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1 Introduction
In 3GPP TSG RAN Meeting #94e meeting, a new SID was approved to study AI/ML technologies over air interface [1].  Furthermore, RAN1#109e had reached some agreements on data set generation, scenarios and KPIs for positioning evaluations [2]. However, there are still some pending issues on how to evaluate model generalization, sub-use cases and corresponding performances.
In this contribution, we provide our views on remaining evaluation assumptions and evaluation results on AI/ML for positioning.
2 Evaluations on sub-use cases
	Agreement:
For further study, at least the following aspects of AI/ML for positioning accuracy enhancement are considered.
· Direct AI/ML positioning: the output of AI/ML model inference is UE location
· E.g., fingerprinting based on channel observation as the input of AI/ML model 
· FFS the details of channel observation as the input of AI/ML model, e.g. CIR, RSRP and/or other types of channel observation
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· AI/ML assisted positioning: the output of AI/ML model inference is new measurement and/or enhancement of existing measurement
· E.g., LOS/NLOS identification, timing and/or angle of measurement, likelihood of measurement
· FFS the details of input and output for corresponding AI/ML model(s)
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· Companies are encouraged to clarify all details/aspects of their proposed AI/ML approaches/sub use case(s) of AI/ML for positioning accuracy enhancement 
Agreement:
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location


According to above agreements made in RAN1#109e, there are two high level categorizations based on different kinds of AI/ML model output. As discussed in our companion contribution[3], further categorizations for evaluations on various sub-use case are necessary. For direct AI/ML positioning, different types of channel observations are key factors to study the performances of AI based positioning. However, for AI/ML assisted positioning, it focuses on intermediate output. In this sense, we will provide some preliminary results for the following sub-use cases:
· Direct AI/ML positioning
· Sub-use case 1-1: AI model inputs are path timings and RSRPPs from single port PRS
· Sub-use case 1-2: AI model inputs are path timings, RSRPPs and path phases (i.e., CIR)from single port PRS
· Sub-use case 1-3: AI model inputs  are path timings and RSRPPs (or CIR) from multi-port PRS
· AI/ML assisted positioning
· Sub-use case 2-1: AI model outputs are DL PRS RSTD values
· Sub-use case 2-2: AI model output is LOS/NLOS indicator
Without further explanations, common scenario parameters and InF specific parameters are according to Appendix A and Appendix B as agreed in RAN1#109e. In addition, the evaluation methodologies for dataset generation, AI model input/output, AI model complexity and inference performance will be detailed per sub-use case.
Proposal 1: For evaluations on AI for positioning, at least include following sub-use cases for direct AI/ML positioning and AI/ML assisted positioning:
· Direct AI/ML positioning
· Sub-use case 1-1: AI model inputs are path timings and RSRPPs from single port PRS
· Sub-use case 1-2: AI model inputs are path timings, RSRPPs and path phases (i.e., CIR)from single port PRS
· Sub-use case 1-3: AI model inputs  are path timings and RSRPPs (or CIR) from multi-port PRS
· AI/ML assisted positioning
· Sub-use case 2-1: AI model outputs are DL PRS RSTD values
· Sub-use case 2-2: AI model output is LOS/NLOS indicator
2.1 Direct AI/ML positioning
Dataset generation:
For direct AI/ML positioning, our intention is to investigate positioning performance under heavy NLOS condition. Hence, evaluation assumptions for dataset generation are shown in Table 1.
	Frequency range
	FR1

	Bandwidth
	100 MHz

	Sub-carrier spacing
	30 KHz

	InF channel
	InF-DH

	Clutter setting
	{60%, 6m, 2m}(heavy NLOS conditions)

	Spatial consistency modeling
	· Large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· Small scale parameters are according to Section 7.6.3.1 of TR 38.901
· Absolute time of arrival is according to Section 7.6.9 of TR 38.901

	UE distribution for training dataset 
	Grid distribution, i.e., one training data is collected at the center of one small square grid, the width of the square grid is 0.5/1.0 m.

