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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In last meeting, the evaluation assumptions of CSI compression and CSI prediction are discussed and some agreements are shown as follow. In this contribution, we discuss the details of evaluation assumptions left in last meeting and provide more evaluation results to compare the performance gain that different AI methods can achieve.
	Agreement
[bookmark: _GoBack]For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, for the calibration purpose on the dataset and/or AI/ML model over companies, consider to align the parameters (e.g., for scenarios/channels) for generating the dataset in the simulation as a starting point.

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
· FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison.

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters

Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following table is taken as a baseline of EVM
· Note: the following table captures the common parts of the R16 CSI enhancement EVM table and the R17 CSI enhancement EVM table, while the different parts are FFS.
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.
 
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline.
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, FFS 2GHz or 4GHz as a baseline

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)
Other configuration is not precluded.

	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	FFS

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	Companies shall provide the downlink overhead assumption (i.e., whether the CSI-RS transmission is UE-specific or not and take that into account for overhead computation)

	Traffic model
	FFS

	Traffic load (Resource utilization)
	FFS

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
FFS whether/what other indoor/outdoor distribution and/or UE speeds for outdoor UEs needed

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic as a baseline
FFS ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.

	Baseline for performance evaluation
	FFS




Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if LLS is preferred, the following table is taken as a baseline of EVM
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions. 
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.
· FFS: other parameters and values if needed

	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM 

	Carrier frequency
	2GHz as baseline, optional for 4GHz

	Bandwidth
	10MHz or 20MHz

	Subcarrier spacing
	15kHz for 2GHz, 30kHz for 4GHz

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C as baseline, CDL-A as optional

	UE speed
	3kmhr, 10km/h, 20km/h or 30km/h to be reported by companies

	Delay spread
	30ns or 300ns

	Channel estimation
	Realistic channel estimation algorithms (e.g. LS or MMSE) as a baseline, FFS ideal channel estimation

	Rank per UE
	Rank 1-4. Companies are encouraged to report the Rank number, and whether/how rank adaptation is applied




Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The training dataset of configuration(s)/ scenario(s), including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· The detailed list of configuration(s) and/or scenario(s)
· Other details are not precluded
Note: This Agreement is updated to below Agreement

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· Other details are not precluded



Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the details of their models, including:
· The structure of the AI/ML model, e.g., type (CNN, RNN, Transformer, Inception, …), the number of layers, branches, real valued or complex valued parameters, etc.
· The input CSI type, e.g., raw channel matrix estimated by UE, eigenvector(s) of the raw channel matrix estimated by UE, etc.
· FFS: the input CSI is obtained from the channel with or without analog BF
· The output CSI type, e.g., channel matrix, eigenvector(s), etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following parameters are taken into the baseline of EVM
· Note: The 2nd column applies if R16 TypeII codebook is selected as baseline, and the 3rd column applies if R17 TypeII codebook is selected as baseline.
· Additional assumptions from R17 TypeII EVM Same consideration with respect to utilizing angle-delay reciprocity should be considered taken for the AI/ML based CSI feedback and the baseline scheme if R17 TypeII codebook is selected as baseline
· FFS baseline for potential sub use cases involving CSI enhancement on time domain
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.

	Parameter
	Value (if R16 as baseline)
	Value (if R17 as baseline)

	Frequency Range
	FR1 only, 2GHz as baseline, optional for 4GHz.
	FR1 only, 2GHz with duplexing gap of 200MHz between DL and UL, optional for 4GHz

	Simulation bandwidth 
	10 MHz for 15kHz as a baseline, and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz.
	20 MHz for 15kHz as a baseline (optional for 10 MHz with 15KHz), and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz

	MIMO scheme
	SU/MU-MIMO with rank adaptation.
Companies are encouraged to report the SU/MU-MIMO with RU
	SU/MU-MIMO with rank adaptation. Companies are encouraged to report the SU/MU-MIMO with RU

	Traffic load (Resource utilization)
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.




Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Baseline for performance evaluation’ in the baseline of EVM is captured as follows
	Baseline for performance evaluation
	Companies need to report which option is used between
-        Rel-16 TypeII Codebook as the baseline for performance and overhead evaluation.
-         Rel-17 TypeII Codebook as the baseline for performance and overhead evaluation.
-         FFS: Whether Type I Codebook can be optionally considered at least for performance evaluation




Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
     Method 1: Average over all layers
o    Note: [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image023(05-25-10-12-00).png] is the [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image024(05-25-10-12-00).png]eigenvector of the target CSI at resource unit i and K is the rank. [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image025(05-25-10-12-00).png]is the [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image024(05-25-10-12-00).png] output vector of the output CSI of resource unit i. [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image026(05-25-10-12-00).png] is the total number of resource units. [image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image027(05-25-10-12-00).png] denotes the average operation over multiple samples.
[image: C:\Users\cmcc\AppData\Roaming\Foxmail7\Temp-9192-20220519203036\Attach\image028(05-25-10-12-00).png]
     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
       Other methods are not precluded
       FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).




Evaluation methodology
In this section, we discuss the dataset construction and evaluation assumptions for system level simulations.
Dataset construction and calibration
For the AI/ML model aligning with general configuration, we think there is no need to share the dataset again because all the channel models in TR 38.901 were calibrated. For each company, the channel fading matrices generated based on the same configuration have the same statistic property. So, the calibration of the dataset and/or AI/ML model over companies can be achieved by aligning the parameters (e.g., for scenarios/channels) for generating the dataset in the simulation.
The AI/ML model alignment with specific configuration is not feasible due to too many variations in terms of AI/ML neural structure, pre-processing and post-processing. We believe that, it is enough for different companies to share the data set and have the data set related parameters cross-checked. Since the performance of AI/ML model relies on the construct of dataset, barren dataset or simple dataset may cause overfitting and influence the evaluation results. It is meaningful to study how AI model performs within different dataset. Also, with the publication of dataset, various dataset can help AI/ML model converge to more accurate point.
[bookmark: _Ref111216303]Support to align the general configuration for generating the dataset and share the dataset for corresponding specific configuration over companies if needed.
[bookmark: _Hlk111228208][bookmark: _Hlk111228048]Furthermore, to evaluate real world performances and extract the potential gains provided by AI/ML, map-based hybrid channel model in 38.801 can also be considered to construct dataset for training and testing. The map can be based on open data set as in [1] or based on company proposed ones which mimic the actual deployment scenarios.
[bookmark: _Hlk111238825]Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.

Evaluation assumptions
Basic SLS assumptions for CSI compression
Considering the difference between ideal channel estimation and realistic channel estimation, the random perturbation may influence the phase and amplitude for a certain moment but may not change the statistical property of the channel fading. According to the simulation results, AI model presents similar performance between the training datasets constructed with ideal channel estimation and realistic channel estimation as shown in Figure 1. So, we think the ideal channel estimation can be applied for dataset construction.

