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1. [bookmark: _Ref5850594]Introduction
At RAN1 109e, the following agreements and conclusions were made regarding evaluations on AI/ML for beam management: 

Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training

Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  

Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded

Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 

· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.


o   Other KPIs are not precluded and can be reported by companies, for example:
§  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
§  Latency reduction:
§  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
·       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
·       where M is the total number of beams
§  Power consumption reduction: FFS on details


In this document, we refer to the above-mentioned agreements and conclusions for the beam management use case.

2. Beam Prediction in Time Domain
Leveraging historical information about beams (e.g., strongest beam IDs along with their associated RSRPs) may be useful in predicting information about beams in future time instances. This prediction task can be carried out at UE based on previous beam measurements and/or at gNB based on previous beam measurement reports from UE. Depending on where the prediction task is carried out, the study should focus on evaluating the performance gains, and then study the associated trade-offs (after agreement on KPIs) accordingly. The purpose of this section is to discuss proposed evaluation methodology and KPIs for temporal beam prediction given the agreements and conclusions from RAN1 109e, as well as potential benefits and trade-offs.

A sub use case of temporal beam prediction is beam blockage prediction, which is suggested to be studied and evaluated, as a topic for future study. Example: Let us assume that a UE can predict blockage based on the history of beam measurements. One of the ways that this UE capability could be useful is that UE can proactively indicate to gNB that a blockage is imminent, and the gNB can take this information into account and proactively switch the downlink beam to a secondary beam. The existing methods for beam failure detection and recovery are reactive in nature, in which the blockage event is detected first, and then the beam failure recovery procedure is initiated. 

Proposal 1: Evaluate and identify performance benefits related to beam blockage/failure prediction

2.1. [bookmark: _Hlk100867512]Evaluation methodology
One of the important aspects for evaluation methodology that needs to be discussed is identifying the scenarios/configurations for evaluating the generalization capability of AI/ML models. In the following section, we discuss our view of how different scenarios/configurations could be defined.

2.1.1. Evaluating generalization capability of AI/ML models
Let us consider the following categorization for different scenarios/configurations that can be defined for evaluating the performance of AI/ML models, for temporal beam prediction:

[bookmark: _Hlk110813607]Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
· Example: train for UMi deployment and test on UMa deployment
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
· Example: train and test on two different realizations of UMi  This can be realized by considering different random seeds within the same deployment which would represent a different ‘environment’ within that deployment.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. Let us consider two sub-categories:
· Environment variations due to moving objects, time of day, foliage variation over seasons, etc.: Given the agreements regarding utilizing channel models based on 38.901 [1] for evaluations, the existing channel models do not support this systematic intra-site dataset generation. 
· Basic generalization scenarios: Scenarios identifying minimum conditions/requirements for an AI/ML model to work well in practice 
· Examples for these scenarios are training and testing on different sets of UE speeds/orientations/trajectories 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration
· Example: train and test for different UE or gNB codebooks or different gNB array down-tilt angles.

For downlink TX beam prediction, we can train assuming first UE codebook and test assuming second UE codebook, and then, we can try to see how well the AI/ML model generalizes across these two scenarios. This is of practical significance particularly for gNB-side beam prediction to see how well an AI/ML model that has been trained for a certain UE ‘type’ generalizes to another UE ‘type’. Now, let us consider UE-side AI/ML models for beam prediction. We can train an AI/ML model at the UE side assuming first gNB codebook and test the AI/ML model assuming second gNB codebook (potentially with different beam shapes) and see how the AI/ML model performs across these scenarios. This is also of practical significance, as we can analyse how the UE-side AI/ML model that has been trained in a given cell generalizes to a secondary cell within the same site in which the secondary gNB uses a different codebook, potentially with different beam shapes.

