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Introduction
For AI/ML-based beam management, In the RAN1 #109-e meeting the agreement [1] was made to support characterization and baseline performance evaluations of two sub use cases:
	Agreement
For AI/ML-based beam management, support BM-Case1 and BM-Case2 for characterization and baseline performance evaluations
BM-Case1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams
BM-Case2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams
FFS: details of BM-Case1 and BM-Case2
FFS: other sub use cases
Note: For BM-Case1 and BM-Case2, Beams in Set A and Set B can be in the same Frequency Range



For the sub use case BM-Case1, RAN1 concluded to study the following alternatives:​
	Conclusion: 
For the sub use case BM-Case1, consider the following alternatives for further study:
Alt.1: Set B is a subset of Set A
o   FFS: the number of beams in Set A and B
o   FFS: how to determine Set B out of the beams in Set A (e.g., fixed pattern, random pattern, …)
Alt.2: Set A and Set B are different (e.g. Set A consists of narrow beams and Set B consists of wide beams)
o   FFS: the number of beams in Set A and B
o   FFS: QCL relation between beams in Set A and beams in Set B
o   FFS: construction of Set B (e.g., regular pre-defined codebook, codebook other than regular pre-defined one)
Note1: Set A is for DL beam prediction and Set B is for DL beam measurement.
Note2: The narrow and wide beam terminology is for SI discussion only and have no specification impact
Note3: The codebook constructions of Set A and Set B can be clarified by the companies.



Moreover, regarding the sub use case BM-Case1, RAN1 concluded to study few alternatives that can be considered as AI/ML input. 
	[bookmark: _Hlk108641307]Conclusion 
Regarding the sub use case BM-Case1, further study the following alternatives for AI/ML input:
Alt.1: Only L1-RSRP measurement based on Set B
Alt.2: L1-RSRP measurement based on Set B and assistance information
FFS: Assistance information. The following were mentioned by companions in the discussion:  Tx and/or Rx beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam boresight direction (azimuth and elevation), 3dB beamwidth, etc.), expected Tx and/or Rx beam for the prediction (e.g., expected Tx and/or Rx angle, Tx and/or Rx beam ID for the prediction), UE position information, UE direction information, Tx beam usage information, UE orientation information, etc.
 Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
Alt.3: CIR based on Set B
Alt.4: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
Note2: All the inputs are “nominal” and only for discussion purpose.



Similarly, for the sub use case BM-Case2, RAN1 concluded to study the following alternatives for Set A and Set B relationship:​
	Conclusion
For the sub use case BM-Case2, further study the following alternatives with potential down-selection:
Alt.1: Set A and Set B are different (e.g. Set A consists of narrow beams and Set B consists of wide beams)
FFS: QCL relation between beams in Set A and beams in Set B
Alt.2: Set B is a subset of Set A (Set A and Set B are not the same)
FFS: how to determine Set B out of the beams in Set A (e.g., fixed pattern, random pattern, …)
Alt.3: Set A and Set B are the same
Note1: Predicted beam(s) are selected from Set A and measured beams used as input are selected from Set B.
Note2: It is up to companies to provide other alternative(s)
Note3: The narrow and wide beam terminology is for SI discussion only and have no specification impact



Moreover, regarding the sub use case BM-Case2, RAN1 concluded to study the following alternatives as AI/ML input:
	Conclusion 
Regarding the sub use case BM-Case2, further study the following alternatives of measurement results for AI/ML input (for each past measurement instance):
Alt.1: Only L1-RSRP measurement based on Set B
Alt 2: L1-RSRP measurement based on Set B and assistance information
FFS: Assistance information. The following were mentioned by companies in the discussion:, Tx and/or Rx beam angle, position information, UE direction information, positioning-related measurement (such as Multi-RTT), expected Tx and/or Rx beam/occasion for the prediction (e.g., expected Tx and/or Rx beam angle for the prediction, expected occasions of the prediction), Tx and/or Rx  beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam pointing angles beam boresight directions (azimuth and elevation), 3dB beamwidth, etc.) , increase ratio of L1-RSRP for best N beams, UE orientation information
Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
Alt.3: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
Note2: All the inputs are “nominal” and only for discussion purpose.



In addition to above agreements/conclusions, there are many other RAN1 agreements that are related to AI/ML for beam management, which can be found in Annex I. Based on the discussion in RAN1 #109-e meeting, it is clear that the main focus of the study should be on BM-Case1 and BM-Case2. In this contribution, we discuss the characterization and baseline performance evaluations for sub use case BM-Case1 and for sub use case BM-Case2. In particular, we discuss different alternatives for each sub-use case including the details of simulation assumptions, baseline assumptions, and KPIs. We also provide simulation results for various alternatives. 

[bookmark: _Hlk510705081]Discussion
Common Assumptions for Beam Management Use Case
1.1.1 [bookmark: _Ref101443687]KPIs and Corresponding Requirements
To evaluate the performance of AI/ML in beam management, in the RAN1 #109-e meeting the agreement [1] was made to further study the following KPI options: Beam prediction accuracy related KPIs, which may include the options specified in Table 2.1‑1, and System performance related KPIs, which may include the options listed in Table 2.1‑2.
[bookmark: _Ref101387491][bookmark: _Ref101867971]Table 2.1‑1: List of Beam prediction accuracy related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	Beam prediction accuracy (%) for Top-1 beam 
	The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is the Top-1 predicted beam.  
	


Where  is the index of the Top-1 predicted beam and  is the index of the Top-1 genie-aided beam. 
 is the number of data points for obtaining the ML model performance,  is the indicator function. If , then . Otherwise, . Top-1 genie-aided beam index is selected based on  for , where are all the beams in SetA. 


	Beam prediction accuracy (%) for Top-K beams 
	The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams.  
	


Where  is the index of the k-th beam in the Top-K predicted beams and  is the index of the Top-1 genie-aided beam. 


	Beam prediction accuracy (%) with 1dB margin for Top-1 beam

	The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam”  
	


Where  is the RSRP of the Top-1 genie-aided beam and  is the RSRP of the Top-1 predicted beam. 

	Average L1-RSRP difference of Top-1 predicted beam
	 The difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam 
	



[bookmark: _Ref110604347]Table 2.1‑2: List of System performance related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	UE throughput
	CDF of UE throughput, Average throughput and 5%-tile UE throughput
	A similar mechanism as in Rel-16/17 MIMO BM simulations 

	RS overhead reduction 
	RS overhead reduction at least for spatial-domain beam prediction at least for Top-1 beam
	
where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement, M is the total number of beams. Non-AI/ML approach based on the measurement of these M beams may be used as a baseline.