	Dataset split for training, validation and testing
	{7200, 800, 800} when the width of square grid is 1.0 m
{28800, 1600, 1600} when the width of square grid is 0.5 m

	Model generalization
	Not modeled (i.e., the training, validation and testing dataset are from the same large-scale and small-scale parameters setting and the same simulation drop.)


Table.1 Evaluation assumptions on dataset generation for direct AI/ML positioning
2.1.1 Sub-use case 1-1
AI model input and output:
[image: ]
Figure.2 AI model input and output for sub-use case 1-1
The AI model inputs are truncated time delay profiles from 18 TRPs. For the cases when the number of paths (or delay tapes) fed into the AI model is smaller than 256, the remaining entries in the input data are set to zero. That is, the input data size keeps the same for all cases with different number of paths.
Model complexity: 
Table 2 shows some general descriptions of AI model used for evaluating positioning performances.
	Model backbone
	CNN( Modified ResNet [4])

	Model complexity
(number of parameters)
	9.50 M

	Model computational complexity (FLOPs)
	158.47 M


Table.2 Model complexity of AI model for sub-use case 1-1
Positioning performances:
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Figure. 2 CDFs of positioning errors for sub-use case 1-1 (Grid width is 1.0 m)

	Positioning error (m)
	50%
	67%
	80%
	90%

	8 path timings + DL PRS RSRPPs
	0.876
	1.154
	1.446
	1.931

	16 path timings + DL PRS RSRPPs
	0.633
	0.851
	1.097
	1.400

	32 path timings + DL PRS RSRPPs
	0.520
	0.659
	0.822
	1.749

	64 path timings + DL PRS RSRPPs
	0.383
	0.512
	0.642
	0.825

	128 path timings + DL PRS RSRPPs
	0.346
	0.461
	0.576
	0.714

	256 path timings + DL PRS RSRPPs
	0.323
	0.420
	0.532
	0.688


Table.3 Positioning errors at some percentiles for sub-use case 1-1(Grid width is 1.0 m)
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Figure. 3 CDFs of positioning errors for sub-use case 1-1  (Grid width is 0.5 m)

	Positioning error (m)
	50%
	67%
	80%
	90%

	8 path timings + DL PRS RSRPPs
	0.630
	0.851
	1.091
	1.379

	16 path timings + DL PRS RSRPPs
	0.462
	0.608
	0.791
	0.984

	32 path timings + DL PRS RSRPPs
	0.298
	0.405
	0.509
	0.634

	64 path timings + DL PRS RSRPPs
	0.243
	0.320
	0.405
	0.508

	128 path timings + DL PRS RSRPPs
	0.206
	0.275
	0.349
	0.446

	256 path timings + DL PRS RSRPPs
	0.190
	0.251
	0.329
	0.424


Table.4 Positioning errors at some percentiles for sub-use case 1-1(Grid width is 0.5 m)
According to evaluation results for sub-use case 1-1, we have following observations and proposal:
Observation 1:  The AI/ML based positioning method can have excellent performances even in heavy NLOS conditions.
Observation 2: With the increase in number of path timings and RSRPPs, positioning performances are improved significantly.
Proposal 2: Study and evaluate performances of direct AI/ML positioning under different number of path timings and RSRPPs for AI/ML model input.
2.1.2 Sub-use case 1-2
For sub-use case 1-2, evaluation assumptions are similar to sub-use case 1-1 except for input data size. For sub-use case 1-2, its input data size is , where the first dimension means the in-phase part and quadrature part of a channel path respectively. In addition, the in-phase part and quadrature part of a path are calculated based on RSRPP and path phase of the channel path.
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Figure. 4 CDFs of positioning errors for sub-use case 1-2  (Grid width is 0.5 m)