At a high level, there could be two methodologies for UE- side AI/ML models. The first methodology is to utilize a ‘large’ AI/ML model and train that AI/ML model using a ‘large’ dataset that is representative of multiple scenarios/configurations. The main question to ask is: when deployed, how good this large trained AI/ML model is going to perform across different scenarios/configurations. The second methodology is to use multiple ‘smaller’ AI/ML models that have been trained using ‘smaller’ datasets representing smaller sets of scenarios/configurations. For this methodology, if the UE moves to a new scenario/configuration, then the AI/ML model will change to the one that is tailored to that scenario/configuration. The choice between first and second methodology at least partially depends on how ‘different’ the dataset distribution is across different scenarios/configurations. A practical approach to tackle this methodology selection is to collect a large amount of data that naturally represents different scenarios/configurations and determine how many models are needed for a given use case through offline engineering. An important signaling aspect that has been discussed in [2] that would help with both of the methodologies above is signaling of assistance information. The signaling of assistance information could help UE identify the scenario/configuration that it is deployed in (‘scenario discovery’), and the performance of AI/ML model could improve through this identification.


[bookmark: _Hlk110860571]Proposal 2: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for temporal beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration

2.1.2. UE Orientation Model
In RAN1 109e UE orientation was one of the FFS items and we have the following proposal regarding UE orientation. 

Proposal 3: Consider the scenario in which the UE orientation changes as a function of UE trajectory.
FFS: details of this function
Defining UE orientation as above can give us the necessary tools to try to model how UE orientation changes in practical scenarios. 

2.2. KPIs 
Temporal beam prediction may lead to reduced reference signal overhead (and/or UE power consumption), but on the other hand the overall performance of temporal beam prediction depends on beam prediction quality. Reducing reference signal overhead beyond a certain point may adversely impact the overall performance due to poor beam prediction quality. One major direction of RAN1 evaluations on this topic should be to study the trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction quality. The measure for beam prediction quality may be defined based on the agreed KPIs from RAN1 109e. The output of this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Proposal 4: For temporal beam prediction, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Temporal beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. For instance, gNB only has access to a subset of UE measurements and having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of temporal beam prediction at each side should be identified.

Proposal 5: Study the benefits and trade-offs associated with UE-side and gNB-side temporal beam prediction, using the agreed KPIs 

3. Beam Prediction in Spatial Domain
Leveraging beam measurements on a first beam set may be useful in predicting information about beams on a second beam set. This prediction task can be carried out at UE based on beam measurements on a first set and/or at gNB based on beam measurement reports from UE. Depending on where the prediction task is carried out, the study should focus on evaluating the trade-offs between reference signal overhead, UE power consumption, and performance. The purpose of this section is to discuss proposed evaluation methodology and KPIs associated with spatial domain beam prediction and propose a few use cases for which spatial domain beam prediction may be evaluated.

3.1. Evaluation Methodology

One of the important aspects for evaluation methodology that needs to be discussed is identifying the scenarios/configurations for evaluating the generalization capability of AI/ML models. In the following section, we discuss our view of how different scenarios/configurations could be defined.

3.1.1. [bookmark: _Hlk102061020]Evaluating generalization capability of AI/ML models
The discussions in Section 2.1.1 are applicable to spatial domain beam prediction as well, and we mention a few examples for spatial domain beam prediction in this section. 

For downlink TX beam prediction, we can train assuming first UE codebook and test assuming second UE codebook, and then, we can try to see how well the AI/ML model generalizes across these two scenarios. This is of practical significance particularly for gNB-side beam prediction to see how well an AI/ML model that has been trained for a certain UE ‘type’ generalizes to another UE ‘type’. Now, let us consider UE-side AI/ML models for beam prediction. We can train an AI/ML model at the UE side assuming first gNB codebook and test the AI/ML model assuming second gNB codebook (potentially with different beam shapes) and see how the AI/ML model performs across these scenarios. This is also of practical significance, as we can analyse how the UE-side AI/ML model that has been trained in a given cell generalizes to a secondary cell within the same site in which the secondary gNB uses a different codebook, potentially with different beam shapes.

