3GPP TSG RAN WG1 Meeting #110                                                                     R1-2206070
Toulouse, France, August 22nd – 26th, 2022
Source:              ZTE Corporation
Title:                   Evaluation on AI for beam management
[bookmark: Source]Agenda Item:     9.2.3.1
[bookmark: DocumentFor]Document for:   Discussion and Decision


1 Introduction
In RAN1#109e, the evaluation methodology and KPIs for AI/ML based beam management were discussed and many fruitful consensuses have been achieved [1]. Particularly, system level simulation was agreed to be the baseline tool for dataset construction and most of the simulation assumptions have already been determined. Besides, many basic KPIs were agreed for performance evaluation of spatial-domain beam prediction and temporal beam prediction, such as beam prediction accuracy related KPIs, system performance related KPIs, etc. In this contribution, we will provide our views and preliminary simulation results of the AI/ML based beam prediction.
2 Spatial domain beam prediction 
General description:
The task of beam selection aims at aligning the best beam at both the transmitter and receiver, which is challenging due to mobility and large attenuation in mmWave communication systems. A typical way for beam selection is to exhaustively sweep all beam pairs to find the best beam pair. However, as the number of beams grows, the beam selection overhead and associated power consumption for measurement would be unacceptably high. Therefore, we utilize AI/ML technologies to assist beam selection and explore the spatial domain beam prediction with low overhead as shown in the figure below. The measured RSRPs of partial beam pairs are used as the AI input and the predicted RSRPs of all beam pairs are used as the AI output, where each beam pair includes a transmit beam at the gNB and a receive beam at the UE. Besides, the beam set for measurement is a subset of the whole beam set. 
[image: spatial domain beam prediction]
Figure 2-1. Illustration of AI/ML based spatial domain beam prediction.
Observation 1: As the number of beams grows, the overhead of reference signal and associated power consumption for measurement would be unacceptably high.
Proposal 1: For spatial domain beam prediction, the case that the measured RSRPs of partial beam pairs are used as the AI input and the predicted RSRPs of all beam pairs are used as the AI output can be adopted as a baseline for comparison.
Dataset construction:
To evaluate performance of the AI/ML based method for spatial-domain beam prediction, the dataset for model training and evaluation is generated according to the agreed parameters in RAN1#109e, which is summarized in Table I in the appendix. Specifically, 10 UEs per sector per drop are randomly generated with a total of 500 simulation drops. 80% of UEs are located in indoor and 20% of UEs are located in outdoor as in TR 38.901. The UE speed is fixed to be 3km/h. For antenna configuration, the baseline agreed in RAN#109e is adopted directly, where a single panel with (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ and 2 panels with (M, N, P, Mg, Ng) = (1, 4, 2, 1, 2) are used by the gNB and UE, respectively. Besides, the gNB and UE are equipped with 64 Tx beams in total and 4 Rx beams per panel, respectively.
AI/ML model and training methodology:
For the spatial domain beam prediction, the full connected network is used with measured RSRPs of partial beam pairs being used as the AI input and predicted RSRPs of all beam pairs being used as the AI output. For comparison, four different cases about the AI input are simulated as shown in Table II. Specifically, the input of the AI model has two pattern options: fixed beam pattern and random beam pattern. With the fixed beam pattern, 16 fixed beams (i.e. fixed beams picked out of 64 Tx beams by uniform sampling) are transmitted by the gNB and measured by all 8 receive beams in the UE. With the random beam pattern, 16 random beams (i.e. randomly picked out of 64 Tx beams) are transmitted by the gNB and measured by all 8 receive beams in the UE. Besides, the beam IDs associated with the 16 transmit beams are also taken into account as an extra information for AI input. To be more specific, if beam IDs are not considered for AI input, the input size would be 16×8, which corresponds to the measured RSRPs of 16 transmit beams and 8 receive beams. However, if beam IDs are considered for AI input, the input size would be 64×8, where zeros corresponding to the beam pairs without measured RSRPs are appropriately inserted. For cross-checking and reproducibility purposes, more parameters about the adopted AI model for spatial domain beam prediction are captured in Table III. 
Table II: Four input alternatives for the spatial domain beam prediction
	Case 1
	Fixed beam pattern without beam ID

	Case 2
	Fixed beam pattern with beam ID

	Case 3
	Random beam pattern without beam ID

	Case 4
	Random beam pattern with beam ID



Table III: Description of the adopted AI model for spatial domain beam prediction
	Model architecture
	Full connected network