When N is variable, the overhead reduction is computed using an average measurement set size, such that

Where  is the number of beams required for measurement during time slot 




1.1.2 Assumptions for Data Generation and Simulations
The methodology for dataset construction and performance evaluation is based on the statistical channel models from TR 38.901 and the system level simulation approach is adopted as a baseline as agreed in RAN1 #109-e meeting [1]. Based on what is agreed upon, we adopt the system level assumptions and the parameters for the Dense Urban scenario detailed in Table 2.1‑3. 
[bookmark: _Ref110988575][bookmark: _Ref101452735][bookmark: _Ref101383261]Table 2.1‑3: General SLS assumptions for dataset generation and performance evaluation for AI/ML in beam management.
	Parameters
	Values

	Frequency Range​
	FR2 @ 30 GHz ​

	Deployment​
	200m ISD,​ BS Antenna height=25 m
2-tier model with wrap-around (7 sites, 3 sectors/cells per site)​

	Channel mode​
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.​

	System BW​
	80MHz​, ​SCS: 120 kHz

	UE Speed​
	· For spatial domain beam prediction, 3km/h​
· For time domain beam prediction: 30km/h 

	UE distribution​
	10 UEs per sector/cell for data generation/evaluation​​, UE Antenna height=1.5 m
For spatial domain beam prediction: 100% outdoor​
For time domain prediction: 100% outdoor​

	BS Tx Power​
	40 dBm

	BS Antenna Configuration​
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ ​
· TXRU weights mapping:​ one TXRU mapped to multiple antenna elements
· Beam selection: based on maximum L1-RSRP
· Number of BS beams​: 64

	BS Antenna radiation pattern​
	TR 38.802 Table A.2.1-6, Table A.2.1-7​

	Maximum UE Tx Power​
	23 dBm​

	UE Antenna Configuration​
	Panel structure: (M,N,P) = (1,4,2)​, 2 panels (left, right) with (Mg, Ng) = (1, 2) 
· TXRU weights mapping: one TXRU mapped to multiple antenna elements
· panel selection: ideal
· number of UE beams: 8
· beam selection: 
1. Fixed Rx beam direction to panel boresight 
2. Optimal Rx beam selection based on maximum L1-RSRP

	UE Antenna radiation pattern​
	TR 38.802 Table A.2.1-8, Table A.2.1-10​

	Link adaptation​
	Based on CSI-RS​

	Traffic Model​
	· Full buffer as default option
· FTP traffic when specified

	Inter-panel calibration for UE​
	Ideal​

	Control and RS overhead​
	common overhead is 30% based on TR 37.910 for DenseUrban-eMBB scenario [2]

	Control channel decoding​
	Ideal

	UE receiver type​
	MMSE-IRC​

	BF scheme​
	Analog Beamforming

	TRP selection
	Based on RSRP

	BS receiver Noise Figure​
	7 dB​

	UE receiver Noise Figure​
	10 dB​



[bookmark: _Ref110988984]BM Case-1: Spatial Domain Beam Prediction 
[bookmark: _Ref111112482]Set A/B are DL Tx Beams
Here, we provide the characterization and baseline performance evaluations for Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams. 
Evaluation Methodology and Simulation Results
[bookmark: _Ref111112251]Simulation Assumptions 
In this section, the synthetic dataset generated for the SLS assumptions is detailed. No history of RSRP measurements is required at the input of the ML model for beam prediction. The generated dataset consists of a large number of training samples from different UEs’ spatial positions. 
For each UE, we collected the RSRP values measured at the UE assuming UE applies the optimal Rx beam, and with the gNB sweeping all the Tx beams over successive synchronization signal blocks (SSBs) and repeating the same operation for different Rx beams. In addition, we collected other relevant statistics such as the UE position, serving gNB position, gNB panel array parameters (bearing angle, mechanical downtilt, slant angle), and the beam pointing direction of the measured DL Tx beams, the beam ID of the measured DL Tx beams. We repeated the same data collection process, generating 200 different drops of the network to form a dataset with 42000 UEs and related RSRP measurements and extra statistics. 
In Table 2.2‑1, the training configurations and the list of hyper-parameters such as the number of layers, number of neurons, activation function, and other parameters are provided. The ML model is evaluated against the baseline assumptions, obtaining at first the KPIs related to the beam prediction accuracy, and then the system throughput performance per UE. 
[bookmark: _Ref101952016]Table 2.2‑1: Spatial Domain Beam Prediction ML Model Training Parameters
	Parameter
	Value

	ML Model Type
	Deep Neural Network (DNN), Convolutional Neural Network (CNN)

	Activation function
	ReLu/Tanh/Leaky ReLu

	Dropout
	Enabled

	Normalisation 
	Max-Min, layer normalization 

	Optimizer
	Adam/SGD

	Learning rate
	Fixed or LR scheduler

	Residual connections
	Enabled


Note:	Some of the ML model parameters are fine-tuned during the training.

We also provide throughput analysis simulations for the scenario in which Set B is different from Set A. The simulation procedure assumes UE attaching to the gNB based on the SSB measurements, and further performs a subset of CSI-RS measurements. These measurements are used as input of the ML model to predict the best CSI-RS beam for data transmission. We do not scale the throughput for the SLS results by accounting for the saved overhead as we understand the saved CSI-RS measurement overhead is non-critical [2].

Simulated Alternatives and Combinations
The following BM-Case alternatives have been considered for evaluation:
BM- Alt. 1 - Set B is a subset of Set A  
· BM-Case Alt. 1-1
· ML model input: Set B beam L1-RSRP
· ML model output: Set A best beam ID
· Model training and testing with the same Set B
· BM-Case Alt. 1-2
· ML model input: Set B beam L1-RSRP + assistant info
· Assistant info:
· the beam ID for the measured beams.
· the beam angle and/or the beam boresight direction for the measured DL Tx beams from NW to UE.
· the UE position information.
· the UE’s angle relative to a panel array of the gNB.
· ML model output: Set A best beam ID
· Model training and testing with the same Set B

· [bookmark: _Hlk111061652]BM-Case Alt. 1-3
· ML model input: Set B beam L1-RSRP 
· ML model output: Set A best beam ID
· Model training and testing with the different Set B

BM-Case  Alt.2 - Set B is different to Set A  
· ML model input: Set B beam L1-RSRP
· ML model output: Set A best beam ID
· Model training and testing with the same Set B

The BM-Case alternatives are further summarized in Table 2.2‑2. 