Proposal 6: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for spatial domain beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration

3.1.2. KPIs
[bookmark: _Hlk100869094]
For spatial domain beam prediction, another useful KPI that can be representative of the performance of the system is spectral efficiency.

Proposal 7: At least for spatial domain beam prediction, consider spectral efficiency CDF for SLS evaluations as a KPI.

Spatial domain beam prediction may lead to reduced reference signal overhead (and/or UE power consumption), but on the other hand the overall performance of spatial domain beam prediction depends on beam prediction quality. Reducing reference signal overhead beyond a certain point may adversely impact the overall performance due to poor beam prediction quality. One major direction of RAN1 evaluations on this topic should be to study the trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction quality. In RAN1, KPIs related to beam prediction accuracy as well as KPIs indicative of overall performance of the systems (such as throughput) was agreed to be studied. As discussed in [2], one important stage of the ML workflow is AI/ML model performance monitoring. Given the agreed KPIs in RAN1 109e, the impact of incorporating beam prediction quality information on the performance of AI/ML models should be evaluated. The output of this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Proposal 8: For spatial domain beam prediction, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Spatial domain beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. If we consider gNB-side beam prediction, gNB will need to rely on UE measurement reports of (a subset of) first beam set, in order to predict information about second beam set. Having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered and evaluated in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of spatial domain beam prediction at each side should be identified accordingly.

Proposal 9: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side spatial (+time) domain beam prediction, using the agreed KPIs 

4. Performance Results
We present our simulation results for temporal and spatial domain beam prediction in this section. 

4.1. Temporal beam prediction
Here we present results for temporal beam prediction, comparing predictions from ML methods to a sample-and-hold baseline for UE Rx beam and gNB Tx beam prediction on RSRP data collected from mobile UEs.

4.1.1. Simulation Assumptions
This section details the process for generating mobile UE random trajectories for temporal beam prediction simulations as well as the simulation assumptions used in data generation for training/testing ML methods.

UE random trajectory generation
The following random trajectory generation process is based on Option 3 in the agreed methods for trajectory generation in RAN1 109e, with some modifications based on Option 4.

A UE has initial position , initial orientation , constant forward velocity , and initial azimuthal velocity angle . Temporal granularity  is defined as the smallest unit of time considered in random walk generation and mean temporal step size   is defined as the mean travel time for walk steps along the random trajectory.  is chosen such that it will be a whole-number multiple of the temporal granularity:


where  is the mean number of sub-steps per walk step.
Maximum walk time  is likewise chosen to be a whole-number multiple of .
Distance granularity  is computed as


[bookmark: _Hlk111193215]For the purposes of random trajectory generation for urban macro and urban micro simulations, a geometric sector is defined as a geometric area in which the random trajectory will be constrained, consisting of the intersection of two regions: the first region consists of one third of the hexagonal cell surrounding the UE’s serving gNB and symmetric with respect to the gNB’s azimuthal orientation, , and the second region consists of the area outside a circle with radius  centred on the serving gNB. Figure 1 provides a diagram of an example sector for a scenario with an ISD of 200 m, a serving gNB positioned at the origin with , and a chosen 10 m.
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[bookmark: _Ref111128162][bookmark: _Ref111128139]Figure 1 Example sector
Two schemes for updating UE orientation changes throughout the trajectory are proposed:
1. Matched-to-walk orientation change scheme: follows changes to the UE’s azimuthal velocity angle, while  and  remain constant.
2. Constant-angular-velocity orientation change scheme: , , and  all update with constant angular velocity  with sign decided randomly for each angle.

