capability
	Source
	Evaluated aspects
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Before model update
	After model update

	Huawei, HiSilicon
	Different Drops
	Training
	Drop i
	M
	
	

	
	
	Fine-tuning
	Drop j
	K
	
	

	
	
	Test
	Drop j
	N
	
	

	
	Clutter parameters
	Training
	Clutter paras: a
	M
	
	

	
	
	Fine-tuning
	Clutter paras: b
	K
	
	

	
	
	Test
	Clutter paras: b
	N
	
	

	
	UE timing error
	Training
	Without UE timing error
	M
	
	

	
	
	Fine-tuning
	With UE timing error @A ns
	K
	
	

	
	
	Test
	With UE timing error @A ns
	N
	
	

	
	…
	Training
	…
	
	
	

	
	
	Fine-tuning
	
	
	
	

	
	
	Test
	…
	
	
	


[bookmark: _Ref115277470]Performance evaluations of AI/ML-based LOS/NLOS identification
Simulation Results
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform for the AI/ML-based LOS/NLOS identification sub use case according to the defined scenario assumptions in the Appendix with FR1 settings and the evaluation is conducted under clutter parameters of {40%, 2m, 2m}. The implementation details for our evaluation on AI/ML-based LOS/NLOS identification are summarized in Table 9. 
The model structure for our implementation is CNN. The normalized PDP is selected to be the model input for both training and inference, and the label for training are ideal LOS/NLOS identifications and the output of model inference are LOS/NLOS probabilities. Accordingly, the pre-processing is to obtain the PDP from the measured channel vector/matrix.
And the dataset composition for AI/ML-based LOS/NLOS identification is also summarized in Table 9. Note that only a relatively small training dataset size is needed for the AI/ML model applied for this sub use case. And the training dataset consists of 18000 samples, where 1 sample denotes 1 PDP value of the reference signal transmitted by 1 UE and received by 1 gNB in the deployment with 4 receiving ports by each gNB.
As shown in Table 9, the accuracy of the AI/ML-based LOS/NLOS identification solution with 4 gNB receiving ports can achieve 0.35m, while the baseline method provides positioning accuracy error of more than 6m @90%. The reason is that for a small number of antennas, the traditional method cannot provide enough resolution to correctly identify with a high probability on whether a path is LOS or NLOS. Therefore, for the widely deployed commercial RF modules with small antenna ports for indoor deployment, using AI/ML-based LOS/NLOS identification solution is meaningful.
[bookmark: _Ref115272602]Table 9. Evaluation results for AI/ML model deployed on network-side, without model generalization
	Model structure
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CNN
	Normalized PDP
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	{40%, 2m, 2m}
	18000
	9000
	582
	192K
	0.353


[bookmark: _Ref101791089]From the results shown in the table above, we can make the following observation:
Observation 18 [bookmark: _Ref111140436]: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
The complexity of the AI/ML model for 4 BS receiving antennas applied is also shown in Table 9. It can be seen that AI/ML model only needs very few parameters and does not require a large number of FLOPs compared to the models used in other use cases, e.g., fingerprint positioning as given in Table 3. However, still the performance improvement compared to the baseline is significant.
Observation 19 [bookmark: _Ref102171329]: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
1.1.1 Generalization studies
In this section, the dataset composition and the performance results of AI/ML-based LOS/NLOS identification for a series of generalization studies according to the agreements referred in Section 3.1.2 are presented. In the RAN1 #110 meeting [1], it was agreed that an intermediate performance metric of model output should be reported:
	Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
· FFS: Detailed definition of the intermediate performance metric of the model output



For AI/ML-based LOS/NLOS identification, the identification rate is defined to be the intermediate performance metric to evaluate the model generalization performance:
Identification rate  = 
Where  is the LOS percentage, while  is the NLOS percentage.
Dimension 1: Clutter parameters.
Dimension 1 is intended for the challenges brought by the unlearned channel characteristics when inference happens with a different distribution of obstacles than in the training dataset.
[bookmark: _Ref115273699]Table 10. Evaluation results for AI/ML model generalization capability in the aspect: Clutter parameters
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Identification rate