[bookmark: _Ref111214619]The SGCS of ideal and realistic channel estimation
Also, for AI model training, even if the input based on realistic channel estimation, the target can be the corresponding channel matrices based on ideal channel estimation. AI model can be trained to realize CSI compression and interference elimination at the same time, since the statistic property of channels matrices based on ideal channel estimation and realistic channel estimation are similar.
On the other hand, in order to clarify the gain between AI model and Type II codebook, the simulation parameters should be kept as simple as possible.  The ideal channel estimation may reduce the simulation influence and make the performance gain more accurate. According to our observations, it is more important to consider the ideal channel estimation for the performance evaluation on CSI compression.
[bookmark: _Ref111216993]The ideal channel estimation can be used for dataset construction and performance evaluation.
In terms of AI memory storage, a single AI model saved in different framework like PyTorch or TensorFlow may occupy different memory storage. Thus, a third-part AI model format like ONNX can be used to describe the memory storage of AI model. The ONNX format is used for AI model transmission, and it describe each module with a series of fixed operators, meaning that it records a single AI module with the same memory storage. Therefore, the memory storage comparation among different AI models can be fair with a fixed AI model format.
[bookmark: _Ref111217002]AI/ML memory storage in terms of AI/ML model size can be recorded with ONNX format.
For the frequency range, we think all FR1 frequency can be evaluated to verify the generalization of AI model over frequency range. Considering the history parameters, 4GHz is used more extensively and 2GHz is mainly used in FDD system. Therefore, we think 4GHz can be set as a baseline and other carrier frequencies are not precluded.
[bookmark: _Ref111217019]4GHz can be set as a baseline and other carrier frequencies are not precluded
In the antenna setup, we prefer 32 ports other than 16 ports because the performance of CSI performance can be observed more distinctly with more CSI-RS ports, although both scenarios are agreed in the last meeting Also, the codebook of benchmark release can support at most 32 CSI-RS ports, so the comparison between AI model and benchmark codebook needs to be evaluated under the condition of 32 ports. Furthermore, the generalization of AI model in the number of CSI-RS ports is also an important issue to be studied. It is convenient to set the starting point at the maximum number of CSI-RS ports.
[bookmark: _Ref111217027]We prefer 32 CSI-RS ports as a baseline and other configurations are not precluded.
Considering the simulation bandwidth, similar to the carrier frequency, we think more combination of bandwidth and carrier frequency can be evaluated to verify the generalization of AI model. So, all the bandwidth can be chosen. For the simulation simplicity, we think 10MHz bandwidth can be set as a baseline and other bandwidths are not precluded.
[bookmark: _Ref111217030]10MHz bandwidth can be set as a baseline and other bandwidths are not precluded.
As for the traffic model, we think both full buffer and FTP1 can be evaluated. For FTP1, different RU like 80% and 20% can be evaluated respectively. Since the SE gain may degrade in case of low RU, the SE gain corresponding to different traffic models are different. Furthermore, for FTP1, it is difficult for RU to be kept the same in different cases. To this end, the full buffer can be set as a baseline to compare the SE gain between AI model and benchmark codebook at the starting point.
[bookmark: _Ref111217038]Consider both full buffer and FTP1 with different RU. The full buffer model can be used as the starting point.
Basic SLS assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 2. 


[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform, whose default parameters are given in the following Table 1. 
[bookmark: _Ref111215290]The SLS parameters for CSI prediction
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Umi 38.901

	Frequency Range
	3.5GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (2,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1)

	BS Tx power
	41dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	Simulation bandwidth
	20MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	MU-MIMO

	MIMO layers
	maximum MU layers ：8 

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) : 4ms
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Traffic model
	Full buffer

	UE distribution
	100% outdoor (30km/h)

	Number of cells
	7 cells with 3 sectors per cell

	UE receiver
	MMSE-IRC 

	Channel estimation
	ideal channel estimation

	Propagation type
	LOS/NLOS Mixed and NLOS only

	UE trajectory
	Reflected by Doppler shift



For AI-based CSI prediction, UE trajectory for CSI prediction can be reflected by Doppler shift.
[bookmark: _Ref111217440]For AI-based CSI prediction, we suggest the UE distribution of 100% outdoor (30km/h and higher speed)
[bookmark: _Ref111217449]For AI-based CSI prediction, besides 5ms, we suggest the CSI feedback periodicity of 4ms and 2ms.
[bookmark: _Ref111217454] For AI-based CSI prediction, propagation type can be mixed LOS/NLOS and NLOS only.

KPI
In the last meeting, SGCS and GCS are selected as the intermediate KPI for CSI feedback enhancement. In our view, it is convenient to choose one of them as the basic intermediate KPI to compare the performance gain over companies.
For the evaluation of the AI/ML based CSI feedback enhancement, we think the SGCS can be adopted as the intermediate KPI for rank > 1 cases. Since the CQI for all layers in one codeword are the same, all layers have the same importance degree for BS. So, all the layers should take up equal weights in the CGS/SGCS calculation. Therefore, we prefer to method 1 with average over all layers. 
Also, considering about the difference of GCS and SGCS, we think SGCS is more adaptive to rank>1 cases because the covariance matrices are more adaptive to addition. So, we prefer to adopt SGCS with average over all layers as a baseline intermediate KPI for rank > 1 cases.
[bookmark: _Ref111217457]Prefer to adopt SGCS with average over all layers as a baseline intermediate KPI for rank>1 cases.
For AI-based CSI prediction, the normalized mean square error (NMSE) and squared generalized cosine similarity (SGCS) are used as the KPIs for evaluating the model performance (intermediate KPIs) and the spectral efficiency is used as the final performance. Specifically, the NMSE and SGCS can be calculated on both the channel matrix level and PMI level. 
 Performance evaluation results
Results for CSI compression
Basic AI/ML model performance
To compare the AI/ML model and the benchmark codebook, we evaluate the SGCS and SE of AI/ML model and R-16 Type II codebook. In the simulation, the antenna configuration is [8 8 2 1 1] and four adjacent antenna a mapped into one TXRU with fixed 105 degrees DFT beam. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. We evaluate both full buffer and FTP1 with 80% RU.
In the simulation, we calculate per-subband SVD precoder first and use the precoders on all subbands as the encoder input. The encoder includes quantification and export the bit sequence. And we use the normalized decoder output as the recovered precoder at the BS side.