Given the above setup, the following algorithm is used to generate a random trajectory for a particular UE:
1. Initialize total sub-step counter .
2. If constant-angular-velocity orientation change is specified, choose orientation angle update directions  to each be either  or  with equal probability.
3. For walk step 
3.1. Draw number of sub-steps for the th step  from a geometric distribution with probability of success .
3.2. Draw azimuthal velocity angle delta for the th walk step  from a uniform distribution in the range .
3.3. Compute sub-step velocity angle delta:  = .
3.4. For each sub-step :
3.4.1. Increment total sub-step counter  If the UE’s total travel time thus far  is greater than , terminate the walk. Otherwise, continue.
3.4.2. Update the UE’s sub-step velocity angle: .
3.4.3. Compute potential updated UE position: .
If is outside the geometric sector, terminate the walk. Otherwise, update the UE’s position.
3.4.4. Update the UE’s orientation depending on orientation change scheme:
a. If using constant-angular-velocity orientation change, .
b. If using matched-to-walk orientation change .

Figure 2 shows a randomly set of randomly generated UE walks with the following parameters:
·  = 1 m
·  = 30 km/h
·  = 35 m
· gNB positioned at the origin with 
· ISD = 200 m

[image: ]
[bookmark: _Ref111128303]Figure 2 Example random UE trajectories
Figure 3 displays orientation changes for a particular random walk the matched-to-walk orientation change scheme, while Figure 4 displays the same random walk generated with the constant-angular-velocity orientation change scheme. For both examples,  and .

[image: ]
[bookmark: _Ref111128595]Figure 3 Random walk with matched-to-walk orientation changes
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[bookmark: _Ref111128613]Figure 4 Random walk with constant-angular-velocity orientation changes

Assumptions for data generation simulations
Table 1 summarizes the details for the simulation assumptions for temporal beam prediction, and Table 2 summarizes the random trajectory parameters.

[bookmark: _Ref111130031]Table 1 Temporal beam prediction simulation assumptions
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	28 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook
	12 beams (DFT codebook), 
6 azimuth beams (22.5 degree separation) and 
2 elevation beams (45 degree separation)

	UE antenna cfg.
	(M,N,P) = (1,4,2), 2 panels (left, right)

	UE codebook
	4 beams (DFT codebook) with 45-degree separation

	gNB antenna gain
	8 dBi

	BS Tx power
	28 dBm for 80 MHz bandwidth, 60 dBm EIRP

	UE Rx. noise figure
	9 dB

	SCS
	120 KHz

	Car penetration loss
	Included

	Beam management frequency
	40 ms




[bookmark: _Ref111130607]Table 2 Random trajectory parameters
	Parameters
	Value

	
	1 s

	
	0.1 s

	
	40 s

	
	30 km/h

	
	35 m

	Orientation change scheme
	Constant-azimuthal-velocity,  = 10 RPM



 




4.1.2. Evaluation results
Beam prediction formulation
For this set of results, an MN beam prediction formulation was used: in this formulation, the prediction algorithm is given as input L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles, then provides predictions for the best L1 beams for the following  cycles. We present results for M1N5 (representing an 83.3% reduction in beam measurements) as well as M1N10 (representing a 90.9% reduction in beam measurements.) We consider two separate sets of UE-side predictions:

1. UE Rx beam prediction: given the best RSRP values for each UE Rx beam at each measured beam management cycle, predict the best UE Rx beams at each predicted beam management cycle
2. gNB Tx beam prediction: given the best RSRP values for gNB Tx beam at each measured beam management cycle, predict the best gNB Tx beams at each predicted beam management cycle

Machine learning and baseline methods
For each beam prediction formulation, a long-short-term-memory recurrent neural network (LSTM) was trained to predict UE Rx beams, while a separate LSTM was trained to predict gNB Tx beams. Results from these ML methods are compared to a sample-and-hold comparison baseline, where the best beams from the final cycle in each contiguous set of measured beam management cycles are predicted to be the best beams for the entire following set of prediction cycles.