[bookmark: _Ref101387235]Table 2.2‑2: Alternatives for BM-Case.
	Method
	Description
	Set B Assumption
	ML Input
	ML Output

	
	
	Model Train
	Model Test
	
	

	BM-Case Alt. 1-1
	Set B is a subset of Set A

	Same 
	Set B RSRP
	Best beam ID in Set A

	BM-Case Alt. 1-2
	
	Same 
	Set B RSRP
+ Assistant Info
	

	BM-Case Alt. 1-3
	
	Random 
	Fixed 
	Set B RSRP
	

	BM-Case Alt. 2
	Set A and Set B are different
	Same 
	Set B RSRP
	


Notes: Set A is for DL beam prediction and Set B is for DL beam measurement.

Baseline Assumptions
Based on the agreed baselines from RAN1#109e, the following options are considered:
· BM-Case1 Baseline-option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· BM-Case1 Baseline-option 2-1 (Set B is a subset of Set A/ Set B is different from Set A): Select the best beam within Set B
· BM-Case1 Baseline-option 2-2 (Set B is different from Set A): Hierarchical search for the best narrow beam from the best wide beam.


[bookmark: _Ref110848946]Simulation Results for Set B is a Subset of Set A  
Fixed Set B for Training and Testing 
[bookmark: _Ref111209486]Table 2.2‑3: BM Case- Alt. 1-1. Model Performance KPI
	Method
	Prediction Accuracy (1 dB RSRP Margin) [%]
	Average RSRP Error [dB]
	RS overhead reduction [%]

	BM-Case1 Baseline-option 2-1, Set B 16 beams 
	37
	2.95
	75

	BM-Case1 Baseline-option 2-1, Set B 8 beams 
	20
	6.11
	87.5

	BM-Case1 Baseline-option 2-1, Set B 4 beams 
	11
	9.597
	93.75

	ML-based beam selection (Set B 32 beams)
	99
	0.03
	50

	ML-based beam selection (Set B 16 beams)
	96
	0.2
	75

	ML-based beam selection (Set B 8 beams)
	86 
	0.8
	87.5

	ML-based beam selection (Set B 4 beams)
	69​
	2.605​
	93.75



[bookmark: _Ref111209523]Table 2.2‑4: BM Case-1 (DL TX) Alt. 1-1. System Throughput Simulation.
	Method
	Average cell throughput ratio – Method/Ideal [%]

	5th percentile UE throughput ratio – Method/Ideal [%]

	BM-Case1 Baseline-option 2-1, Set B 64 beams
Ideal case
	100
	100

	BM-Case1 Baseline-option 2-1, Set B 32 beams 
	98
	97

	BM-Case1 Baseline-option 2-1, Set B 16 beams 
	85
	86

	BM-Case1 Baseline-option 2-1, Set B 8 beams 
	73
	75

	ML-based beam selection (Set B 32 beams)
	100
	100

	ML-based beam selection (Set B 16 beams)
	100
	99

	ML-based beam selection (Set B 8 beams)
	98 
	84



[bookmark: _Ref111208906]From Table 2.2‑3 and Table 2.2‑4, we have the following observations:
1. From Table 2.2 3, when using 32 beams Set B RSRP to predict the best beam in 64 beams Set A, the prediction accuracy is 99% and the prediction RSRP error mean is 0.2 dB, which is negligible. However, when using 16/8/4 beam Set B RSRP to predict 64 beams Set A, the prediction accuracy drops and the prediction RSRP error mean increases.
2. From Table 2.2 4, the 32 beams baseline has a similar throughput to the 64 beams baseline, and the 16/8 beams baseline has worse throughput than the 64/32 beams baseline. Combining with bullet 1, it indicates that given the current agreed antenna configuration setup, using a large number of beams in Set A (i.e. 64 beams) is not useful as it may not provide any additional system throughput gain but introduce latency. Also, using a large number of beams in Set A may cause misinterpretation of the beam prediction performance as the beams in Set A are too correlated (too close to each other). For example, if Set A has 128 beams and Set B has 32 beams, now  but the prediction accuracy can still be close to 100%. For BM-Case - Set B is a subset of Set A, companies should agree on the total number of beams in Set A based on the current agreed antenna configuration.    

[bookmark: _Ref111211316]For BM-Case1, given the current agreed NW antenna configuration, the number of DL Tx beams in Set A should be 32 or 64. 
3. From Table 2.2‑3 and Table 2.2‑4, ML-based 16 beams have high prediction accuracy (>95%) and the prediction RSRP error mean is lower than 1 dB, and its good prediction performance is also reflected in the throughput that it has similar system throughput compared to the ideal baseline. On the other hand, from ML-based 8/4 beams, the prediction accuracy drops by a significant margin, and the ML-based 8 beams start losing nonnegligible cell-edge UE throughput compared to the ideal case. Therefore, if the beam prediction model input ONLY uses a “sparse” Set B or a poor Set B pattern design for the UE, may cause throughput loss, especially for the cell-edge UE. By this point, we understand that in certain cases, Set B RSRP may not be sufficient for beam prediction input, and additional assistant info may be needed to improve the prediction performance. And based on the above analysis, we also think that the beam prediction failure detection procedure/recovery, as well as model switching, are needed.

Observation 1: For BM-Case1, a large number of beams in Set B (e.g., 32) may not improve the prediction accuracy and the system throughput. Therefore, ML-based beam selection should consider a Set B with a maximum of 16 beams when Set A has 64 beams, hence Set B should have a max of ¼ of Set A beams. 
The design of Set A/B together with the ML model design should provide comparable or better sector throughput and cell-edge UE throughput compared to the non-ML baseline.
Observation 2: For BM-Case1, a “sparse” Set B, or a random Set B pattern design, may cause throughput loss, especially for the cell-edge UE.

Observation 3: For BM-Case1, Set B RSRP may not be sufficient for beam prediction input in certain cases.

Observation 4: For BM-Case1, the beam prediction failure detection procedure is needed to be further studied. 

For BM-Case1, RAN1 further study the case of Set A/B are DL Tx and Set B is a subset of Set A.
· When Set B is a subset of Set A, RAN1 should consider a Set B with a maximum number of DL Tx beams that is ¼ of Set A beams.