	Positioning error (m)
	50%
	67%
	80%
	90%

	32 path timings + DL PRS RSRPPs
	0.298
	0.405
	0.509
	0.634

	32 path timings + DL PRS RSRPPs + path phases
	0.290
	0.390
	0.497
	0.645

	64 path timings + DL PRS RSRPPs
	0.243
	0.320
	0.405
	0.508

	64 path timings + DL PRS RSRPPs + path phases
	0.183
	0.245
	0.314
	0.421

	128 path timings + DL PRS RSRPPs
	0.206
	0.275
	0.349
	0.446

	128 path timings + DL PRS RSRPPs + path phases
	0.126
	0.164
	0.212
	0.278


Table.5 Positioning errors at some percentiles for sub-use case 1-2(Grid width is 0.5 m)
Observation 3: With path phase information included in AI model input, positioning performance is improved obviously when compared to AI model input without path phase information.
Proposal 3: Study and evaluate performances of direct AI/ML positioning when AI model input includes path phase information.
2.1.3 Sub-use case 1-3
For sub-use case 1-2, evaluation assumptions are similar to sub-use case 1-1 except for the following differences:
· When the input data size is , where the first dimension means only DL PRS RSRPP is included.
· When the input data size is , where the first dimension means the in-phase part and quadrature part of a path respectively.
· When the input data size is , where the first dimension means the in-phase part and quadrature part of a path from a two-port DL PRS.
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Figure. 5 CDFs of positioning errors for sub-use case 1-3  (Grid width is 0.5 m)

	Positioning error (m)
	50%
	67%
	80%
	90%

	One-port PRS + path timings + DL PRS RSRPPs
	0.224
	0.298
	0.374
	0.467

	One-port PRS + path timings + DL PRS RSRPPs + path phases
	0.126
	0.165
	0.209
	0.264

	Two-port PRS + path timings + DL PRS RSRPPs
	0.168
	0.225
	0.288
	0.369

	Two-port PRS + path timings + DL PRS RSRPPs + path phases
	0.076
	0.010
	0.131
	0.167


Table.6 Positioning errors at some percentiles for sub-use case 1-2(Grid width is 0.5 m)
Observation 4: With measurement results from multi-port PRS included in AI model input, increased positioning performance can be observed when compared to AI model input only includes measurement results from single port PRS.
Proposal 4: Study and evaluate performances of direct AI/ML positioning when AI model input includes measurement results from multi-port PRS.
2.2 AI/ML assisted positioning
2.2.1 Sub-use case 2-1
Firstly, sub-use case 2-1 reuses the dataset generated in sub-use case 1-2. In addition, the model structure and model complexity are similar as shown in Table 1. Sub-use case 2-1 has two stages to get UE position. The first stage is to estimate DL RSTD values by using AI network. In our simulation, the AI model outputs are 18 DL RSTD values that  are relative timing differences to a reference TRP. Finally, the estimated DL RSTD values are used by a non-AI based model (a classical algorithm, e.g., Chan’s algorithm) to get a 2-D UE position.
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Figure.6 AI model input and output for sub-use case 2-1
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Figure.7 CDFs of positioning errors for sub-use case 2-1  (Grid width is 0.5 m)

	Positioning error (m)
	50%
	67%
	80%
	90%

	Sub-use case 1-2
	0.126
	0.164
	0.212
	0.278

	Sub-use case 2-1
	0.117
	0.163
	0.209
	0.269


Table.7 Positioning errors at some percentiles for sub-use case 1-2 (Grid width is 0.5 m)
Observation 5: The AI/ML based positioning method can have excellent accuracy on estimation of DL PRS RSTD values even in heavy NLOS conditions.
Observation 6: AI/ML assisted positioning can achieve slightly better positioning performance than direct AI/ML positioning to some degree.
Proposal 5: Study and evaluate performances of  AI/ML assisted positioning when AI model output includes DL PRS RSTD values.
2.2.2 Sub-use case 2-2
Firstly, sub-use case 2-2 reuses the dataset generation mechanisms discussed in sub-use case 1-2. However, in order to investigate the effectiveness of an AI model being used for LOS/NLOS identification, InF-DH channel should at least have some moderate LOS conditions, i.e., the clutter settings should be {40%, 2m, 2m}. In addition, sub-use case 2-2 is a non-fingerprinting based method, there is not necessary to generate training dataset with spatial consistency.  Besides, the dataset split for training, validation and testing used for sub-use case 2-2 is {60000, 1600, 1600}. Furthermore, the model structure and model complexity are similar as shown in Table 1. Finally, AI model input and AI model output are shown in Figure 8:
· AI model input: path timings and RSRPPs from single TRP
· AI model output: Confidence levels of LOS and NLOS
[image: ]
Figure.8 AI model input and output for sub-use case 2-2
[bookmark: OLE_LINK3]According to above evaluation assumptions, we get about 92% accuracy rate of LOS/NLOS identification.
Observation 7: The AI/ML based positioning method can have a good accuracy rate of LOS/NLOS identification.
Proposal 6: Study and evaluate performances of AI/ML assisted positioning when the AI model output includes confidence levels of LOS/NLOS identification.
3 Remaining issues on KPIs 
3.1 Model generalization
	Agreement:
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)