Best-beam KPIs
We compare results using the set of agreed KPIs from RAN1 109e:
· Mean RSRP difference (dB): The mean difference between the RSRP of the genie best beam and the predicted best beam
· Top-K beam prediction accuracy:
· Option 1 (%): the percentage of predictions in which the top-1 predicted beam is among the top-K genie-aided beams
· Option 2 (%): the percentage of predictions in which the top-1 genie-aided beam is among the top-K predicted beams
· 1-dB marginal beam prediction accuracy (%): the percentage of predictions in which the ideal L1-RSRP of the top-1 predicted beam is within 1 dB of the ideal L1-RSRP of the top-1 genie-aided beam

UE Rx beam prediction results
Table 3 provides a summary of the KPI results for M1N5 and M1N10 beam prediction. Figure 5 and Figure 6 plot these KPIs for M1N5 and M1N10, respectively.

[bookmark: _Ref111136743]Table 3 KPI results for LSTM vs. sample-and-hold baseline, UE Rx beam prediction
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	0.65
	77.34
	92.15
	96.77
	77.34
	92.23
	96.87
	84.36

	Sample and hold (M1N5)
	1.21
	72.77
	88.11
	94.49
	72.77
	87.96
	94.51
	78.96

	LSTM (M1N10)
	1.99
	62.75
	81.79
	90.04
	62.75
	83.61
	91.29
	69.72

	Sample and hold (M1N10)
	2.65
	61.35
	77.97
	87.26
	61.35
	77.44
	86.84
	66.95





[image: Chart, line chart

Description automatically generated][image: Chart, line chart

Description automatically generated]

[image: Chart, line chart

Description automatically generated][image: ]
[bookmark: _Ref111137052][bookmark: _Ref111136845]Figure 5 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction
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[bookmark: _Ref111137071]Figure 6 M1N10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction

For UE Rx beam prediction, the ML method outperforms the sample-and-hold baseline for both M1N5 and M1N10 beam prediction formulations, showing a 4.57% gain in top-1 beam prediction accuracy, a 5.4% gain in 1-dB marginal beam prediction accuracy, and a 0.56-dB reduction in mean predicted best beam RSRP error in the M1N5 case.

gNB Tx beam prediction results
Table 4 provides a summary of the KPI results for M1N5 and M1N10 beam prediction. Figure 7 and Figure 8 plot these KPIs for M1N5 and M1N10, respectively.

[bookmark: _Ref111138038]Table 4 KPI results for LSTM vs. sample-and-hold baseline, gNB Tx beam prediction
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	0.28
	88.50
	97.33
	99.30
	88.50
	97.32
	99.32
	91.94

	Sample and hold (M1N5)
	0.31
	87.96
	97.24
	99.23
	87.96
	97.23
	99.24
	91.43

	LSTM (M1N10)
	0.43
	85.98
	96.52
	98.85
	85.98
	96.49
	98.88
	89.49

	Sample and hold (M1N10)
	0.39
	86.41
	96.77
	99.00
	86.41
	96.67
	99.04
	89.88
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[bookmark: _Ref111138081]Figure 7 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction
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[bookmark: _Ref111138100]Figure 8 M1N10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction


For gNB Tx beam prediction, our ML methods do not strongly outperform the sample-and-hold baseline in the M1N5 formulation and are somewhat weaker than the baseline in the M1N10 formulation.

We note that for this dataset the sample-and-hold baseline is significantly more accurate for gNB Tx beam prediction than sample-and-hold for UE Rx beam prediction. This gNB Tx beam advantage for the baseline can be explained by the fact that the constant-azimuthal-speed orientation changes experienced by the mobile UEs lead to frequent changes in the best UE Rx beams, but do not significantly impact the frequency of best-beam change for gNB Tx beams. Our results indicate that ML methods will provide an advantage in high-stress scenarios where frequent UE orientation changes lead to rapid changes in the best beams. ML methods may also provide an advantage in predictions for L2 and L3 beams, which for mobile UEs would experience more rapid changes than L1 beams.

4.2. Spatial domain beam prediction
In this section we present simulation results for spatial domain beam prediction. We reuse the terminology agreed in RAN1 109e to refer to the agreed use cases.