[bookmark: _Ref111214697]The SGCS of Rel-16 Type II codebook and AI model

The gain of average SE in the case of full buffer

The gain of average SE in the case of FTP1
According to the evaluation results, compared with Rel-16 Type II codebook, AI model can achieve almost 0.07 SGCS improvement with the same payload. In the concern of SE, AI model can achieve almost 11% gain with the same payload or save more than 75% overhead with the same SE for full buffer model. As for the FTP1 model, AI model can achieve almost 5% SE gain with the same payload or save more than 50% overhead with the same SE. The difference between FTP1 and full buffer is because AI model and Rel-16 Type II codebook perform better in FTP1 with less interference. Compared with the ideal CSI feedback, i.e., SVD precoder, no matter in full buffer or FTP1 scenario, AI model can improve half the gap between SVD and Rel-16 Type II codebook.
[bookmark: _Ref111217103]AI model can achieve almost 0.07 SGCS improvement with the same payload.
[bookmark: _Ref111217145]AI model can achieve almost 11% gain with the same payload or save more than 75% overhead with the same SE for full buffer model.
[bookmark: _Ref111217151]AI model can achieve almost 5% SE gain with the same payload or save more than 50% overhead with the same SE for FTP1 model.
AI/ML model performance with pre-processing
To reduce the dimension of input matrix, we pre-process the SVD-precoder before calling AI/ML models. Same as eType II, precoders of each subband can be transformed into angle-delay domain with selected beam and delay. With the projection from space-frequency domain to angle-delay domain, the dimension of input data is specific to the number of selected beams and delays among different antenna configurations and numerology. Also, the size of AI model can be reduced because the information to study is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
We choose some DFT orthogonal bases in spatial domain and frequency domain like in Rel-16 Type II codebook. Then, we use the effective coefficients calculated by the SVD precoder and the orthogonal bases as the encoder input. At the BS side, we use the same DFT orthogonal bases in spatial domain and frequency domain to reconstruct the precoder with the decoder output. Finally, we normalize the results as the recovered precoder. We evaluate different pre-processing methods to compare the influence of pre-processing.
Case1: DFT orthogonal bases in spatial domain are complete orthogonal bases i.e., 16 beams are selected and these beams are not sorted. DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.
Case2: DFT orthogonal bases in spatial domain are complete orthogonal bases, i.e., 16 beams are selected and the beams are sorted from the strongest to the weakest.  DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.
Case3: DFT orthogonal bases in spatial domain are corresponding to 4 top strongest beams selected and sorted. DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.

The SGCS of the different cases

The SE gain of different cases for full buffer model

The SE gain of different cases for FTP1 model with 80% RU
According to the evaluation results, The AI model with pre-processing is better than the Rel-16 Type II codebook but less than the AI model without pre-processing. Since some precoder information is omitted during the pre-processing, the performance of pre-processing reduces while the generalization of subband number can be solved easily with the delay domain pre-processing.
Compared among different pre-processing methods, if spatial domain information is omitted, the performance will be influenced severely for high feedback bits. Beam sorting can achieve better performance but needs more feedback bits to report the beam order. So it is better to compress spatial domain lightly and not sort the beam even if it is beneficial to AI training.
[bookmark: _Ref111217159]Pre-processing with delay domain compression can solve the generalization of bandwidth and subband number.
[bookmark: _Ref111217164]Pre-processing with spatial domain needs to be controlled with a light level.
AI/ML performance for rank > 1 cases
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model.
[image: ]
Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double of per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
[bookmark: _Ref111217168]Per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Also, we evaluate the SE of AI model compared with Rel-16 Type II codebook, the SE of FTP1 model is shown in Figure 10. In the simulation UE report rank-2 CSI only without CSI adaption. We assume UE has the decoder and calculate the rank-2 CQI with recorded PMI. For the six AI model combination, we use specific AI model per layer and the AI models are corresponding to different payload. The combination includes [95-95], [159-95], [159-159], [207-95], [159-159], [207-159], [207-207]. The former of each combination is the payload of layer 0 and the latter is the payload of layer 1. No matter layer 0 or 1, same AI model is used for fixed payload.

[bookmark: _Ref111214742]The SE gain of AI models in the case of FTP1 model and rank 2
According to the evaluation results, AI model can provide about 12% SE gain than Rel-16 Type II codebook. The SE gain of rank-2 case is lightly more than rank-1 case and still have improvement space compared with the ideal SVD feedback.
[bookmark: _Ref111217170]In the case of rank-2, AI model can provide about 12 SE gain compared with Rel-16 Type II codebook.
AI/ML performance with generalization
In this section, we evaluate the generalization of carrier frequency, scenario, payload, and antenna configuration.

Generalization of carrier frequency
For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model in 4.1.1. According to the evaluation result, the SGCS and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.

The SGCS for different frequency carrier.

The gain of average SE for different frequency.
[bookmark: _Ref111217176]The same AI model performs well across different carrier frequencies below 6GHz

Generalization of scenario
For generalization across different scenario, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario respectively. According the evaluation result in Table 3, the model trained by the UMi-based data set offers a fairly high channel SGCS in both UMi and UMa scenarios.
[bookmark: _Hlk102160675]AI model performs well when generalized from UMi to UMa.
[bookmark: _Ref111215372]The SGCS in UMi and Uma.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



We construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The SGCS of each dataset composition is shown in Table 4.
[bookmark: _Ref111215383]The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the evaluation results, the model trained by UMi dataset independently behave worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, Comparing the dataset composition [225000 75000] and [50000 250000], the SGCS for InH is similar. While, compared with the former, the SGCS of the latter is much better. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples cannot provide more gains. However, the channel state of UMi is much more complicated, the reducing number of UMi samples can lead to severe performance degradation.
[bookmark: _Ref111217181]AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
[bookmark: _Ref111217182]Different payload may be required due to channel state or resource limiting.

Generalization of payload
To generalize different payload without training a new AI model, we use payload truncation for different payload so the length of encoder output can be fixed. As shown in Figure 13, the output of the encoder is cut out from the beginning to the specific payload length. After truncation, the truncated output is sent to the decoder.
[image: ]
[bookmark: _Ref111214771]The schematic of payload truncation.
When the AI model is trained, the loss function is set to include the correlation of all decoder output. We give a weight for each decoder and accumulate the correlation of each decoder output with the weight as a total correlation. The weight is trained with the decoder. We choose four different payload and use the dedicated model for each payload as baseline. We train the joint encoder with different combination of payloads. For each payload combination, only the decoder corresponding to the given payload is used. The SGCS of each joint encoder is shown below.
Baseline: four dedicated models of which the payloads are 223, 199,176 and 132 bits.
Case 1: one joint encoder and two decoders of which the input sizes are 223 and 176 respectively.
Case 2: one joint encoder and three decoders of which the input sizes are 223,199, and 176 respectively.
Case 3: one joint encoder and three decoders of which the input sizes are 223, 176 and 132 respectively.
The SGCS of different payload truncation methods.
	