	Number of layers
	4

	Model input
	Measured RSRPs of partial beam pairs with or without beam ID

	Model output
	Predicted RSRPs of all beam pairs

	Dataset size
	100,000

	Percentage of training/ validity/test samples
	80%, 10%, 10%

	Model input size
	16×8 (for Case 1&3)
64×8 (for Case 2&4)

	Model output size
	64×8

	Model size
	363.264K (for Case 1&3)
1.646M (for Case 2&4)


Proposal 2: For cross-checking and reproducibility purposes, a high-level description of the adopted AI/ML model such as NN architecture type, model input/output, and training methodology should be disclosed by each company.
Performance KPIs:
To evaluate the performance of AI/ML in spatial domain beam prediction, we provide our preliminary simulation results in terms of beam prediction accuracy related KPIs, which include average L1-RSRP difference of Top-1 predicted beam, beam prediction accuracy for Top-1 and/or Top-K beams, and beam prediction accuracy with 1dB margin for Top-1 beam. All adopted KPIs are appropriately defined according to the agreement achieved in RAN1#109e. Particularly, the beam prediction accuracy (%) for Top-K beams is defined as the percentage that the Top-1 genie-aided beam is one of the Top-K predicted beams. In this case, a refined second stage beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam.
Besides, RS overhead reduction for beam measurement should also be considered as a basic KPI for evaluation. Specifically, RS overhead reduction can be defined as 1-N/M with N being the number of beams for measurement and M being the number of beams for prediction. However, the number of beams for measurement strongly depends on the number of UEs, especially if a second stage UE-specific beam sweeping is performed. Therefore, we prefer to consider the RS overhead reduction for fixed beam pattern and a second stage beam sweeping over these Top-K predicted beams is not considered.
Observation 2: If Top-K beams are predicted by the adopted AI model, a refined beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam.
Proposal 3: RS overhead reduction can be considered as a basic KPI for evaluation and should be further studied with factors to be considered including: the number of UEs, the beam pattern, and the refined beam sweeping procedure.
Simulation results:
The beam prediction accuracy with and without beam ID input to the AI model is summarized in Table IV. Both four cases mentioned above are simulated for comparison. Besides, the sampling rate on the transmit beam space is fixed to be 25%. That is to say, the measurement results on selected 16×8 beam pairs would input to the AI model and the associated RS overhead reduction would be 75%. In Table IV, the spatial domain beam prediction with the fixed beam pattern achieves a sufficiently high performance with only 25% beam overhead being used. Specifically, for the beam prediction with the fixed beam pattern, 97.15% beam prediction accuracy for Top-4 beams is achieved. Besides, it obtains a better performance than that of the random beam pattern. For the spatial domain beam prediction with the random beam pattern, the beam prediction accuracy is quite low since the AI model is unable to get the beam position corresponding to the input measurement results. However, if the associated beam ID is used as an assistance information for the AI input, the beam prediction accuracy for the random beam pattern can be greatly improved. We also note that other assistance information such as beam shape or beam usage are not evaluated since they are implementation-related information of the gNB or UE, which may be difficult to be disclosed to the opposite node [2].
Table IV. Beam prediction accuracy for different cases
	
	Average L1-RSRP difference of Top-1 predicted beam
	Beam prediction accuracy with 1dB margin for Top-1 beam
	Beam prediction accuracy for Top-1 beam
	Beam prediction accuracy for Top-4 beams