We show our simulation results with model input as Set B beam RSRP + assistant info.
[bookmark: _Ref111209637][bookmark: _Ref111209603]Table 2.2‑5: BM Case-1DL TX Alt. 1-2. Model Performance KPI.
	ML Model & Assistance Info​
	Set B/A
 Dimensions​
	Accuracy with 1 dB margin [%]​
	RSRP Error mean [dB]​
	RS overhead reduction [%]

	RSRP+UE Angle​
	8/64
	89
	0.54
	87.5

	RSRP+UE Pos​
	
	87​
	0.69
	

	RSRP only​
	
	87
	0.74 
	

	RSRP+Beam ID​
	
	87​
	0.76
	

	RSRP+Beam Angle​
	
	86​
	0.78
	

	RSRP+UE Angle​
	4/64
	82
	1.02
	93.75

	RSRP+UE Pos​
	
	81​
	1.25
	

	RSRP+Beam ID​
	
	69​
	2.54
	

	RSRP only​
	
	69​
	2.61​
	

	RSRP+Beam Angle​
	
	69​
	2.61
	


Notes: Rx beam selection fixed to panel boresight direction.
From Table 2.2‑5, we make the following observations:
· Reducing the number of RSRP measurements used for the ML model input makes more relevant the use of assistance info as input of the ML model. Reducing the Set B dimension, the ML model has difficulties predicting the best beam, i.e., the angular directions with the highest RSRP values, especially when the few beams used as input, all show low RSRP values. In this case, the use of assistance info like the UE position becomes crucial to help the ML model to learn that the best beam has angular directions toward the UE position instead of any other angular directions (including the ones with low RSRP values). The use of the UE’s angle relative to a panel array of the gNB as assistance information, confirm this behavior, as it is easy for the ML model to interpret angles instead of coordinates, predicting those challenging cases even better.  

Observation 5: For BM-Case1, the ML model using as input only RSRP measurements has performances that reduce significantly changing the number of RSRP measurements from 8 to 4, i.e. further down sampling Set A, from a ratio of ¼ to a ratio of 1/8. 

Observation 6: For BM-Case1, when the ML model use the UE angle as the assistance information, it has a better performance than all the other variants.

Observation 7: For BM-Case1, the ML model using as input RSRP measurements and UE Position has performances that outweigh the performance of the ML model using only RSRP.

· Using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model that has input a fixed pattern of RSRP measurements. We believe that this behavior is due to the use of a fixed pattern of measurements for all the training samples. In this way, the ML model learns implicitly from the RSRP vector, that there are N different beams. Therefore, the information about the beam ID and beam angle of the measured beams does not have an impact on the prediction performance. The same conclusion may not hold when the measured beams used for ML model input are chosen at random by the UE. 

Observation 8: For BM-Case1, using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model using as input only RSRP with a fixed pattern.

For BM-Case1, RAN1 further study the use of assistance information at the ML model input. The following assistance information can be prioritized:
· the beam angle and/or the beam boresight direction for the measured DL Tx beams from NW to UE.
· the UE position information.
· the UE’s angle relative to a panel array of the gNB
For BM-Case1, RAN1 further study Set B to be a fixed pattern. 

[bookmark: _Ref111115626]Random Set B for Training 
In the following, we consider the scenario BM-Case Alt. 1-3. In RAN1#109e, the random Set B idea is proposed [1]. We understand that the benefit of training an ML model with random Set B is avoiding switching/indication/ transferring overhead/procedure for the multiple fixed Set B based trained models. Under the discussion of DL Tx beam prediction, we understand that:
1. If the model inference is on the NW side, the random Set B based model is not necessary since NW has full control over Set A/B and the corresponding trained models. The model switching overhead/procedure is not critical.
2. If the model inference is on the UE side, the random Set B based model can help UE to save model switching/indication/ transferring overhead. 

Even if the DL Tx beam prediction is on the UE side, it is still up to NW to configure the Set B beams. We understand that for beam prediction application, NW should configure to UE with a Set B which is beneficial for beam prediction. Therefore, the testing Set B should not be random but a predefined fixed pattern.  
 
Overall, the benefit of applying DL Tx beam prediction on the UE side is still not clear and needs to be discussed.

For BM-Case1 model inference applies at the NW side, with DL Tx beams considered for Set A and Set B, the training a model with random Set B is not needed.
Observation 9: For BM-Case model inference in UE side, training model with random Set B may reduce model switching/indication/ transferring overhead for UE. But the benefit of BM-Case model inference on the UE side is not yet clear.

Further, as mentioned in our other BM paper [5], by creating a large and oversampled beam Set C as the prediction target set is essentially equal to predicting the beam Angle of Departure (AoD) angles. From RAN1#109e, some companies propose to study the model generalization for different Tx beams, which we think by training a model based on a large/oversampled Set C satisfying  for any given Set A/B can handle the Set A/B generalization issue.
Observation 10: For BM-Case1, the Set A/B model generalization issue can be addressed with a training model based on an oversampled Set C that satisfies  for any given Set A/B.
As a starting point of the Set A/B model generalization study, we focus on the case Set B is a subset of Set A and create a Set C with 1000 oversampled DL Tx beams and Set A has 64 beams. The model training and testing method is shown in Figure 2‑1 and Figure 2‑2.
[image: ][image: ]Figure 2‑1: Model inference with Set A and Set B.
Figure 2‑2: Model training with Set C.

Figure 2‑2 shows an example of the model training, where all the grey box represents the beams in Set C and the grey boxes are position sensitive – the position of a grey box uniquely maps to one beam in Set C. The green boxes represent the randomly selected beams for training and the model will try to output the best beam probability for all grey boxes. The model input is only with beam RSRP.
Figure 2‑1 shows that after model training, use the Set B RSRP as model input, and only select the prediction result for the beams in Set A.
In Table 2.2‑6, we show our simulation results. Based on the discussion above, model is tested based on certain fixed Set B patterns. 
[bookmark: _Ref111209816][bookmark: _Ref111209807]Table 2.2‑6: BM Case-1(DL TX) Alt.1-3 Model Performance KPI.
	Method training method
	Average RSRP Error [dB]

	
	Model testing method 

	
	Fixed Set B 32 beams
	Fixed Set B 16 beams

	BM Case- Alt. 1-1
ML-based beam selection (Set B 32 beams)
	0.03
	3.6

	BM Case- Alt. 1-1
ML-based beam selection (Set B 16 beams)
	2
	0.16

	BM Case- Alt. 1-3
ML-based beam selection (random Set B)
	0.06
	0.55



From Table 2.2‑6, we have the following observations: 
· Training models based on fixed Set B pattern (i.e., 16, 32 beams) have poor generalization capability on the mismatch testing Set B pattern. The beam prediction capability will drop significantly if the training Set B does not match the testing Set B. 

Observation 11: For BM Case1, the training model with a fixed Set B pattern will have poor beam prediction performance if the testing Set B does not match with the training Set B.

· On the other hand, training the model with random Set B is possible to provide beam prediction performance close to the optimal case – training and testing on the same Set B.

Observation 12: For BM-Case1, training the model with random Set B is possible to provide beam prediction performance close to the optimal case – training and testing on the same Set B.

For BM-Case1, RAN1 further study the model generalization issue considering the Set A/B dimensions.