	223
	199
	176
	132

	Baseline
	0.922
	0.913
	0.902
	0.871

	Case 1
	0.915
	
	0.901
	

	Case 2
	0.911
	0.908
	0.9
	

	Case 3
	0.898
	
	0.887
	0.867


Compared with the case 1 and case 2, for the same span of decoder input size, more decoders may not influence SGCS. Compared with the case 2 and case 3, the span of decoder input size may influence the performance and the SGCS decreases obviously with increasing span. Compared with the baseline and case 1, the performance loss is tiny in reasonable span of decoder input size. Therefore, in a reasonable span of decoder input size, one common encoder can be utilized and corresponds to serval decoders based on payload truncation to save the overhead of AI model transmission and switching complexity.
[bookmark: _Ref111217187]Study payload generalization with payload truncation as baseline.

Generalization of antenna spacing
Since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inferring results. We consider the antenna spacing first.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical domain is 0.8 wave length. To verify the generalization of antenna size, two cases are compared with different antenna space. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and the comparison is the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The entire AI model without pre-processing and the small AI model with pre-processing are both evaluated.

The SGCS of entire AI models based on different training dataset.

The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, for the case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 
[bookmark: _Ref111217191]There is obvious performance loss for generalization of antenna spacing

The SGCS of small AI models based on different training dataset.

The gain of average SE of small AI models based on different training dataset.
As for the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
[bookmark: _Hlk102160699]Small AI models with pre-processing may achieve better generalization performance.

Generalization of the number of antenna element and antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast. 
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown in Figure 18.

[bookmark: _Ref111214804]The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCS’s of the three AI cases are at least 0.07 higher than Rel-16 Type II codebook. Comparing case 1 and case 3, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2]. It can also be seen from the comparison between the Rel-16 Type II codebook with these two antenna configurations. With the increase of feedback bits, the gap of these two configurations still exists and even appear larger. However, for AI models, this gap is larger for low feedback bits and smaller for high feedback bits. It means that AI model perform better generalization of antenna virtualization for high feedback bits.
For antenna configuration [8 8 2], there are 8 antenna elements in the vertical domain and the antenna spacing is 0.8 wave length. For antenna configuration [2 8 2], there are 2 antenna elements in the vertical domain ant antenna spacing is also 0.8 wave length. So, the TXRU spacing of antenna configuration [8 8 2] is three times antenna configuration [2 8 2], which means the channel fading matrix of antenna configuration [8 8 2] is more various and more difficult to learn by AI model or code by Rel-16 Type II codebook.
[bookmark: _Ref111217199]AI model trained and used with smaller number of antenna configuration performs better than trained and used with larger number of antenna configuration with virtualization.
[bookmark: _Ref111217201]The performance gap of different antenna configuration is large for low feedback bits and small for high feedback bits.
Comparing case 1 can case 2, the AI model trained with dataset constructed by antenna configuration [8 8 2] performs similar SGCS for these two antenna configurations. It means that what decide the AI model performance is the scenario AI model deployed. The AI model trained with difficult antenna configuration can also perform better for easy antenna configuration.
This can also be observed by the SE gain compared with Rel-16 Type II codebook. In terms of the Case 1 and Case 2 above, we evaluate the SE gain compared with Rel-16 Type II codebook with corresponding antenna configuration. According to the evaluation results, The AI model trained with difficult antenna configuration perform similar SE gain in the cases of difficult and easy antenna configuration.
[bookmark: _Ref111215413]The SE gain of AI model for different antenna configurations
	
	Full buffer
	FTP1

	Case 1
	10.5%
	4.3%

	Case 2
	8.7%
	4.8%



[bookmark: _Ref111217203]The AI model trained with antenna configuration with more diverse features (e.g., antenna config. [8,8,2]) can also perform better for antenna configuration with less diverse features (e.g., antenna config. [2, 8, 2]).
As a consequence, the generalization can be summarized in the table as follows.
The generalization parameters
	Generalization Parameter
	Comments

	Carrier Frequency
	AI model performs well for the generalization of carrier frequency.

	Channel Scenario
	AI model can generalize across different scenarios with a mixed dataset

	Payload
	Payload truncation can be a starting point to study.

	Antenna Spacing
	There is obvious performance loss for the generalization of antenna spacing and further study is needed.

	Antenna virtualization
	AI model trained and used with smaller number of antenna configuration performs better than trained and used with larger number of antenna configuration with virtualization.
The AI model trained with antenna configuration with more diverse features (e.g., antenna config. [8,8,2]) can also perform better for antenna configuration with less diverse features (e.g., antenna config. [2, 8, 2]).

	Bandwidth/subband number
	Pre-processing with delay domain compression can be one method to realize the generalization of subband number.



[bookmark: _Ref111217474]Further study the model generalization, in consideration of generalization parameters as listed on the above table.

AI/ML performance with separate training
In this section, we introduce the initial evaluation results for separate training in CSI compression. By “separate training”, we mean that the encoder and decoder are trained at UE and gNB respectively with detailed model information transparent to each other.
[image: ]
[bookmark: _Ref111214830]An illustration of separate training procedure.
To implement separate training, we employ the following approach, which is illustrated in Figure 19:
Step 1: The encoder is trained firstly at UE or a server at UE side using collected dataset0. Specifically, a complete model containing both encoder and decoder is trained and then the encoder is picked out for separate training. The decoder obtained in step 1 is termed as decoder0.
Step 2: UE passes dataset1 into encoder to obtain the encoded feature1, and combines the dataset1 (encoder input) and encoded feature1 (encoder output) into the exchanging dataset, i.e., the encoder output serves as the label of encoder input.
Step 3: UE transmits the exchanging dataset to gNB.
Step 4: gNB utilizes the exchanging dataset to train the decoder via supervised learning. The decoder obtained in this step is termed as decoder1.
Step 5: Test the SGCS of joint inference of encoder and decoder based on dataset2.
[bookmark: _Ref111238479]Results for separate training in CSI compression.
	Samples in exchanging dataset
	Joint training with 300000 samples in step1
	600000
	300000
	100000
	50000
	25000
	10000
	5000
	2500
	1000

	Test SGCS for setting0
	0.830
	0.832
	0.827
	0.815
	0.804
	0.793
	0.776
	0.761
	0.733
	0.650

	Test SGCS in setting1 
	/
	/
	0.830 
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting2 
	/
	/
	0.800 
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting3 
	/
	/
	0.712
	/
	/
	/
	/
	/
	/
	/