Model generalization is a key issue to ensure an AI model can still maintain its performance even the distribution between training dataset and inference data are not consistent. There were some discussions on this issue in last meeting. However, no clear conclusions have been made. In our understanding, the different settings between training dataset and inference dataset should be discussed first. That is to reflect the realistic/dynamic environment changes. Generally, the different settings can fall into following three main categorizations:
· Cat.1: Training dataset and inference dataset are in the same simulation drop.
· Cat.2: Training dataset and inference dataset are from different simulation drops but with the same random seed for large scale parameters.
· Cat.3 : There is no spatial consistency between training dataset and inference dataset.
· Cat.3-1: Training dataset and inference dataset are from different simulation drops but with different random seeds. 
· Cat.3-2: Different parameter settings for training dataset and inference dataset under the same scenario. (e.g., with different clutter settings for InF-DH scenario)
· Cat.3-3: Training dataset and inference dataset are from different scenarios. (e.g., InF-DH scenario vs InF-SH scenario)
In our view, Cat.1 should be the baseline for evaluation to compare the performance degradation for other cases. For Cat.2, training dataset and inference dataset share the same large scale parameters. And  small scale parameters are randomly generated for training dataset and inference dataset, which is to simulate moving people/objects, adding/removing furniture and machinery. As for Cat.3, due to lack of spatial consistency, we can foresee that an AI model trained on a training dataset cannot be applied to inference dataset directly without any further update/fine-tuning of the AI model. Besides, we don’t see the necessity to evaluate all sub-categories of Cat.3 especially for fingerprinting based positioning. 
Regarding the metric to assess the model generalization capability, at least two aspects should be considered. The first one is performance loss. For  example, the performance loss when the same AI model used for a training dataset and an inference dataset. The second one is the efforts to fine-tune an AI model trained on a training dataset so as to get similar performance in an inference dataset. For instance, it can be the number of new data required to fine-tune the AI model.
Proposal 7: Discuss the simulation assumptions to evaluate the model generalization, at least consider following categorizations:
· Cat.1: Training dataset and inference dataset are in the same simulation drop.
· Cat.2: Training dataset and inference dataset are from different simulation drops but with the same random seed for large scale parameters.
· Cat.3 : There is no spatial consistency between training dataset and inference dataset. Select at least one of the following options:
· Cat.3-1: Training dataset and inference dataset are from different simulation drops but with different random seeds. 
· Cat.3-2: Different parameter settings for training dataset and inference dataset under the same scenario. (e.g., with different clutter settings for InF-DH scenario)
· Cat.3-3: Training dataset and inference dataset are from different scenarios. (e.g., InF-DH scenario vs InF-SH scenario)
Proposal 8: Study the metrics to evaluate the model generalization capability, at least consider:
· Performance loss when the same AI model used for a training dataset and an inference dataset
· Efforts to fine-tune an AI model trained on a training dataset so as to get similar performance in an inference dataset (e.g., the number of new data)
3.2 Metrics for intermediate results
	Proposal 7.3.1-1:
For evaluation of AI/ML assisted positioning, companies are encouraged to report the intermediate KPI(s), which provides the accuracy of the AI/ML model output.
· For example, accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement. 