Simulation Results for Set B is Different to Set A  
Fixed Set B for Training and Testing 
As mentioned in our other BM paper [5], for BM-Case- Set B is different from Set A, we mainly consider Set B is a wide beam codebook and Set A is a refined (narrow) beam codebook. In the following, we will try to compare the Set A prediction performance based on different choices of Set B wide beam codebook, and mainly we consider the following wide beam construction methods:
1. [bookmark: _Hlk111107667]Wide beam codebook#1 - baseline
· The wide beam codebook construction is based on [4]

2. Wide beam codebook#2
· The wide beam codebook construction is adding circular shift operation on top of [4] 

3. Wide beam codebook#3
· Each wide beam codebook is the summation of the randomly selected refined beam in Set A. 

4. Wide beam codebook#4
· The wide beam codebook is constructed in a hybrid fashion - some wide beams are constructed based wide beam codebook#1 method while other wide beams are constructed based on the wide beam codebook#3 method. The hybrid wide beam codebook has the same coverage as Set A. 

[image: ]Examples of wide beam codebook#1/#2/#3 are shown in Figure 2‑4[bookmark: _Ref111198688]Figure 2‑3 Examples design of wide beam codebook #1 #2 #3 


All wide beam codebooks combine 4 refined beams into 1 wide beam. Based on our Proposal 1, in the following, we consider Set A with 64 and 32 refined beams and Set B will have 16 and 8 wide beams correspondingly. Table 2.2‑7 shows the model performance KPI for different wide beam codebooks
[bookmark: _Ref111209873][bookmark: _Ref111211922]Table 2.2‑7: BM Case-1 (DL TX) Alt.2 Model Performance KPI.
	Method
	Prediction Accuracy (1 dB RSRP Margin) [%]
	Average RSRP Error [dB]
	RS overhead reduction [%]

	
	|Set B| / |Set A| 
	|Set B| / |Set A|
	

	
	16/64
	8/32
	16/64
	8/32
	

	ML-based beam selection
Wide beam codebook#1 - baseline
	94
	73
	0.26
	3.16
	75

	ML-based beam selection
Wide beam codebook#2
	96
	90
	0.13
	0.69
	

	ML-based beam selection
Wide beam codebook#3
	99
	94
	0.07
	0.45
	

	ML-based beam selection
Wide beam codebook#4
	97
	91
	0.11
	0.65
	



Table 2.2‑8: BM Case-1(DL TX) Alt. 2 System Throughput Simulation with Set A 32 beams 
	Method
	Average cell throughput ratio – Method/ baseline [%]

	5th percentile UE throughput ratio – Method/ baseline [%]

	BM-Case1 Baseline-option 2-2 
WB#1 with hierachical search1 -baseline
	100
	100

	ML-based beam selection 
WB#1
	92
	71

	ML-based beam selection 
WB#2
	98
	93

	ML-based beam selection 
WB#3
	92
	71

	ML-based beam selection 
WB#4
	99
	94



From Table 2.2‑7 and Table 2.2‑8, we have the following observations:
1. For Set A with 64 beams, the designed wide beam codebook #2/#3/#4 have marginal performance gain compared to the baseline wide beam codebook#1. This is mainly because of the large/oversampled beam number 64 in Set A for the current antenna configurations - with a 1 dB error margin, the wrong refined beam prediction may highly possible has less than 1 dB RSRP difference compared to the actual best beam since the refined beams now are too close to each other.
2. For Set A with 32 beams, the designed wide beam codebook #2/#3/#4 perform significantly better than the baseline wide beam. The idea behind the wide beam codebook #2/#3/#4 can be found in our other BM paper [5]. And as expected, randomly combining the refined beam to form the wide beam can provide the richest correlation between the refined beam and the wide beam codebook.
3. From Table 2.2 8, one can see that the refined beam prediction with WB#1 has significantly worse throughputs than the baseline. On the other hand, the suggested WB#2 #3 #4 have comparable throughput to the baseline. One should notice that the assumption for WB#2 #3 #4 is using the wide beam codebook for SSB and use the SSB measurements to predict the refined beams, while the hierarchical search will additionally require UE specific CSI-RS for P2 beam management. Also, as we point out in [5], WB#3 may not be good for SSB as it will degrad the cell coverage, and the throughput results also tells that the wide beam codebook with best beam prediction results may not be beneficial for throughput. For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance. 

Observation 13: For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance.

For BM-Case1, RAN1 further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.

Set A/B are DL Tx-Rx Beam Pairs 
The data generation and the simulation assumption will be similar to section 2.2.1, the only difference for DL Tx-Rx beam pairs is that now the training data include the UE best panel Rx beams information.  
Simulated Alternatives
The following BM-Case alternatives have been considered for evaluation:
BM-Case Alt. 1
· ML model input: Set B beam pair L1-RSRP
· ML Model output: Set A best beam pair ID
· Model training and testing with different Set B – random Set B model training 
Simulation Results for Set B is a Subset of Set A  
Random Set B for Training 
For BM-Case, we further consider training a model for generalization of Set A/B. Here, since Set A/B are beam pairs set, by the generalization of Set A/B we infer to generalization of the DL Tx beam part but not the Rx beam. This is because we think it will make more sense to have beam pair prediction on the UE side and because UE will have full knowledge about the Rx beams, therefore the generalization need is only for the Tx beam part.  
To train the model for generalization, similar to the method in section 2.2.1.1.4.2, we consider the following model training and testing procedure:
1. The model training output space is the beam pair set =  (1000 beams)    (8 beams), and the training input space is a random subset from Set C.

· During training, the training beam pair data comes from randomly selected DL Tx beams from  (a generalization of DL Tx beam), but the corresponding Rx beam will be selected, instead of random selection, with a certain pattern (see section 2.3.1.2 in [6]). This is because UE should select the best Rx beam pattern for improving beam pair prediction. 

2. The model testing output space is the beam pair set =  (64 beams)    (8 beams), and the testing input space is the beam pair set  has element number . 

· During the model inference, NW transmits the RS through the DL Tx beams with or without configuring “repetition” for the RS resources. Here the assumption is NW does not configure any “repetition” for any RS. Therefore, UE can maximally collect measurement from number of DL Tx beams. And it is up to UE to choose which Rx beam to receive the DL Tx beams. Based on the  measurement, UE predicts the best beam pair. Additionally, we also simulate the case that NW only uses  DL Tx beams. 
· Similar to section 2.2.1.1.4.2, we continue to assume NW will use the DL Tx beam pattern that is beneficial for beam prediction instead of a random pattern. Therefore, in model testing, we assume the DL Tx beams in Set B has a fixed pattern. And we also assume UE will apply a certain Rx beam pattern for receiving.  