4.2.1. Set B is a subset of Set A
We consider two scenarios for this sub-use case (Alt. 1 of BM-case1 agreed in RAN1 109e), which we call Use case 1 and Use case 2. For Use case 1, we do not assume signalling of assistance information and rely on L1-RSRP values as inputs to the AI/ML model. For Use case 2, we assume signalling of assistance information and rely on channel impulse responses (CIRs) of top- beam pairs as inputs to the AI/ML model. We have different simulation assumptions for Use case 1 and Use case 2, and our goal in this section is to illustrate the merits of spatial domain beam prediction for each use case, rather than comparative analysis of Use case 1 and Use case 2.

4.2.1.1. [bookmark: _Ref111156551]Use case 1 (i.e., no assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. For Use case 1, we do not assume the availability of ‘assistance information’.

Simulation Assumptions
For use case 1, we predict the best gNB beam ID in Set A based on the measured RSRPs of Set B. In simulations, we focus on the UMa scenario, and follow the agreed SLS simulation assumptions in RAN1 109e meeting. We assume there is no UE mobility. The dataset is generated from random UE location drops in a cell with three sectors. Spatial consistency procedure is performed based on 38.901 [1], to ensure the channel characteristics between neighbouring UEs are appropriately correlated. Key assumptions for the simulations are summarized in Table 5. The datasets used for training and testing correspond to different sets of UE locations. The gNB array has 32 antennas, 8 on azimuth and 4 on elevation. We assume 192 DFT beams in Set A in the cell, and 24 beams are down-selected for Set B.. In Figure 9, we illustrate the beam pointing angles of Set A and Set B beams in a sector. We select the Set B in a way that the measured beams cover as much space in both elevation and azimuth directions as possible.

[bookmark: _Ref111140057][bookmark: _Ref111140050]Table 5 Simulation assumptions for Use case1
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) beams per sector,
in total Set A has 192 beams per cell 

	gNB codebook (Set B)
	8 beams down-selected from Set A per sector, as shown in Figure 9 (or in Figure 10 for Set B1),
in total set B has 24 beams per cell

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot




For the AI/ML based approach, we apply a fully connected (FC) layer based NN to predict the best beam in Set A. We also consider the following 2 baseline approaches to predict the best beam ID, in addition to a NN-based AI/ML model:
· Baseline-1 (linear interpolation-based approach): For the non-measured beams in Set A, we estimate their RSRPs by performing a 2D linear interpolation (and extrapolation, when applicable) based on the measured RSRPs and the pointing angle of the beams.  We select the top K predicted beams based on the interpolated RSRPs.
· Baseline-2 (empirical PMF-based approach): We derive an empirical probability distribution of the best beam ID in Set A, given the best beam ID in Set B, based on the training dataset. For testing, we select the top K predicted beams based on the derived empirical distribution.
[image: ]
[bookmark: _Ref111140842]Figure 9 Illustration of pointing angles of Set A and Set B beams in a sector of the cell.

Evaluation results

We present the beam prediction performance for use case1 in Table 6. For Top K beam selection accuracy, we follow Option 2 definition as described in Section 4.1.2. Compared with the baseline approached, our results show that NN based AI/ML model provide a significant performance gain, in terms of both beam selection accuracy and L1 RSRP difference. The linear interpolation-based approach (Baseline-1) provides the worst performance, as Set B beams are sparsely sampled from Set A, and the RSRPs in general cannot be approximated by a linear fit. 
[bookmark: _Ref111141347][bookmark: _Ref111141342]Table 6 Beam prediction performance for Use case1.
	