	1
	Training
	Clutter paras: InF-DH {40%, 2m, 2m}
	18000
	97.2%

	
	Test
	
	9000
	

	2
	Training
	Clutter paras: InF-DH {40%, 2m, 2m}
	18000
	98.6%

	
	Test
	Clutter paras: InF-DH {60%, 6m, 2m}
	9000
	

	3
	Training
	Clutter paras: InF-DH {40%, 2m, 2m}
	18000
	97.7%

	
	Test
	Clutter paras: InF-DH {40%, 3m, 5m}
	9000
	


From the results shown in the Table 10 above, we can make the following observation: 
Observation 20 [bookmark: _Ref115430633]: From the evaluation results of the above Test scenario 2 and 3, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Conclusion
The contribution mainly discusses evaluations on each potential enhancement for positioning accuracy improvements, based on which the following proposals and observations are made:
Proposal 1: For evaluation on AI/ML-based fingerprint positioning, spatial consistency should be modeled at large scale parameters, small scale parameters and absolute time of arrival as the baseline, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901 
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Proposal 2: For evaluation on AI/ML-based fingerprint positioning, support UL-TDoA positioning as a candidate baseline of the legacy non-AI/ML method.
Proposal 3: For AI/ML assisted positioning, AI/ML-based LOS/NLOS identification should be evaluated for positioning accuracy enhancements at least under slight/moderate NLOS scenarios in Rel-18.
Proposal 4: For evaluation of the AI/ML-based LOS/NLOS identification, the achievable positioning accuracy should be compared with the performance of an existing traditional algorithm based on Rel-17 without using AI/ML.
Proposal 5: For comparison of evaluation on AI/ML-based fingerprint positioning evaluation results, support the channel impulse responses (CIRs) as the model inputs.
Proposal 6: RAN1 should define a unified table structure to present results of generalization studies. It is proposed to have a different table for each dimension of generalization that is investigated, e.g. one for different drops, one for different clutter parameters, etc. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Different Drops
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Drop i
	M
	

	
	
	Test
	Drop j
	N
	


Proposal 7: RAN1 should define typical evaluation cases for model generalization in the aspect - Different Drops, to better compare results across companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Different Drops
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Drop i
	M
	

	
	
	Test
	Drop j
	N
	

	
	2
	Training
	k Drops mixed
	M (M/k per drop)
	

	
	
	Test
	Drop i (outside of the trained Drops) 
	N
	

	
	3
	Training
	k Drops mixed
	M (M/k per drop)
	

	
	
	Test
	Drop j (inside the trained Drops)
	N
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Proposal 8: RAN1 should define typical evaluation cases for model generalization in the aspect - Clutter parameters, to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Clutter parameters
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Clutter paras: a
	M
	

	
	
	Test
	Clutter paras: b
	N
	

	
	2
	Training
	Clutter paras: a&b mixed
	M (M/2 per paras)
	

	
	
	Test
	Clutter paras: a
	N
	

	
	3
	Training
	Clutter paras: a&b mixed
	M (M/2 per paras)
	

	
	
	Test
	Clutter paras: b
	N
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Proposal 9: For AI/ML-based positioning, study potential solutions to address the issues of network synchronization error on positioning performance.
Proposal 10: RAN1 should define typical evaluation cases for model generalization in the aspect - Network synchronization error, to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: Network synchronization error
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Without network synchronization error
	M
	

	
	
	Test
	With network synchronization error @A ns
	N
	

	
	2
	Training
	With network synchronization error @A ns
	M
	

	
	
	Test
	
	N
	

	
	3
	Training
	With network synchronization error @ B paras mixed
	M (M/ B per paras)
	

	
	
	Test
	
	N (N/ B per paras)
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Proposal 11: For evaluation on the AI/ML-based positioning, the synchronization error of the transmission link between gNB and UE should also be considered.
Proposal 12: RAN1 should define some typical evaluation cases for evaluate the generalization in the aspect - UE timing error to better compare results of generalization studies among companies. In addition, further cases should also be captured to better explore and expand the generalization capabilities of the AI/ML model. One example is given in the template below.
Table X. Evaluation results for AI/ML model generalization capability in the aspect: UE timing error
	Source
	Evaluated Scenarios
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	Huawei, HiSilicon
	1
	Training
	Without UE timing error
	M
	