[bookmark: OLE_LINK1]In RAN1#109e, we had some discussions (as shown in Proposal 7.3.1 of moderator summary) on whether we need to agree some intermediate KPI(s) for AI/ML assisted positioning. To our understanding, the intermediate KPI(s) can somehow be used for model performance verification and model generalization. Since the mapping from intermediate results to UE positioning can either be another AI model or a classical algorithm, it may be hard to evaluate the performance of the AI model in first step only according to positioning accuracy. Therefore, we propose to align some common intermediate KPI(s) for different sub-use cases. For LOS/NLOS identification, the accuracy rate of LOS/NLOS identification should be supported. For timing/angle measurements, the average value of estimation errors between AI predicted timing/angle measurements and ideal timing/angle measurements. In addition, the CDF of the estimation errors at some percentiles (e.g., {50%, 67%, 80%, 90%}) can be optionally presented.
Proposal 9:  For evaluation of AI/ML assisted positioning, companies are encouraged to report the intermediate KPI(s), which provides the accuracy of the AI/ML model output.
· Accuracy rate of LOS/NLOS identification
· Average value of estimation errors between AI predicted timing/angle measurements and ideal timing/angle measurements
· CDF of the estimation errors at some percentiles (e.g., {50%, 67%, 80%, 90%}) can be optionally presented.
4 Conclusions
In this contribution, we provide our further views on evaluation assumptions and evaluation results on AI/ML for positioning. We have following observations and proposals:
Proposal 1: For evaluations on AI for positioning, at least include following sub-use cases for direct AI/ML positioning and AI/ML assisted positioning:
· Direct AI/ML positioning
· Sub-use case 1-1: AI model input is path timings and RSRPPs from single port PRS
· Sub-use case 1-2: AI model input is CIR (i.e., path timings, RSRPPs and path phases) from single port PRS
· Sub-use case 1-3: AI model input  is path timings and RSRPPs (or CIR) from multi-port PRS
· AI/ML assisted positioning
· Sub-use case 2-1: AI model output is DL PRS RSTD values
· Sub-use case 2-2: AI model output is LOS/NLOS indicator
Observation 1:  The AI/ML based positioning method can have excellent performances even in heavy NLOS conditions.
Observation 2: With the increase in number of path timings and RSRPPs, positioning performances are improved significantly.
Proposal 2: Study and evaluate the performances of direct AI/ML positioning under different number of path timings and RSRPPs for AI/ML model input.
Observation 3: With path phase information included in AI model input, positioning performance is improved obviously when compared to AI model input without path phase information.
Proposal 3: Study and evaluate performances of direct AI/ML positioning when AI model input includes path phase information.
Observation 4: With measurement results from multi-port PRS included in AI model input, increased positioning performance can be observed when compared to AI model input only includes measurement results from single port PRS.
Proposal 4: Study and evaluate performances of direct AI/ML positioning when AI model input includes measurement results from multi-port PRS.
Observation 5: The AI/ML based positioning method can have excellent accuracy on estimation of DL PRS RSTD values even in heavy NLOS conditions.
Observation 6: AI/ML assisted positioning can achieve slightly better positioning performance than direct AI/ML positioning to some degree.
Proposal 5: Study and evaluate performances of  AI/ML assisted positioning when AI model output includes DL PRS RSTD values.
Observation 7: The AI/ML based positioning method can have a good accuracy rate of LOS/NLOS identification.
Proposal 6: Study and evaluate performances of AI/ML assisted positioning when AI model output includes confidence levels of LOS/NLOS identification.
Proposal 7: Discuss the simulation assumptions to evaluate the model generalization, at least consider following categorizations:
· Cat.1: Training dataset and inference dataset are in the same simulation drop.
· Cat.2: Training dataset and inference dataset are from different simulation drops but with the same random seed for large scale parameters.
· Cat.3 : There is no spatial consistency between training dataset and inference dataset. Select at least one of the following options:
· Cat.3-1: Training dataset and inference dataset are from different simulation drops but with different random seeds. 
· Cat.3-2: Different parameter settings for training dataset and inference dataset under the same scenario. (e.g., with different clutter settings for InF-DH scenario)
· Cat.3-3: Training dataset and inference dataset are from different scenarios. (e.g., InF-DH scenario vs InF-SH scenario)
Proposal 8: Study the metrics to evaluate the model generalization capability, at least consider:
· Performance loss when the same AI model used for a training dataset and an inference dataset
· Efforts to fine-tune an AI model trained on a training dataset so as to get similar performance in an inference dataset (e.g., the number of new data)
Proposal 9:  For evaluation of AI/ML assisted positioning, companies are encouraged to report the intermediate KPI(s), which provides the accuracy of the AI/ML model output.
· Accuracy rate of LOS/NLOS identification
· Average value of estimation errors between AI predicted timing/angle measurementz and ideal timing/angle measurements
· CDF of the estimation errors at some percentiles (e.g., {50%, 67%, 80%, 90%}) can be optionally presented.
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Appendix A Common scenario parameters applicable for all scenarios
Table 6-1: Common scenario parameters applicable for all scenarios
	