	Average L1-RSRP difference (in dB)
	Top 1 accuracy
	Top 2 accuracy
	Top 5 accuracy
	1dB margin accuracy

	Baseline-1
	4.22
	10.7%
	16.3%
	31.8%
	32.8%

	Baseline-2
	1.27
	28.3%
	46.1%
	79.2%
	59.0%

	NN based

	0.36
	63.5%
	80.0%
	92.5%
	90.4%

	NN based (Set B1)

	0.57
	55.2%
	73.6%
	87.5%
	86.0%



We further compare the NN based prediction performance between different selections of Set B beams. We define an alternative Set B of measured beam as Set B1. The pointing angles of Set B1 is illustrated in Figure 10. Note that Set B1 contains the same number of measured beams as the original Set B. To illustrate the impact of Set B beam selection, Set B1 only contains the beams of the same elevation pointing angles, while the original Set B uniformly down-selects beams along the elevation direction. As expected, our results show that the original set B outperforms Set B1, e.g., by more than 8% in Top 1 beam selection accuracy; as the beams in the original Set B capture more spatial domain features on elevation. This comparison indicates that beam prediction performance largely depends on the selection of Set B beams. To select the optimal Set B as the input for beam prediction algorithm, it is essential to have the knowledge of the gNB beam pattern, e.g., the pointing angles and beam shapes of Set A beams.
[image: ]
[bookmark: _Ref111141146]Figure 10 Illustration of pointing angles of Set A and Set B1 in a sector.

4.2.1.2. Use case 2 (i.e., with assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. The main distinction of these sets of results with Use case 1 is that we assume the availability of some assistance information from gNB at the UE side. We assume no UE mobility for this use case. We consider UE-side AI/ML models and define the following terminologies. 
· At UE side: Set  (solid in Figure 11) is the set of beams over which the measurements are made and Set  (dashed in Figure 11) is the set of beams over which predictions are made
· At gNB side: Set  is the set of beams over which the measurements are made and Set  is the set of beams over which we predict.
· Method 1A: pick best beam from Set  ( in Figure 11) and Set  ( in Figure 11) at UE & gNB, respectively, using AI/ML model. As AI/ML inference is being done at the UE side, UE needs to feedback best beam index from beam set  to gNB.


[image: ]
[bookmark: _Ref111141565]Figure 11 Method 1A: UE-side and gNB-side beam update

· Method 1B: gNB uses best beam from its codebook (Set ) and UE uses best beam from Set  ( in Figure 12), using AI/ML model
[image: ]
[bookmark: _Ref111141733]Figure 12 Method 1B: UE-side only beam update

Simulation Assumptions
We provide simulation results for InH and UMa (outdoor) deployments. 

Signaling of assistance information
As mentioned in the beginning of this section, we consider UE-side AI/ML models and assume signaling of assistance information from gNB to UE. The assistance information includes beam boresight directions of beams from Set  and , and also location vector of gNB panel antenna elements, from gNB to UE. Please note that this assistance information is used for both Method 1A and Method 1B.

Simulation assumptions for InH 
The simulation assumptions for InH have been summarized in Table 7.
As the input to the AI/ML model, we feed channel impulse responses corresponding to beam pairs having top-5 RSRPs (from Set , Set ). As the output of the AI/ML model, we get the predicted beam indices from Set , Set .

[bookmark: _Hlk111069397][bookmark: _Ref111142157][bookmark: _Ref111142152]Table 7 Simulation assumptions for InH deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook (Set )
	8 beams (azimuth), 4 beams (elevation)

	BS codebook (Set )
	32 beams (azimuth), 16 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	5dBi 

	BS Tx power
	18 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz




In Figure 13 we plot the spectral efficiency for the methods described earlier in this section, as well. The leftmost curve indicates the best performance we can achieve using beam measurements from Set  and . We observe the spectral efficiency improvement across UEs for UE-side only (Method 1B) and joint UE-side and gNB-side beam update (Method 1A) based on measurements from beam sets  and . Looking at the comparative performance of Method 1A and Method 1B, we see the benefit that UE feedback of the best gNB beam index from beam Set  brings into the table. 