	
	
	Test
	With UE timing error @A ns
	N
	

	
	2
	Training
	With UE timing error @A ns
	M
	

	
	
	Test
	
	N
	

	
	3
	Training
	With UE timing error @ B paras mixed
	M (M/ B per paras)
	

	
	
	Test
	
	N (N/ B per paras)
	

	
	…
	Training
	…
	
	

	
	
	Test
	…
	
	


Proposal 13: Model updating is supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings.
· FFS how to improve the performance under the presence of network synchronization errors.
Proposal 14: RAN1 should define typical cases to evaluate cases the performance gain brought by fine-tuning to better compare results among companies. One example is given in the template below.
Table X. Model update evaluation results for AI/ML model generalization capability
	Source
	Evaluated aspects
	Dataset
	Configurations
	Dataset size
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Before model update
	After model update

	Huawei, HiSilicon
	Different Drops
	Training
	Drop i
	M
	
	

	
	
	Fine-tuning
	Drop j
	K
	
	

	
	
	Test
	Drop j
	N
	
	

	
	Clutter parameters
	Training
	Clutter paras: a
	M
	
	

	
	
	Fine-tuning
	Clutter paras: b
	K
	
	

	
	
	Test
	Clutter paras: b
	N
	
	

	
	UE timing error
	Training
	Without UE timing error
	M
	
	

	
	
	Fine-tuning
	With UE timing error @A ns
	K
	
	

	
	
	Test
	With UE timing error @A ns
	N
	
	

	
	…
	Training
	…
	
	
	

	
	
	Fine-tuning
	
	
	
	

	
	
	Test
	…
	
	
	


Observation 1: From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under both heavy and moderate NLOS conditions.
Observation 2: From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under a small number of receiving ports.
Observation 3: From the evaluation results of the above evaluated scenario 1, 3, and 4, when the inference dataset and the training dataset are from different drops, AI/ML-based fingerprint positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 4: From the evaluation results of the above evaluated scenario 1 and 2, enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 5: From the evaluation results of the above evaluated scenario 3 and 4, the positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.
Observation 6: From the evaluation results of the above evaluated scenario 1, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based fingerprint positioning model provides poor generalization performance.
[bookmark: _GoBack]Observation 7: From the evaluation results of the above evaluated scenario 2 and 3, when the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.
Observation 8: From the evaluation results of the above evaluated scenario 1, when the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, AI/ML-based fingerprint positioning model provides poor generalization performance.
Observation 9: From the evaluation results of the above evaluated scenario 2, when the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error.
Observation 10: From the evaluation results of the above evaluated scenario 3 and 4, when the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.
Observation 11: From the evaluation results of the above evaluated scenario 1, when the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the AI/ML-based fingerprint positioning model provides poor generalization performance.
Observation 12: From the evaluation results of the above evaluated scenario 2, when the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error.
Observation 13: From the evaluation results of the above Test scenario 3 and 4, when the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.
Observation 14: From the model update evaluation results of the above aspect - Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance.
Observation 15: From the model update evaluation results of the above aspect - Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance.
Observation 16: From the model update evaluation results of the above aspect - Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.
Observation 17: From the model update evaluation results of the above aspect - UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance.
Observation 18: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 19: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
Observation 20: From the evaluation results of the above Test scenario 2 and 3, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
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[bookmark: _Ref110862461]Appendix
[bookmark: _Ref110539202][bookmark: _Ref101883423]Simulation assumptions for the evaluated sub use cases:
	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m
[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}

	Note 1:	According to Table A.2.1-7 in TR 38.802






image3.png

image4.png

image5.emf
 


image6.png

image7.png

image8.png

image9.png

image1.png

image2.png


3GPP TSG


-


RAN WG1 Meeting #110


bis


-


e


 


   


 


 


R1


-


2208433


 


e


-


Meeting


, 


October 10


 


–


 


19


, 2022


 


 


Agenda Item:


 


9.2.4.1


 


Source:


 


Huawei,


 


HiSilicon


 


Title:


 


Evaluation on AI/ML for positioning accuracy enhancement


 


Document for:


 


Discussion and Decision


 


 


1


 


Introduction


 