	FR1 Specific Values
	FR2 Specific Values 

	Carrier frequency, GHz 
	3.5GHz
	28GHz

	Bandwidth, MHz
	100MHz
	400MHz

	Subcarrier spacing, kHz
	30kHz for 100MHz 
	120kHz

	gNB model parameters 
	
	

	gNB noise figure, dB
	5dB
	7dB

	UE model parameters 
	
	

	UE noise figure, dB
	9dB – Note 1
	13dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1
	23dBm – Note 1
EIRP should not exceed 43 dBm.

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)
	Baseline:
Multi-panel Configuration 1 and Panel Configuration a – Note 1
-	Multi-panel Configuration 1: (Mg, Ng) = (1, 2); Θmg,ng=90°; Ω0,1=Ω0,0+180°; (dg,H, dg,V)=(0,0)
-	Panel Configuration a:
-	Each antenna array has shape dH=dV=0.5λ
-	Config a: (M, N, P) = (2, 4, 2),
-	the polarization angles are 0° and 90°
-	The antenna elements of the same polarization of the same panel is virtualized into one TXRU

Optional:
4-panels UE:
- The antenna elements of the same polarization of the same panel is virtualized into one TXRU

	UE antenna radiation pattern 
	Omni, 0dBi
	Antenna model according to Table 6.1.1-2 in TR 38.855

	PHY/link level abstraction
	Explicit simulation of all links, individual parameters estimation is applied. Companies to provide description of applied algorithms for estimation of signal location parameters.

	Network synchronization
	The network synchronization error, per UE dropping, is defined as a truncated Gaussian distribution of (T1 ns) rms values between an eNB and a timing reference source which is assumed to have perfect timing, subject to a largest timing difference of T2 ns, where T2 = 2*T1
–	That is, the range of timing errors is [-T2, T2]
–	T1:	0ns (perfectly synchronized), 50ns (Optional)

	UE/gNB RX and TX timing error
	(Optional) The UE/gNB RX and TX timing error, in FR1/FR2, can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-T2, T2] range, and with T2=2*T1:
-	T1: X ns for gNB and Y ns for UE
-	X and Y are up to sources  
-	Note: RX and TX timing errors are generated per panel independently

Apply the timing errors as follows: 
-	For each UE drop, 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*Y,2*Y] and another random sample for the Rx error according to the same [-2*Y,2*Y] distribution. 
-	For each gNB 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*X,2*X] and another random sample for the Rx error according to the same [-2*X,2*X] distribution. 
-	Any additional Time varying aspects of the timing errors, if simulated, can be left up to each company to report.
-	For UE evaluation assumptions in FR2, it is assumed that the UE can receive or transmit at most from one panel at a time with a panel activation delay of 0ms.

	Note 1: 	According to TR 38.802
Note 2: 	According to TR 38.901
















Appendix B Parameters common to InF scenarios
Table 6.1-1: Parameters common to InF scenarios
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,hc), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density r, height hc,size [image: ]dclutter}
	High clutter density:
- {40%, 2m, 2m}
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:	According to Table A.2.1-7 in TR 38.802
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