The results are presented in Table 8, where following cases are considered:
1) Setting0: Decoder1 and decoder0 share the same model design as well as the hyperparameters in training. The unquantization method in decoder1 also matches the quantization method in encoder. Note that Setting0 is an ideal baseline as gNB could not know any information about the decoder0 which is at UE side.
2) Setting1: Decoder1 and decoder0 share the same model backbone structure, but decoder1 has more parameters than decoder0, i.e., decoder1 is an enlarged decoder0. The unquantization method in decoder1 also matches the quantization method in encoder.
3) Setting2: Decoder1’s structure is completely different from decoder0. But the unquantization method in decoder1 matches the quantization method in encoder.
4) Setting3: Decoder1’s structure is completely different from decoder0 (but the same with the decoder1 in Setting2), and the unquantization method in decoder1 does not match the quantization method in encoder.
Following observations are drawn from Table 8:
[bookmark: _Ref111217210]When the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance if the model structure from the two sides is aligned.
[bookmark: _Ref111217212]When the number of exchanged data samples is insufficient, performance of separate training could suffer from an obvious performance loss. 
[bookmark: _Ref111217214]The overhead of exchanging model input/output between UE and gNB could be high. For example, the size of 50000 samples is 335MB, while the size of encoder model is only 1.08MB, both in float32 format.
[bookmark: _Ref111217216]If the decoder model structure could not be aligned between UE and gNB, there will be an obvious performance loss compared with that in case where the same decoder design is shared in UE and gNB.
[bookmark: _Ref111217220]If the unquantization method at decoder and the quantization method in encoder could not match, there will be an obvious performance loss compared with that in case where the unquantization and quantization method are matching.

AI/ML performance with per-cell (region) model
AI/ML methods could fit the models into current data to achieve good performance. Therefore, if we could optimize the model based on data from specific cell or region, more gain could be achieved in principle. To verify this point, we evaluate per-cell (region) model performance in this subsection. 
[image: ]
[bookmark: _Ref111214857]Ray tracing map.
To model a per-cell (region) wireless environment, we utilize a typical ray-tracing channel model[1] in our experiment.  The outdoor scenario map [1] is plotted in Figure 20. Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [1]. The initial results are presented in Table 9.
[bookmark: _Ref111215593]Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99


*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model. 
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
[bookmark: _Ref111217238]Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
[bookmark: _Ref111217242]Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
[bookmark: _Ref111217487]Study the performance and overhead of per-cell (region) model transfer in CSI compression.
Results for CSI prediction
For the legacy CSI feedback procedure, the CSI measurement, CSI feedback and DL transmission utilizing the CSI feedback for precoding are conducted at different time (slots). If the CSI feedback from a previous time is directly used to generate DL precoding, the spectral efficiency will degrade due to the channel aging (especially in high mobility scenarios). To this regard, in addition to AI-based CSI compression mechanism AI-based CSI prediction is an inevitable way to solve such an issue.  In the following simulations, it is shown that AI-based CSI prediction outperforms the non-prediction case and non-AI based CSI prediction. Furthermore, the AI-based CSI prediction is also an approach to reduce the RS overhead and feedback frequency. Finally, CSI prediction is a one-sided model while CSI compression is a two-sided model, whose monitoring, updating and finetuning processes are different (from the viewpoint of studying the life cycle management). Therefore, we propose to study the sub use case of AI/ML for CSI prediction with high priority. Our concrete simulation results, provided in what follows, support our proposals.
The necessity of AI-based CS prediction
In this subsection, the necessity of AI-based prediction is strengthened by comparing the spectral efficiency (SE) of the AI-based CSI compression without scheduling delay, the AI-based CSI compression with scheduling delay and the sequential processing of AI-based CSI prediction and AI-based CSI compression with scheduling delay. These three schemes are illustrated in the following Figure 21. 


a) AI-based CSI compression without scheduling delay


b) AI-based CSI compression with 4ms scheduling delay


c) Chained AI models with scheduling delay (first AI-based CSI prediction and then AI-based CSI compression).
[bookmark: _Ref111214877]The illustration of three schemes for pointing put the necessity of AI-based CSI compression
The spectral efficiency of above mentioned three schemes are provided in the following Table 10. In this simulation, the period of CSI is 4 ms, the scheduling delay is 4ms, the AI-based CSI compression is using the 88 bits Transformer model, and the AI-based CSI prediction is with 15 historical CSIs as the input and predict the CSI of +4ms as the output. For the transmission scenario, we considered two cases, i.e., LOS/NLOS mixed case and NLOS case. For the bandwidth, 52PRBs and 13 sub-bands are used for transmission while the AI-based CSI prediction is conducted with the PRB-based granularity. The UE is travelling at the speed of 30km/h.
[bookmark: _Ref111215458]The spectral efficiency comparison of AI-based compression and AI-based prediction
	Transmission scenario
	scheme
	UE Average SE (bps/Hz)
	SE loss percentage

	LOS/NLOS mixed
	AI-based CSI compression without scheduling delay
	1.024
	

	
	AI-based CSI compression with 4ms scheduling delay
	0.84
	18%

	
	Chained AI models with scheduling delay (first AI-based CSI prediction and then AI-based CSI compression).
	0.99
	3%

	NLOS
	AI-based CSI compression without scheduling delay
	0.4946
	

	
	AI-based CSI compression with 4ms scheduling delay
	0.3077
	38%

	
	Chained AI models with scheduling delay (first AI-based CSI prediction and then AI-based CSI compression)
	0.4814
	2%



It is shown that the scheduling delay will lead to significant degradation of SE when only using AI-based CSI compression, especially in case of NLOS, due to the mismatch between the scheduling channel and measurement channel, also known as the channel aging phenomenon. By adding the AI-based CSI prediction, this mismatch can be relieved so as to improve the SE significantly. Specifically, with 4ms scheduling delay in LOS/NLOS mixed case, the SE gain of the sequential processing of AI-based CSI prediction and AI-based CSI compression over the pure AI-based CSI compression is more than 15%.
Without CSI prediction, using AI/ML based CSI compression, there exist significant spectral efficiency loss at least for moderate and high-speed scenarios. 
[bookmark: _Ref111218901]The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
[bookmark: _Ref111219003]To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
The comparison with non-AI CSI prediction
The NMSE of AI-based CSI prediction and non-AI CSI prediction is compared in the following Figure 22. In this simulation, the period of CSI is 4ms, the scheduling delay is 4ms, and the CSI prediction (both the AI-based and non-AI method) is with 15 historical CSIs as the input. The non-AI CSI prediction is based on the auto regression (AR), whose details are described in Appendix I. For the bandwidth, 52 PRBs and 13 sub-bands are considered. The UE is travelling at the speed of 30km/h.
In this case, the raw historic channel in PRBs is considered as AI-input, and the raw channel in PRBs in scheduling delay is predicted as AI-output. The AI-based CSI prediction or non-AI CSI prediction is conducted with the PRB-based granularity.