 [image: ] 
[bookmark: _Ref111142609]Figure 13 Spectral efficiency CDF across all UEs for InH deployment
Simulation assumptions for UMa (outdoor)
The simulation assumptions for UMa have been summarized in Table 8.
In Figure 14 we plot the spectral efficiency for the methods described earlier in this section. Also, for the UMa deployment we see the spectral efficiency gains associated with Methods 1A and 1B which highlight the benefits associated with predicting beams with higher angular resolution (from Set  and ) at UE (and gNB) using measured beams with lower angular resolution (from Set  and ).

  [image: ] 
Figure 14 Spectral efficiency CDF across all UEs for UMa (outdoor) deployment


Table 8 Simulation assumptions for UMa (outdoor) deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	ISD
	200m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 2, 2)

	BS codebook (Set )
	12 beams (azimuth), 3 beams (elevation)

	BS codebook (Set )
	24 beams (azimuth), 6 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	8dBi 

	BS Tx power
	23 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz





4.2.2. Wide to narrow beam prediction
We present evaluation results for Alt.2 of spatial domain beam prediction (BM-Case1) agreed in RAN1 109e in this section.

Simulation Assumptions
In this section, we study the use case of wide to narrow beam prediction, wherein Set A is consisted of narrow beams, and Set B is consisted of wide beams. Key simulation assumptions are summarized in the table below. We assume the wide beams in Set B have the same elevation beamwidth and twice the azimuth beamwidth as the narrow beams in Set A.  The beam pointing angles of Set A and Set B beams within a sector are shown in Figure 15. In the cell, there are 192 narrow beams in Set A, and 24 wide beams in Set B. As a benchmark, the non-NN based baseline approach follows the Baseline-2 procedure described in Section 4.2.1.1.
[bookmark: _Ref111144084]Table 9  Simulation assumptions for wide-to-narrow beam prediction
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) narrow beams per sector,
in total Set A has 192 narrow beams per cell 

	gNB codebook (Set B)
	8 wide beams of the same elevation angle per sector,
in total Set B has 24 wide beams per cell,
compared with narrow beam, wide beam has 2x azimuth beamwidth and 3dB weaker directivity gain

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot



[image: ]
[bookmark: _Ref111144216][bookmark: _Ref111144210]Figure 15 Illustration of pointing angles of wide and narrow beams in a sector.


Evaluation Results
We show a comparison of wide-to-narrow beam prediction performance below. The results show that NN-based AI/ ML model can predict the best beam ID significantly more accurate than the non-NN based baseline approach. For instance, in terms of the 1dB margin accuracy, with the NN based approach, the predicted beam is within 1 dB difference from the genie best beam with almost 90% chance, while the non-NN based approach only offers less than 50% accuracy.

[bookmark: _Ref111144342][bookmark: _Ref111144338]Table 10  Beam prediction performance of wide-to-narrow beam prediction
	
	Average L1-RSRP difference (in dB)
	Top 1 accuracy
	Top 2 accuracy
	Top 5 accuracy
	1dB margin accuracy

	Baseline
	2.08
	24.6%
	41.4%
	73.6%
	48.5%

	NN based

	0.43
	59.9%
	76.5%
	91.2%
	88.1%






5. Conclusions
In this document, we have discussed aspects related to evaluation methodology for the beam prediction use case. We also presented initial results highlighting the benefits of AI/ML-based approaches for beam prediction. We made the following proposals and observations.

Proposal 1: Evaluate and identify performance benefits related to beam blockage/failure prediction

Proposal 2: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for temporal beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration


Proposal 3: Consider the scenario in which the UE orientation changes as a function of UE trajectory.
FFS: details of this function

Proposal 4: For temporal beam prediction, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Proposal 5: Study the benefits and trade-offs associated with UE-side and gNB-side temporal beam prediction, using the agreed KPIs 

Proposal 6: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for spatial domain beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration

Proposal 7: At least for spatial domain beam prediction, consider spectral efficiency CDF for SLS evaluations as a KPI.

Proposal 8: For spatial domain beam prediction, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or re-training of AI/ML models.

Proposal 9: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side spatial (+time) domain beam prediction, using the agreed KPIs 
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