	Case 1
	0.349
	91.10%
	72.85%
	97.15%

	Case 2
	0.374
	91.50%
	75.15%
	96.95%

	Case 3
	3.582
	36.75%
	21.60%
	57.95%

	Case 4
	1.424
	63.15%
	43.80%
	86.60%


Observation 3: The spatial domain beam prediction with the fixed beam pattern achieves a sufficiently high performance with only 25% beam overhead being used.
Observation 4: The spatial domain beam prediction with the fixed beam pattern obtains a better performance than that of the random beam pattern.
Observation 5: If the associated beam ID is used as an assistance information for the AI input, the beam prediction accuracy for the random beam pattern can be greatly improved.
Proposal 4: The AI/ML model can be utilized for spatial domain beam prediction, which can greatly reduce the RS overhead for measurement while maintain a high beam prediction accuracy.
3 Temporal beam prediction 
General description:
In high mobility environment, the task of beam selection becomes even more challenging as the angles of the BS and each UE must be tracked reliably and continuously. A typical way for beam selection is periodic measurement and reporting, which introduces significant overhead that scales with the number of beams. Therefore, we utilize AI/ML technologies to realize temporal beam prediction in this section. Specifically, recurrent neutral network is leveraged to implement the temporal beam prediction that applies to a simple UE mobility pattern with random direction straight-line trajectories. The measured RSRPs of all DL beams of some past time instances are used as the AI input and the predicted RSRPs of all DL beams of future time instances are used as the AI output. That is, the beam set for measurement and the beam set for prediction are the same. Besides, for each time instance within the prediction window, Top-K beams predicted by the adopted AI model may be used for a refined beam sweeping.
[image: temporal beam prediction]
Figure 3-1. Illustration of AI/ML based temporal beam prediction.
Proposal 5: For temporal beam prediction, the case that the measured RSRPs of all beam pairs of past time instances are used as the AI input and the predicted RSRPs of all beam pairs of future time instances are used as the AI output can be adopted as a baseline for comparison.
Dataset construction:
The dataset for model training and evaluation is generated according to the agreed parameters in RAN1#109-e, which is summarized in Table I in the appendix. Specifically, one UE per sector per drop is randomly generated with a total of 20 simulation drops. For BS antenna configuration, the baseline agreed in RAN1#109e is adopted directly, where a single panel with (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ is used. For UE antenna configuration, a simplified antenna configuration with only a single panel is used, where (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1). Besides, the gNB and UE are equipped with 64 beams and 1 beam, respectively.
For temporal beam prediction, the random direction straight-line trajectories in Option #4 is adopted for modelling UE mobility, which means that multiple UEs are randomly dropped in multiple cells and move in a straight line trajectory along an initially random direction with fixed speed. More details about Option #4 is provided in the appendix for reference. Compared with other UE trajectory options, Option #4 is simpler and beneficial for model generalization. The modelling of UE orientation and rotation may cause the adopted model to be overly complex with excessive training overhead. Thus, it has not been considered for the time being for simplicity. Additionally, spatial consistency procedure B in TR38.901 is modeled along the mobility trajectory to ensure that propagation parameters maintain continuity across multiple realizations.
Table V. Simulation assumptions for the temporal beam prediction
	UE distribution
	1 UE per sector per drop with a total of 21 sectors and 20 simulation drops

	TTI number per simulation drop
	150000

	BS Antenna Configuration
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ

	UE Antenna Configuration
	One panel:  (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1)

	Spatial consistency
	Procedure B in TR38.901

	UE Speed
	30 km/h

	UE trajectory model
	Option #4: Random direction straight-line trajectories

	UE orientation
	Initially random and keeps fixed

	UE rotation speed
	0


Proposal 6: The random direction straight-line trajectories in Option #4 can be adopted for modelling UE mobility, which is simpler than other UE trajectory options and beneficial for model generalization.
AI/ML model and training methodology:
For cross-checking and reproducibility purposes, the adopted AI model for temporal beam prediction is captured in the following table. The LSTM network is used, where the model input is measured RSRPs of all DL beams of past 5 time instances, and the model output is the predicted RSRPs of all DL beams of future 5 time instances. The sampling interval between two adjacent time instances is 80ms or 160ms, where the corresponding dataset size for the adopted AI model is 89,000 or 156,000, respectively. Besides, model complexity is also taken into consideration, which includes the model size and the amount of computation (measured in FLOPs). Among them, the former describes the required memory size and the latter describes the required computing complexity, which directly impacts the inference time of the model. 
Table VI: Description of the adopted AI model for temporal beam prediction
	Model architecture
	LSTM, FC layer

	Number of layers
	4

	Model input
	Measured RSRPs of past time instances

	Model output
	Predicted RSRPs of future time instances

	Observation window length
	5

	Prediction window length
	5

	Dataset size
	89,000 (for 80ms sampling interval)
156,000 (for 160ms sampling interval)

	Percentage
 of training/validity /test samples
	90%, 5%, 5%

	Model input size
	64 in each past time instance

	Model output size
	64 in each future time instance

	Model size
	137.280K

	FLOPs
	679.936K


Performance KPIs:
To evaluate the performance of AI/ML in temporal beam prediction, we provide our preliminary simulation results in terms of beam prediction accuracy for Top-1 and Top-K beams. All adopted KPIs are appropriately defined according to the agreement achieved in RAN1#109e. Particularly, the beam prediction accuracy (%) for Top-K beams is defined as the percentage that the Top-1 genie-aided beam is one of the Top-K predicted beams. Besides, the RS overhead reduction for each time instance within the prediction window can be considered for evaluation and defined as 1-N/M, where M is the number of measured beams at each time instance within the observation window, and N is the number of measured beams at each time instance within the prediction window. As with the spatial domain beam prediction, a second stage beam sweeping over these Top-K predicted beams is not considered for RS overhead counting. Otherwise, the RS overhead for the second stage beam sweeping would be the product of the number of UEs per sector and the number of Top-K beams. Thus, the RS overhead of the temporal beam prediction method may be even higher than that of an exhaustive sweeping of all beams.
Simulation results:
For baseline comparison, a non-AI method is also simulated, where the selected Top-1 or Top-4 beams with higher RSRP are maintained during the prediction window based on measurements of all the RS resources during the observation window. As it can be seen from Table VII, a slightly better performance can be obtained by the AI based temporal beam prediction in terms of beam prediction accuracy for Top-1 and Top-4 beams, especially for a larger sampling interval. Besides, the more future time instances that are predicted, the more significant the benefits of the AI based method will be. The CDF of RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam is showed in Figure 3-2. It can be concluded that the performance gain of the AI based method over the non-AI method could be further improved by increasing the sampling interval or UE speed. 
Table VII. Beam prediction accuracy for different cases
	Method
	Sampling interval [ms]
	Top-K
	Top-K beam prediction Accuracy [%]