[bookmark: _Ref111214901]The NMSE of AI-based and non-AI CSI prediction
It is shown that the NMSE of AI-based CSI prediction is lower than that of the case without CSI prediction and the non-AI CSI prediction (AR). In other words, to achieve the same prediction accuracy, the AI-based CSI prediction requires lower CSI-RS and feedback overhead. Besides, the AI-based CSI prediction can predict arbitrary future slots while the AR-based CSI prediction can only predict the future slots with the same spacing of CSI period. At last, in the case of hardware with discontinuous phases, AI has the potential to extract the phase variation law from the historical CSIs and compensate for it to achieve prediction with high accuracy, which is hard to be solved by non-AI approaches. 
[bookmark: _Ref111218906]The advantages of AI prediction over AR-based non-AI prediction:
a) Higher accuracy;
b) Less CSI-RS and feedback overhead;
c) Fewer historical CSIs, i.e., shorter measurement window;
d) Flexibility of predicting time;
[bookmark: _Ref111219012]For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.
Furthermore, the concern of simultaneous studies in the AI-based CSI prediction and in R18 MIMO is expressed.
· Firstly, the work in R18 MIMO concentrates on the enhancement of codebook and time domain compression. In R18 MIMO, the role of CSI prediction is only reflected when the time window includes the future time. However, AI-based CSI prediction needs to study more specific details, e.g., the monitoring process (may introduce impacts on CSI-RS configuration and CSI report configuration), the generalization aspects, the finetuning (and online learning) process, the input and output format of model and so on. 
· Secondly, the CSI prediction in R18 MIMO is dedicated for R18 CSI codebook while the AI-based CSI prediction is an independent module which can be sequentially combined with arbitrary compression (e.g., AI-based compression and R15, R16, R17, R18 codebook-based compressions).
· Lastly, the work in R18 MIMO will not specify a prediction algorithm as a baseline. Therefore, even we wait for the process of R18 MIMO, they will not provide us any agreed-on non-AI algorithm as a baseline. If we want to compare AI-based CSI prediction with the non-AI scheme, we should discuss it in the AI/ML study item.
In conclusion, the study of AI/ML based CSI prediction is independent of the study of R18 MIMO.
[bookmark: _Ref111219014]The study of AI/ML based CSI prediction is independent with the R18 MIMO. Furthermore, AI/ML based CSI prediction is more beneficial.
How to derive the prediction of sub-band PMI?
There are at least three schemes to derive the prediction of sub-band PMI: 1) derive the prediction of channel matrix on all PRBs using the historical channel matrices on all PRBs and then turn this prediction into sub-band PMI, i.e., the prediction is conducted on PRBs; 2) derive the sub-band PMIs of historical channels and then predict the sub-band PMI of the future time, i.e., the prediction is conducted on sub-bands; 3) directly predict the sub-band PMI from the historical channel matrices, i.e., the prediction is conducted from PRBs to sub-bands. The following Figure 23 illustrate the aforementioned three schemes of deriving the sub-band PMI.


d) Prediction on PRBs


e) Prediction on sub-bands


f) Prediction from PRBs to sub-bands
[bookmark: _Ref111214924]the illustration of three schemes for deriving the sub-band PMI.
The prediction accuracy of the first and second schemes for deriving the sub-band PMI are provided in the following Figure 24. In this simulation, the period of CSI is 4ms, the scheduling delay is 4ms, and the prediction is with 15 historical CSIs or PMIs as the input. For the bandwidth, 52 PRBs and 13 sub-bands are considered. The NMSE is calculated using the predicted PMI and its corresponding label. The UE is travelling at the speed of 30km/h.

[bookmark: _Ref111214947]The prediction accuracy of the first and second schemes for deriving the sub-band PMI
It is shown that the prediction accuracy of second scheme (prediction on sub-bands) is much worse than that of the first scheme (prediction on PRBs). The reason behind the phenomenon may be the loss of time varying features during the sun-band PMI deriving process.
Besides the channel type of input to the prediction model discussed in this subsection, the format of input and output such as the number of historical CSI inputs (the length of measurement window), the CSI period, and the predicting time will also impact the performance of AI-based CSI prediction.
[bookmark: _Ref111219019]The scheme to combine the AI-based CSI prediction and AI-based CSI compression should be studied.
[bookmark: _Ref111218928]The AI-based CSI prediction at UE side is more promising than that at gNB side.
[bookmark: _Ref111219022]For AI-based CSI prediction, the input type of the AI/ML model (e.g., raw channel, sub-band PMI, CSI recovered at gNB, etc.) should be taken into the EVM.
[bookmark: _Ref111219024]For AI-based CSI prediction, the number of historical CSI inputs (the length of measurement window), the CSI period, and the predicting time should be taken into the EVM.

The generalization of AI-based prediction over different PRBs
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. In this subsubsection, the generalization of AI-based CSI prediction over different PRBs is evaluated. Firstly, the AI model is trained using the data only collected from 1-st PRB. Then, the trained model is directly inferred on the 10-th, 20-th, 30-th, 40-th and 50-th PRB to evaluate the generalization performance. In this simulation, the period of CSI is 4 ms, the scheduling delay is 4ms, and the prediction is with 15 historical CSIs as the input. For the bandwidth, 52 PRBs are considered while the AI-based CSI prediction is conducted with the PRB-based granularity. The corresponding performance is provided in Table 11. 
[bookmark: _Ref111215676]The generalization performance of AI-based CSI prediction over different PRBs
	Inferred PRB
	1st PRB (trained)
	10th PRB
	20th PRB
	30th PRB
	40th PRB
	50th PRB

	NMSE (dB)
	-20.205
	-20.379
	-20.188
	-20.271
	-20.445
	-20.111


It is shown that the single PRB CSI prediction model trained from one specific PRB achieves almost the same performance on other PRBs, i.e., the generalization of AI-based CSI prediction with respect to PRBs is good. Therefore, it is preferable to train and save only one single PRB AI model and derive prediction of all PRBs in parallel way, just as shown in Figure 25.