The simulation results are shown in Table 2.2‑8.
[bookmark: _Ref111209944]Table 2.2‑9: BM-Case1 (DL TX-RX) Alt. 1 Model Performance KPI.
	Method
	Average RSRP Error [dB]

	
	Fixed DL Tx pattern

	
	|Set B| = 64 =  ||
	|Set B| = 32 = ½ |

	BM-Case Alt. 1
Trained with random subsets of  
	0.9
	3.7



From Table 2.2‑9, we have the following observations:
1. For DL Tx-Rx beam pair prediction, the prediction target space   . Based on the simulation results it shows that it requires a relatively larger number of measurements to have good beam pair prediction, i.e. |Set B| = ||. 

Observation 14: For DL Tx-Rx beam pair prediction, the prediction target space   . And it requires a large number of measurements to have good beam pair prediction.

2. With the same number of measurements, the beam pair prediction performance is much worse than the one for Tx beam prediction shown in Table 2.2‑7. This indicates that the two-step approach for Tx and Rx beam prediction may provide better accuracy results than the joint Tx/Rx beams prediction. Also, assuming given a performance target, doing independent Tx beam, Rx beam prediction may use a smaller number of measurements compared to joint Tx-Rx beam pair prediction. In conclusion, we suggest RAN1 further investigates the comparison between independent Tx beam, Rx beam prediction, and the joint Tx-Rx beam pair prediction. 

RAN1 further investigates the comparison between independent Tx beam, Rx beam prediction, and joint Tx-Rx beam pair prediction.

Further Enhancements on BM Case-1: Beam Prediction in Spatial Domain for Improving the Throughput and Latency
As highlighted by the above sections, when the BM-Case1 is applied at the gNB or UE, the node can predict Top-N1 beams based on limited measurements. However, these predictions may not fully suit as the beams to be used by the gNB if the traffic situation towards different UEs are different. Therefore, BM-Case1 shall be further enhanced by applying reinforcement learning techniques, and we refer it as RL-based beam prediction provided in section 2.1.2/2.2.2 of R1-2204574 [2].
Evaluation Methodology and Results
Simulation Assumptions
In this section, based on the assumptions given in Table 2.1‑3 and Table 2.3‑1, we use the system level simulations to evaluate the performance of spatial domain beam prediction for improving throughput and latency. Since the set A RSRP prediction output of the ML model described in Section 2.2 can be used as an input the model, in the following simulations we use measured RSRPs and beam IDs of best  beams as an input to the ML model. Here, LinUCB, a contextual multi-armed bandit approach proposed in [4], is trained online to estimate a QoS based metric for each beam by exploring different beams and observing the QoS based metric as reward. Given the measured RSRP values of the best  beams along with beam usage values as a context vector to the model, the model will estimate QoS based metric for each action, i.e., the beam ID. Here, the QoS based metric is the amount of data, in bytes, transmitted during a single measurement interval. To mitigate the risk of beam failures in the exploration, in the simulations, it is constrained to the best  beams.
System level simulations were carried out for different loads (data rates) assuming an FTP traffic model. The UEs consist of 100% eMBB (best-effort) UEs. 
[bookmark: _Ref110988754][bookmark: _Ref101954641]Table 2.3‑1: Additional assumptions for beam prediction for improving throughput and latency simulations.
	Parameter
	Value

	Beam measurement reporting interval
	Periodical with 40 ms periodicity 

	Traffic Model​
	FTP traffic model

	FD scheduling method
	By RB

	FD scheduling algorithm
	Even resources

	TD beam selection priority metric
	Min. HOL delay

	TD no. of beams activated in a TTI
	1




For LinUCB model, the parameters can be found in Table 2.3‑2. 
[bookmark: _Ref101393346]Table 2.3‑2: ML Model Training Parameters
	Parameter
	Value

	ML Model Type
	LinUCB contextual multi-armed bandit algorithm

	Exploration weight ()
	0.1

	Reward
	 in bytes transmitted during a single measurement interval

	No. of beam measurements in the input/No. of beams that can be explored ()
	4




Baseline Assumption
The baseline specific for spatial domain beam prediction is detailed in Table 2.3‑3. 
[bookmark: _Ref111198001]Table 2.3‑3: Baseline for Spatial Domain Beam Prediction.
	Method
	Description

	Option 1
	Select the best beam based on the L1-RSRP reported by the UE 



System-Level Simulation Results
From the Figure 2-4, it can be observed that the QoS based beam prediction ML improves the overall per UE throughputs by finding the beams, which are activated more frequently, for the UEs discriminated by the scheduler due to the limitations in the no. of beams that can be activated simultaneously. It can also be observed that the gains at different percentiles depend on the data rate. Here, in our understanding, the improvements in data rates are a result of multiple UEs being clustered to a single beam with acceptable SINR, rather than serving each UE with its best RSRP based beam. As a results, when a certain beam which serves multiple UEs, is activated in a given TTI, scheduler has more traffic to fill the entire bandwidth. The effect of this UE clustering can be observed from the no. of UEs scheduled in the frequency domain, e.g., in the case of 25 Mbps, about 19% increase in no. of UEs scheduled in FD domain when using QoS based beam selection compared to RSRP based beam selection. 
Observation 15: Selecting the beam based on the RL agent output can improve the throughput performance of each UE by clustering the UEs to a single beam. However, the gains at different percentiles depend on the data rate and channel bandwidth. 
[image: Chart, bar chart
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[bookmark: _Ref110984930]Figure 2‑4 Downlink throughput gain distribution obtained with RL-based beam selection

Table 2.3‑4: BM Case-1 Alternative-1 System performance.
	Data rate
	Average cell throughput Gain [%]
	5th percentile UE throughput Gain [%]

	25 Mbps
	7.8%
	2.7%

	20 Mbps
	7.8%
	10.4%

	17 Mbps
	6.8%
	3.4%

	15 Mbps
	5.9%
	3.3%

	10 Mbps
	1.5%
	6.7%



For BM-Case1, RAN1 further investigate RL-based beam prediction to see the possible gains on system throughput. 