	
	
	
	T+1
	T+2
	T+3
	T+4
	T+5

	Non-AI method
(baseline option 2)
	80
	4
	97.40
	94.77
	93.36
	92.10
	90.95

	
	
	1
	84.47
	77.40
	72.79
	69.29
	66.49

	
	160
	4
	95.11
	92.63
	89.68
	87.15
	83.88

	
	
	1
	78.26
	69.92
	64.06
	57.97
	53.50

	AI based method
	80
	4
	97.33
	94.86
	93.96
	92.84
	92.35

	
	
	1
	84.06
	77.37
	73.54
	70.17
	67.25

	
	160
	4
	95.06
	93.20
	91.92
	90.71
	88.53

	
	
	1
	79.00
	73.78
	69.01
	64.06
	59.81
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Figure 3-2. CDF of RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
Observation 6: Compared with the selected non-AI method, a better performance can be obtained by the AI based temporal beam prediction method in terms of beam prediction accuracy for Top-1 and Top-4 beams. 
Proposal 7: The AI/ML model can be utilized for temporal beam prediction especially for a large sampling interval or UE speed.
4 Conclusions
In this contribution, we discuss the potential specification impacts and enhancements for AI/ML based beam management. We have the following observations and proposals.
Observations:
Observation 1: As the number of beams grows, the overhead of reference signal and associated power consumption for measurement would be unacceptably high.
Observation 2: If Top-K beams are predicted by the adopted AI model, a refined beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam.
Observation 3: The spatial domain beam prediction with the fixed beam pattern achieves a sufficiently high performance with only 25% beam overhead being used.
Observation 4: The spatial domain beam prediction with the fixed beam pattern obtains a better performance than that of the random beam pattern.
Observation 5: If the associated beam ID is used as an assistance information for the AI input, the beam prediction accuracy for the random beam pattern can be greatly improved.
Observation 6: Compared with the selected non-AI method, a better performance can be obtained by the AI based temporal beam prediction method in terms of beam prediction accuracy for Top-1 and Top-4 beams.

Proposals:
Proposal 1: For spatial domain beam prediction, the case that the measured RSRPs of partial beam pairs are used as the AI input and the predicted RSRPs of all beam pairs are used as the AI output can be adopted as a baseline for comparison.
Proposal 2: For cross-checking and reproducibility purposes, a high-level description of the adopted AI/ML model such as NN architecture type, model input/output, and training methodology should be disclosed by each company.
Proposal 3: RS overhead reduction can be considered as a basic KPI for evaluation and should be further studied with factors to be considered including: the number of UEs, the beam pattern, and the refined beam sweeping procedure.
Proposal 4: The AI/ML model can be utilized for spatial domain beam prediction, which can greatly reduce the RS overhead for measurement while maintain a high beam prediction accuracy.
Proposal 5: For temporal beam prediction, the case that the measured RSRPs of all beam pairs of past time instances are used as the AI input and the predicted RSRPs of all beam pairs of future time instances are used as the AI output can be adopted as a baseline for comparison.
Proposal 6: The random direction straight-line trajectories in Option #4 can be adopted for modelling UE mobility, which is simpler than other UE trajectory options and beneficial for model generalization.
Proposal 7: The AI/ML model can be utilized for temporal beam prediction especially for a large sampling interval or UE speed.
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6 Appendix
For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in the following table for Dense Urban scenario for SLS.
Table I. Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
SCS: 120 kHz

	Deployment
	200m ISD,
2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction, 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
Other values are not precluded

	UE distribution
	FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
For spatial domain beam prediction: FFS:
Option 1: 80% indoor ,20% outdoor as in TR 38.901
Option 2: 100% outdoor
For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	· [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
· [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
· Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
Option 1: Full buffer
Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB




	UE trajectory model Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
· For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
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