[image: ]
[bookmark: _Ref111214987] The process of deriving CSI prediction of all PRBs using one common single-PRB model
[bookmark: _Ref111218935]The generalization of AI-based CSI prediction with respect to PRBs is good
[bookmark: _Ref111219029]The generalization performance across frequency domain should be studied.
Single PRB prediction and multiple PRB prediction.
In this subsubsection, the performance of single PRB CSI prediction model (the channel on one PRB as the input and the predicted channel on this PRB as the output) and multiple PRB CSI prediction model (the channel on multiple PRBs as the input and the predicted channel on these multiple PRBs as the output). For a given bandwidth with K PRBs, the CSI prediction of all PRBs can be derived by conduct K times single PRB model in parallel or conduct K/M times M-PRB model in parallel (if M=K, then the CSI prediction of all PRBs can be derived by one model). In this simulation, the period of CSI is 4ms, the scheduling delay is 4ms, and the prediction is with 15 historical CSIs as the input. For the bandwidth, 52 PRBs are considered and the AI-based CSI prediction is conducted with the PRB-based granularity. The corresponding performance is provided in Table 12. 
[bookmark: _Ref111215693]The NMSE comparison of single PRB model and multiple PRB model
	NMSE (dB)                       The size of in hidden layer

scheme
	256
	512
	1024

	Single PRB model
	-20.205
	-20.284
	-20.184

	5 PRB model ([1,11,21,31,41]-th PRB)
	-19.027
	-20.665
	-20.782

	13 PRB model ([1,5,9,…,49]-th PRB)
	-15.032
	-19.535
	-21.169


It is shown that using 256 neurons in the hidden layer, the prediction accuracy decreases with the increase of the PRB number as input. The degradation is caused by the increase of the complexity of the problem when it turns from single PRB prediction to multi-RB prediction. To support multi-RB prediction, the capability of neural networks should be improved. When increasing the number of neurons in the hidden layer, the performance of single PRB prediction holds while the performance of multi-RB prediction improves and even outperform the single PRB prediction.
[bookmark: _Ref111219032]For AI-based CSI prediction, the input format of frequency domain should be taken into the EVM.

Conclusions
1. AI model can achieve almost 0.07 SGCS improvement with the same payload.
AI model can achieve almost 11% gain with the same payload or save more than 75% overhead with the same SE for full buffer model.
AI model can achieve almost 5% SE gain with the same payload or save more than 50% overhead with the same SE for FTP1 model.
Pre-processing with delay domain compression can solve the generalization of bandwidth and subband number.
Pre-processing with spatial domain needs to be controlled with a light level.
Per-layer model can achieve similar SGCS with half model size compared with per-rank model.
In the case of rank-2, AI model can provide about 12 SE gain compared with Rel-16 Type II codebook.
The same AI model performs well across different carrier frequencies below 6GHz
AI model performs well when generalized from UMi to UMa.
AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
Different payload may be required due to channel state or resource limiting.
Study payload generalization with payload truncation as baseline.
There is obvious performance loss for generalization of antenna spacing
Small AI models with pre-processing may achieve better generalization performance.
AI model trained and used with smaller number of antenna configuration performs better than trained and used with larger number of antenna configuration with virtualization.
The performance gap of different antenna configuration is large for low feedback bits and small for high feedback bits.
The AI model trained with antenna configuration with more diverse features (e.g., antenna config. [8,8,2]) can also perform better for antenna configuration with less diverse features (e.g., antenna config. [2, 8, 2]).
When the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance if the model structure from the two sides is aligned.
When the number of exchanged data samples is insufficient, performance of separate training could suffer from an obvious performance loss.
The overhead of exchanging model input/output between UE and gNB could be high. For example, the size of 50000 samples is 335MB, while the size of encoder model is only 1.08MB, both in float32 format.
If the decoder model structure could not be aligned between UE and gNB, there will be an obvious performance loss compared with that in case where the same decoder design is shared in UE and gNB.
If the unquantization method at decoder and the quantization method in encoder could not match, there will be an obvious performance loss compared with that in case where the unquantization and quantization method are matching.
If the unquantization method at decoder and the quantization method in encoder could not match, there will be an obvious performance loss compared with that in case where the unquantization and quantization method are matching.
Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
The advantages of AI prediction over AR-based non-AI prediction:
a) Higher accuracy;
b) Less CSI-RS and feedback overhead;
c) Fewer historical CSIs, i.e., shorter measurement window;
d) Flexibility of predicting time;
The AI-based CSI prediction at UE side is more promising than that at gNB side.
The generalization of AI-based CSI prediction with respect to PRBs is good

1. Support to align the general configuration for generating the dataset and share the dataset for corresponding specific configuration over companies if needed.
Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.
The ideal channel estimation can be used for dataset construction and performance evaluation.
AI/ML memory storage in terms of AI/ML model size can be recorded with ONNX format.
4GHz can be set as a baseline and other carrier frequencies are not precluded
We prefer 32 CSI-RS ports as a baseline and other configurations are not precluded.
10MHz bandwidth can be set as a baseline and other bandwidths are not precluded.
Consider both full buffer and FTP1 with different RU. The full buffer model can be used as the starting point.
For AI-based CSI prediction, UE trajectory for CSI prediction can be reflected by Doppler shift.
For AI-based CSI prediction, we suggest the UE distribution of 100% outdoor (30km/h and higher speed)
For AI-based CSI prediction, besides 5ms, we suggest the CSI feedback periodicity of 4ms and 2ms.
 For AI-based CSI prediction, propagation type can be mixed LOS/NLOS and NLOS only.
Prefer to adopt SGCS with average over all layers as a baseline intermediate KPI for rank>1 cases.
Further study the model generalization, in consideration of generalization parameters as listed on the above table.
Study the performance and overhead of per-cell (region) model transfer in CSI compression.
To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.
The study of AI/ML based CSI prediction is independent with the R18 MIMO. Furthermore, AI/ML based CSI prediction is more beneficial.
The scheme to combine the AI-based CSI prediction and AI-based CSI compression should be studied.
For AI-based CSI prediction, the input type of the AI/ML model (e.g., raw channel, sub-band PMI, CSI recovered at gNB, etc.) should be taken into the EVM.
For AI-based CSI prediction, the number of historical CSI inputs (the length of measurement window), the CSI period, and the predicting time should be taken into the EVM.
The generalization performance across frequency domain should be studied.
For AI-based CSI prediction, the input format of frequency domain should be taken into the EVM.
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Appendix I: the non-AI CSI prediction based on AR
In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term). 
An AR model is described as

	,	







where  is the sample at time, the  are the parameters of the model, and  is white noise. For CSI prediction,  is the CSI at time .The parameters  can be directly derived from some samples using least square estimation. However, this estimation will be impacted by the noise. Another solution is to estimate the parameters based on the Yule-Walker equations.
There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances). This is done using the Yule-Walker equations. The Yule-Walker equations is given by

		









where, yielding  equations. Here  is the autocovariance function of , is the standard deviation of the input noise process, and  is the Kronecker delta function. Because the last part of an individual equation, i.e., , is non-zero only if, the set of equations can be solved by representing the equations for in matrix form, thus getting the equation

		

which can be solved for all  Then the parameters of AR model can be estimated by

                                                                                     	                                                                        
The SGCS of ideal and realistic channel estimation

Ideal	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	Realistic	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82299999999999995	0.83299999999999996	0.84699999999999998	0.85899999999999999	0.87409999999999999	0.88360000000000005	0.89870000000000005	0.90129999999999999	payload (bits)