BM Case-2: Temporal Domain Beam Prediction
Here we provide the characterization and baseline performance evaluations for Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams. 
Evaluation Methodology and Results
Simulation Assumptions 
For simulations, the parameters can be found in Table 2.1‑3. Additional parameters specific to the sub-use case can be found in Table 2.4‑1. 
In this section, the synthetic dataset is generated with the SLS assumptions detailed in Table 2.1‑3. For the temporal domain beam prediction method, we adopt the trajectory model described in Section 2.4.1.2, where the UE follows a straight trajectory with random orientation. The ML model leverages the historical sequence of beam information (RSRP measurements and assistance information) to predict the information about the best beam (beam ID or RSRP) in a future time instant. 
For data generation, we set up the simulation assuming 210 UEs uniformly distributed over the network. Also, the duration of the simulation is set to 4 s, which corresponds to the UE speed of 30 Km/h to a traveled distance of 33.33 m. 
For ML model training, the parameters can be found in Table 2.4‑2.
[bookmark: _Ref101394916]Table 2.4‑1: Additional assumptions for spatial-temporal domain beam prediction.
	Parameter
	Value

	UE speed
	30km/h

	UE trajectory model
	Straight trajectory with random direction

	CSI measurement/report periodicity 
	40ms or 80ms

	Channel Spatial consistency
	Type A and B



[bookmark: _Ref101394927]Table 2.4‑2: ML Model Training Parameters
	Parameter
	Value

	ML Model Type
	LSTM-based, Conv2D

	Input layer Normalization
	Amplitude scaling in [0,1]

	Observation window length/prediction window length
	5/5

	Solver name
	Adam, SGD

	Learning rate
	StepLR


	
Table 2.4‑3: ML (Bayesian Optimization) Model Parameters
	Parameter
	Value

	Lower bound on the number of beams measured per time slot
	4

	Upper bound on the number of beams measured per time slot
	32


	Spatial dimension kernel(s)
	Matérn 3/2

	Temporal dimension kernel
	Radial basis function

	Acquisition function
	Augmented Expected Improvement

	Expected improvement threshold (arbitrary units)
	0.01



[bookmark: _Ref110946710]Mobility Model 
Option #4: Random direction straight-line trajectories. 
Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly dropped within the following blue area
[image: ]
where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.

For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it may change. 
· UE can move straightly along the entire trajectory
· If the UE trajectory hit the cell boundary (the red line), the trajectory is terminated. 
· If the trajectory length (in time) is less than the length of the observation window + prediction window, the time samples are discarded from the training set. 
· At the current stage, the length of the observation window + prediction window may adopt different values.

RAN1 further investigates the trajectory model for BM-Case#2, adopting Option #4 as a starting point for further studies.

Simulated Alternatives and Combinations
The list of alternatives for temporal domain beam prediction is detailed in Table 2.4‑4.
[bookmark: _Ref109984101]Table 2.4‑4: List of Alternative for Time Domain Beam Prediction.
	Method
	Description

	Method 1
	Set B is a fixed subset of Set A 

	Method 2
	Set B is a variable subset of Set A 

	Method 3
	Set B is the same as Set A 

	Methods 1 or 3 + Assistance Info
	ML model input consists of L1-RSRP measurement based on Set B and assistance information ​


Note: Predicted beam(s) are selected from Set A and measured beams used as input are selected from Set B.

For BM-Case2, support RAN1 to further study the following methods:
· Method 1:	Set B is a fixed subset of Set A 
· Method 2:	Set B is a variable subset of Set A 
· Method 3:	Set B is the same as Set A 
· Methods 1 or 3 + Assistance Info:	ML model input consists of L1-RSRP measurement based on Set B and assistance information 

Simulations Results
[bookmark: _Ref111130386]Table 2.4‑5: BM Case-2 Methods 1, 2 and 3.
	Method
	Set B /Set A Dimensions​
	Observation Window​
[ms]​
	Prediction Window (F=1) 
[ms]​
	Accuracy with 1 dB margin [%]​
	RSRP Error mean [dB]​
	RS overhead reduction [%]

	Method 1
	32/64​
	200​
	40​
	74.83​
	0.7699​
	50%

	Method 1
	32/64​
	200​
	80​
	70.77​
	0.9451​
	50%

	Method 2 (Bayesian Optimization)
	Variable/64​
	-​
	80​
	84.1
	0.515
	67%

	Method 3
	64/64​
	200​
	40​
	89.25​
	0.2901​
	0%

	Method 3
	64/64​
	200​
	80​
	79.81​
	0.5867​
	0%


Notes: Method 1,3 use Spatial consistency Type B, Method 2 uses Spatial consistency Type A.

[bookmark: _Ref111130306]Table 2.4‑6: BM Case-2 Methods 1 or 3 + Assistance Info.
	ML Model & Assistance Info​
	Set B /Set A Dimensions​
	Observation Window​
[ms]​
	Prediction Window [ms]​
	Accuracy with 1 dB margin [%]​
	RSRP Error mean [dB]​
	RS overhead reduction [%]

	RSRP+UE Pos​
	64/64​
	200​
	40​
	89.29​
	0.2879​
	-

	RSRP+UE Pos​
	32/64​
	200​
	40​
	75.17​
	0.7574​
	50%

	RSRP+UE Pos​
	64/64​
	200​
	80​
	79.59​
	0.5923​
	-

	RSRP+UE Pos​
	32/64​
	200​
	80​
	70.77​
	0.9451​
	50%


Notes: Spatial consistency Type B.

From Table 2.4‑5 and Table 2.4‑6, we make the following observations:
· From Table 2.45 for Methods 1 and 3, the ML model using as input only RSRPs has performance that decreases when reducing the number of measurements from 64 to 32 or when increasing the length of the prediction window. This is expected because a smaller number of measurements reduces the number of beams tracked and thus the possibility to predict which one would be the best in the future time instance. At the same time, a larger prediction window makes the prediction tasks more challenging as beam behaviour is more unpredictable with a larger prediction horizon.  
· On the other hand, for the Method 2 in Table 2.45 using Bayesian Optimization to optimally choose beam indices for sampling allows for greater RS overhead reduction whilst maintaining good accuracy

Observation 16: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when Set B is a subset of Set A and if no advanced algorithm is applied for beam selection in Set B. 

Observation 17: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when increasing the length of the prediction window.


Observation 18: For BM-Case2, additional algorithm (i.e. Bayesian Optimization) should be applied for choosing the beam measurements in Set B for the scenario of Set B is a subset of Set A.

For BM-Case2, with Set B is a subset of Set A, measurement instances K and prediction instances F shall be carefully investigated prior supporting the sub-use case. 

· For the results in Table 2.4‑6 with assistance information, the ML model performance decreases when reducing the number of measurements from 64 to 32 or when increasing the length of the prediction window as much as in the ML model using as input only RSRP. We believe that this is due to the variation in the UE position within the observation window. For the UE speed of 30 Km/h, the distance gap between two successive time samples is =0.33 m, which is not a relevant variation for the ML model input data and can’t improve the information given by the history of RSPR measurements. Moreover, the UE trajectory is straight, which may facilitate the prediction with only RSPR measurements. Differently, a UE trajectory changing direction may become more difficult to predict, and in this case, we expect the use of assistance information such as UE position to become relevant. 