In the R


AN1 #1


10


 


meeting 


[1]


, it was agreed that


 


both


 


direct AI/ML positioning and AI/ML assisted 


positioning are to be studied and evaluated 


by RAN1


:


 


Agreement


 


For AI/ML


-


based positioning, both approaches below are stu


died and evaluated by RAN1:


 


�


 


Direct AI/ML positioning


 


�


 


AI/ML assisted positioning


 


In our companion contribution 


[2]


, we have 


proposed


 


the following two specific techniques belonging to the 


two types of agreed sub


 


use cases, respectively:


 


·


 


Direct AI/ML positioning


 


o


 


AI/ML


-


based fingerprint positioning


 


·


 


AI/ML assisted positioning


 


o


 


AI/ML


-


based LOS/NLOS Identification


 


In the remainder of this contribution, the above sub use cases are discussed 


and 


t


he


ir


 


evaluation methodol


ogy, 


KPIs, and also evaluation results are presented


.


 


2


 


Evaluation methodology of the agreed use cases


 


2.1


 


Direct AI/ML positioning


 


2.1.1


 


Generic fingerprint positioning mechanism


 


Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and a


re no longer 


applicable in environments where NLOS paths dominate. In these scenarios, the number of 


gNBs


 


that have 


LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm 


cannot meet the requiremen


ts of high


-


accuracy positioning applications. At the same time, existing research 


shows that, based on a large amount of channel data, a mapping relationship between channel features and 


location coordinates can be 


established


 


by using an AI/ML method. Thi


s method, namely AI/ML


-


based 


fingerprint positioning, 


can achieve reliable accuracy under heavy NLOS conditions, where the positioning 


accuracy of traditional methods may be > 10m@90%


. 


 


Figure 


1


 


gives an ov


erview about the AI/ML


-


based fingerprint positioning process. It exploits that each UE 


position can be associated with a unique channel characteristic (i.e. the fingerprint). The AI


/ML


 


model can 


learn this relationship for a given environment and then use 


it to determine the UE coordinates based on the 


measured channel characteristics. 


 


 


Figure 


1


 


AI/ML


-


based fingerprint positioning process


 




3GPP TSG-RAN WG1 Meeting #110bis-e      R1-2208433 

e-Meeting, October 10 – 19, 2022 

 

Agenda Item: 9.2.4.1 

Source: Huawei, HiSilicon 

Title: Evaluation on AI/ML for positioning accuracy enhancement 

Document for: Discussion and Decision 

 

1 Introduction 

In the RAN1 #110 meeting [1], it was agreed that both direct AI/ML positioning and AI/ML assisted 

positioning are to be studied and evaluated by RAN1: 

Agreement 

For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1: 

 Direct AI/ML positioning 

 AI/ML assisted positioning 

In our companion contribution [2], we have proposed the following two specific techniques belonging to the 

two types of agreed sub use cases, respectively: 

 Direct AI/ML positioning 

o AI/ML-based fingerprint positioning 

 AI/ML assisted positioning 

o AI/ML-based LOS/NLOS Identification 

In the remainder of this contribution, the above sub use cases are discussed and their evaluation methodology, 

KPIs, and also evaluation results are presented. 

2 Evaluation methodology of the agreed use cases 

2.1 Direct AI/ML positioning 

2.1.1 Generic fingerprint positioning mechanism 

Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and are no longer 

applicable in environments where NLOS paths dominate. In these scenarios, the number of gNBs that have 

LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm 

cannot meet the requirements of high-accuracy positioning applications. At the same time, existing research 

shows that, based on a large amount of channel data, a mapping relationship between channel features and 

location coordinates can be established by using an AI/ML method. This method, namely AI/ML-based 

fingerprint positioning, can achieve reliable accuracy under heavy NLOS conditions, where the positioning 

accuracy of traditional methods may be > 10m@90%.  

Figure 1 gives an overview about the AI/ML-based fingerprint positioning process. It exploits that each UE 

position can be associated with a unique channel characteristic (i.e. the fingerprint). The AI/ML model can 

learn this relationship for a given environment and then use it to determine the UE coordinates based on the 

measured channel characteristics.  

 

Figure 1 AI/ML-based fingerprint positioning process 