SGCS




The SGCS of Rel-16 Type II codebook and AI model 

Rel-16 Type II	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	feedback bits


SGCS




The gain of average  SE compared with 
64 bits Rel-16 Type II codebook 

Rel-16 Type II	64	96	116	180	244	302	0	1.9363762102351245	5.3250345781466137	8.5062240663900326	8.6445366528353986	9.5435684647302992	AI	78	95	111	127	143	159	180	207	223	10.511756569847861	12.655601659751042	14.177040110650083	14.937759336099575	15.698478561549109	17.289073305670826	19.017980636237894	20.193637621023512	20.677731673582315	SVD	64	96	116	180	244	302	31.466113416320894	31.466113416320894	31.466113416320894	31.466113416320894	31.466113416320894	31.466113416320894	feedback bits


The gain of average SE (%)




The gain of average  SE compared with 
64 bits Rel-16 Type II codebook 

Rel-16 Type II	64	96	116	180	244	302	0	2.4206738632646392	4.7432122996401631	7.5237160614981917	8.1452404317958695	8.9957474648348068	AI	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	SVD	64	96	116	180	244	302	16.912005233889431	16.912005233889431	16.912005233889431	16.912005233889431	16.912005233889431	16.912005233889431	feedback bits


The gain of average SE (%)




The SGCS of Rel-16 Type II codebook and AI model 

no pre-processing	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	Rel-16 Type II	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	Case 1	104	164	214	254	0.78300000000000003	0.83699999999999997	0.86499999999999999	0.876	Case 2	149	209	259	299	0.81399999999999995	0.85699999999999998	0.878	0.88800000000000001	Case 3	121	181	231	271	0.80700000000000005	0.83799999999999997	0.84599999999999997	0.84899999999999998	feedback bits


SGCS




The gain of average  SE compared with 
64 bits Rel-16 Type II codebook 

Rel-16 Type II	64	96	116	180	244	302	0	1.9363762102351245	5.3250345781466137	8.5062240663900326	8.6445366528353986	9.5435684647302992	no pre-processing	78	95	111	127	143	159	180	207	223	10.511756569847861	12.655601659751042	14.177040110650083	14.937759336099575	15.698478561549109	17.289073305670826	19.017980636237894	20.193637621023512	20.677731673582315	Case 1	104	164	214	254	9.6127247579529893	14.730290456431547	17.634854771784234	19.017980636237894	Case 2	149	209	259	299	11.341632088520058	15.767634854771771	18.46473029045643	19.986168741355485	Case 3	121	181	231	271	9.8201936376210313	12.37897648686031	13.347164591977872	13.485477178423238	feedback bits


The gain of average SE (%)




The gain of average  SE compared with 
64 bits Rel-16 Type II codebook 

Rel-16 Type II	64	96	116	180	244	302	0	2.4206738632646392	4.7432122996401631	7.5237160614981917	8.1452404317958695	8.9957474648348068	no pre-processing	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	Case 1	104	164	214	254	6.0189728491985619	9.4537127903172973	11.023879620543028	11.678115799803734	Case 2	149	209	259	299	7.6872751063133791	10.271508014393206	11.54726856395159	12.070657507360167	Case 3	121	181	231	271	7.1638861629048023	9.02845927379785	9.4864245992803546	9.5845600261694557	feedback bits


The gain of average SE (%)




The gain of average  SE compared with 
113 bits Rel-16 Type II codebook 

Rel-16 Type II	113	169	207	319	431	539	0	7.3875553484036089	16.522955022139342	24.679561873689096	26.707061291074339	29.620135166627819	AI	190	254	302	318	366	414	28.408296434397556	31.088324399906753	33.418783500349548	34.980191097646241	36.984385924027009	38.755534840363538	SVD	113	169	207	319	431	539	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	feedback bits


The gain of average SE (%)




The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.84399999999999997	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)


The average cosine similarity




The gain of average SE 

5.5GHz	85	95	111	127	159	175	191	207	223	0.15797788309637895	1.1058451816745531	2.6066350710900394	2.9225908372827689	4.4233807266982552	4.9763033175355389	6.3191153238546747	6.0821484992101205	6.9510268562401336	3.5GHZ	85	95	111	127	159	175	191	207	223	0.23696682464454	1.3428120063191216	2.5276461295418642	2.9225908372827689	4.186413902053701	5.0552922590837426	6.3191153238546747	6.3191153238546747	7.3459715639810526	2.2GHZ	85	95	111	127	159	175	191	207	223	0	1.2638230647709321	2.5276461295418642	2.9225908372827689	4.186413902053701	4.9763033175355389	6.240126382306471	6.5560821484992147	7.0300157977883089	payload (bits)


The gain of average SE (%)




The SGCS of different antenna sapces

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)


SGCS




The gain of average  SE compared with 
85 bits baseline AI model 

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.1041009463722276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)


The gain of average SE (%)




The SGCS of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)


SGCS




The gain of average  SE of small AI models compared with 
87 bits baseline AI model 

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)


The gain of average SE (%)




The SGCS of Rel-16 Type II codebook and AI model 

Rel-16 Type II with [2 8 2]	64	96	116	180	244	302	0.69099999999999995	0.73899999999999999	0.77400000000000002	0.82699999999999996	0.84099999999999997	0.86599999999999999	AI Case 2	78	95	111	127	143	159	180	207	223	0.79	0.81799999999999995	0.83699999999999997	0.84499999999999997	0.86499999999999999	0.86899999999999999	0.88500000000000001	0.89800000000000002	0.90400000000000003	Rel-16 Type II with [8 8 2]	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI Case 1	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	AI Case 3	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	feedback bits


SGCS




no CSI prediction	
-7.2140000000000004	-5.444	-2.125	4.8800000000000003E-2	1.446	2.3820000000000001	2.9460000000000002	3.3460000000000001	3.3832	3.4131999999999998	AI-based CSI prediction	
-33.816000000000003	-30.5718	-25.5062	-20.8889	-16.967700000000001	-13.720800000000001	-11.0738	-8.9324999999999992	-7.2274000000000003	-5.8829000000000002	non-AI CSI prediction (AR)	
-8.3800000000000008	-4.46	predicted time (ms)


NMSE (dB)




Prediction on PRBs	
-28.9727	-28.1539	-23.5214	-19.767199999999999	-16.4194	-13.898199999999999	-11.744	-10.073399999999999	-8.6160999999999994	-7.4555999999999996	Prediction on sub-bands	
-15.0397	-11.122299999999999	-9.2349999999999994	-8.1621000000000006	-7.4794	-7.0728	-6.7271999999999998	-6.5101000000000004	-6.3436000000000003	-6.2069999999999999	predicted time (ms)


NMSE of PMI (dB)
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