Observation 19: For the UE speed of 30 Km/h and prediction windows of 40 and 80 ms, the ML model using as input RSRP and assistance info (UE position) does not provide significant gains to the ML model using as input only RSRP. 

For BM-Case2, RAN1 further verify whether there is any use of using assistance information at the input of the ML model. The following assistance information can be further considered:
· the UE position information.
Support RAN1 to further study scenarios/ trajectory model for the BM-Case2. 
Conclusion
In this contribution, we discuss remaining details of evaluation assumption of ML for Beam management. In particular, we have following observations and proposals. 
Proposal 1: For BM-Case1, given the current agreed NW antenna configuration, the number of DL Tx beams in Set A should be 32 or 64.
Observation 1: For BM-Case1, a large number of beams in Set B (e.g., 32) may not improve the prediction accuracy and the system throughput. Therefore, ML-based beam selection should consider a Set B with a maximum of 16 beams when Set A has 64 beams, hence Set B should have a max of ¼ of Set A beams.
Observation 2: For BM-Case1, a “sparse” Set B, or a random Set B pattern design, may cause throughput loss, especially for the cell-edge UE.
Observation 3: For BM-Case1, Set B RSRP may not be sufficient for beam prediction input in certain cases.
Observation 4: For BM-Case1, the beam prediction failure detection procedure is needed to be further studied. 
Proposal 2:	For BM-Case1, RAN1 further study the case of Set A/B are DL Tx and Set B is a subset of Set A.
· When Set B is a subset of Set A, RAN1 should consider a Set B with a maximum number of DL Tx beams that is ¼ of Set A beams.

Observation 5: For BM-Case1, the ML model using as input only RSRP measurements has performances that reduce significantly changing the number of RSRP measurements from 8 to 4, i.e. further down sampling Set A, from a ratio of ¼ to a ratio of 1/8. 
Observation 6: For BM-Case1, when the ML model use the UE angle as the assistance information, it has a better performance than all the other variants.
Observation 7: For BM-Case1, the ML model using as input RSRP measurements and UE Position has performances that outweigh the performance of the ML model using only RSRP.
Observation 8: For BM-Case1, using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model using as input only RSRP with a fixed pattern.
Proposal 3:	For BM-Case1, RAN1 further study the use of assistance information at the ML model input. The following assistance information can be prioritized:
· the beam angle and/or the beam boresight direction for the measured DL Tx beams from NW to UE.
· the UE position information.
· the UE’s angle relative to a panel array of the gNB

Proposal 4:	For BM-Case1, RAN1 further study Set B to be a fixed pattern.
Proposal 5:	For BM-Case1 model inference applies at the NW side, with DL Tx beams considered for Set A and Set B, the training a model with random Set B is not needed.
Observation 9: For BM-Case1_(DL Tx) model inference in UE side, training model with random Set B may reduce model switching/indication/ transferring overhead for UE. But the benefit of BM-Case1_(DL Tx) model inference on the UE side is not yet clear.
Observation 10: For BM-Case1, the Set A/B model generalization issue can be addressed with a training model based on an oversampled Set C that satisfies Set B∈Set A∈Set C for any given Set A/B.
Observation 11:	For BM Case1, the training model with a fixed Set B pattern will have poor beam prediction performance if the testing Set B does not match with the training Set B.
Observation 12:	For BM-Case1, training the model with random Set B is possible to provide beam prediction performance close to the optimal case – training and testing on the same Set B.
Proposal 6: For BM-Case1, RAN1 further study the model generalization issue considering the Set A/B dimensions.
Observation 13: For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance.
Proposal 7:	For BM-Case1, RAN1 further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.

Observation 14:	For DL Tx-Rx beam pair prediction, the prediction target space SetA_DL TX × Set_DL RX. And it requires a large number of measurements to have good beam pair prediction.
Proposal 8:	RAN1 further investigates the comparison between independent Tx beam, Rx beam prediction, and joint Tx-Rx beam pair prediction.
Observation 15:	Selecting the beam based on the RL agent output can improve the throughput performance of each UE by clustering the UEs to a single beam. However, the gains at different percentiles depend on the data rate and channel bandwidth.
Proposal 9:	For BM-Case1, RAN1 further investigate RL-based beam prediction to see the possible gains on system throughput.
Proposal 10:	RAN1 further investigates the trajectory model for BM-Case#2, adopting Option #4 as a starting point for further studies.
Proposal 11:	For BM-Case2, support RAN1 to further study the following methods:
· Method 1:	Set B is a fixed subset of Set A 
· Method 2:	Set B is a variable subset of Set A 
· Method 3:	Set B is the same as Set A 
· Methods 1 or 3 + Assistance Info:	ML model input consists of L1-RSRP measurement based on Set B and assistance information

Observation 16:	For BM-Case2, the ML model using as input only RSRPs has performance that decreases when Set B is a subset of Set A and if no advanced algorithm is applied for beam selection in Set B. 
Observation 17:	For BM-Case2, the ML model using as input only RSRPs has performance that decreases when increasing the length of the prediction window.
Observation 18:	For BM-Case2, additional algorithm (i.e. Bayesian Optimization) should be applied for choosing the beam measurements in Set B for the scenario of Set B is a subset of Set A.
Proposal 12:	For BM-Case2, with Set B is a subset of Set A, measurement instances K and prediction instances F shall be carefully investigated prior supporting the sub-use case.
Observation 19:	For the UE speed of 30 Km/h and prediction windows of 40 and 80 ms, the ML model using as input RSRP and assistance info (UE position) does not provide significant gains to the ML model using as input only RSRP. 
Proposal 13:	For BM-Case2, RAN1 further verify whether there is any use of using assistance information at the input of the ML model. The following assistance information can be further considered:
•	the UE position information.

Proposal 14:	Support RAN1 to further study scenarios/ trajectory model for the BM-Case2.
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Annex I
Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted

Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.

Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.


Agreement
UE rotation speed is reported by companies.
Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.

Agreement
For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
FFS: the details of model complexity and computational complexity
Agreement
For spatial-domain beam prediction, further study the following options as baseline performance
Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
FFS CSI-RS/SSB as the RS resources
Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
FFS: how conventional scheme to obtain performance KPIs
FFS: how to determine the subset of RS resources is reported by companies
Other options are not precluded.

Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction, 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB





Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area

where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  


Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.

Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
Description of AI/ML model, e.g, NN architecture type
Model inputs/outputs (per sub-use case)
Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded


Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
  Latency reduction:
  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
  Power consumption reduction: FFS on details
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