3GPP TSG-RAN WG1 Meeting #110	R1-2205892
Toulouse, France, August 22 – 26, 2022
 
Agenda Item:   9.2.3.1
Source:        Huawei, HiSilicon
Title:	       Evaluation on AI/ML for beam management
Document for:  Discussion and Decision

Introduction
In the RAN#94 plenary meeting [1], a new SID on artificial intelligence (AI)/machine learning (ML) for air-interface was approved for Rel-18, and the objectives of the SID are attached in the Appendix. For the AI/ML-based beam management, two cases are included: beam prediction in spatial domain and beam prediction in temporal domain [2]. In this contribution, we focus on the evaluations of AI/ML-based beam management (BM), including the EVM and evaluation results.
Evaluation methodology for beam prediction
Generic EVM for beam prediction
To present the evaluation results in details and as agreed in the last meeting, the following KPIs are considered for both spatial domain and temporal domain beam predictions in this contribution:
· Prediction Accuracy for Top-1 and Top-K beams 
· Prediction Accuracy with 1dB L1-RSRP Margin
· Average L1-RSRP difference in dB
· CDF of L1-RSRP difference for Top-K predicted beams
· BM measurement overhead reduction compared to a baseline
In addition, for the beam prediction accuracy point, there are two options for further discussions as in below [3].
	Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
……


[bookmark: OLE_LINK22]For the evaluations of both spatial domain and temporal domain beam predictions, to measure the prediction accuracy, Option 2 in [3] is preferred. This method describes the probability that the genie-aided best beam is one of the inferred Top-K beams. Option 2 evaluates the performance of the AI/ML model to accurately generate output that can be used in a second round beam sweep [4] (i.e., P-2/3), where as long as the genie-aided best beam ID belongs to the inferred Top-K candidates, it will be reported as the best beam after the second round beam sweep. Therefore, we are making the following proposal:
[bookmark: _Ref111192795]Proposal 1: As KPI for the evaluation of the prediction accuracy, Option 2 should be considered, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”. 
Though the AI/ML model for beam prediction can be also trained and inferred at the UE side under the UE-side operation mode (i.e. both model training and model inference at the UE side), in this paper we choose to focus on the one-sided AI/ML model at Network (i.e. Network-side model), since in our understanding network-side model is a simpler approach compared with UE-side model with less necessary information to be aligned between Network and UE. Moreover, according to the analysis in [5], for simplicity and to achieve better progress we suggest a one-sided approach (either Network-side or UE-side AI/ML operations). 
[bookmark: _Ref111192800]Proposal 2: The evaluation for beam prediction should take one-sided AI/ML model into consideration, including the Network-side AI/ML model and UE-side AI/ML model.
Generalization verification
Generalization is one of the key concerns when implementing AI/ML for beam management, it is therefore important that the AI/ML model will be trained under various conditions that can be encountered during inference. For different sub use cases (i.e., spatial domain and temporal domain beam management), the scenarios and configurations considered to enable generalization are different. Yet there is one common part, which is the methodology to verify the generalization of AI/ML. Therefore we are making the following proposal
[bookmark: _Ref111192804]Proposal 3: To verify the generalization of AI/ML models on AI/ML-based beam management in both spatial and temporal domains, the following cases to construct the training dataset and testing dataset should be considered:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios
· Case 4: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
The Case 1 can be regarded as an upper bound but probably obtained by overfitting gains, while the Case 2 can be regarded as the baseline (possibly of lower bound) for evaluating the performance of the AI/ML model under an unseen situation. Case 3 can provide insights on how to achieve moderate performance from the perspective of training dataset composition which adapts to various situations. Case 4 can provide insights from the perspective of fine-tuning which can also take Case 2 as a baseline. The specific scenarios and configurations for performing the generalization verification under spatial domain and temporal domain are suggested in Section 2.2 and Section 2.3, respectively.
Applicable codebook types
In this part, we discuss two applicable options for AI/ML-based beam prediction, which are different sub types of Set A as introduced in RAN1#109-e [3]: 
	Agreement
For AI/ML-based beam management, support BM-Case1 and BM-Case2 for characterization and baseline performance evaluations
· BM-Case1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams
· BM-Case2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams
· FFS: details of BM-Case1 and BM-Case2
· FFS: other sub use cases
Note: For BM-Case1 and BM-Case2, Beams in Set A and Set B can be in the same Frequency Range


Type 1 is the sparse beam sweeping based on the 64 DFT codebook. The motivation of this approach it to employ AI/ML to enable sparse beam sweeping with low overhead and low power consumption, with the benefit of increasing the beam selection accuracy compared to the legacy approach. 
For Type 2, the target is to improve the network coverage/performance from the network perspective. A denser beam sweeping codebook with more than 64 Tx beams (e.g., 256 Tx beams) is considered. By doing so, the angular resolution of the TX beams is refined, but the beam width and gNB antenna configuration compared to Type 1 is not changed. The AI/ML model infers the Top-K subset from the 256 dense beams to perform beam sweeping at P-2/3. Due to the more precisely selectable beam direction, this achieves better coverage than the legacy exhaustive 64 Tx beam sweeping as long as the AI/ML inferred Top-K beams are accurate.
It should be noted that from gNB configuration and AI/ML model perspectives, Type 1 and Type 2 are very similar. They use the same number of gNB antennas, perform the same sparse beam sweeping and use the same procedure to infer the Top-K beams out of Set A. They only difference is that in Type 1, Set A consists of 64 beams, whereas in Type 2 it consists of 256 beams.
Type 1 – Set A is composed of codebook of 64 DFT beams
This evaluation method assumes that the beams are generated from a DFT codebook. The size of the DFT codebook is, where K denotes the number of gNB antenna elements. The mathematical expression of the DFT codebook can be given by

Where  and  are the indexes for gNB antenna and beam ID, respectively. One design example of the sparse beam pattern is illustrated in Figure 1 below, where Set B is considered as the subset of Set A, and 16 beams Set B are selected from Set A beams following the figure in below for sweeping. The L1-RSRPs for the beams contained in this sub set are then provided to the AI/ML model in P-1, where the Top-K beams from the full set of 64 Tx beams are inferred for P-2/3 sweeping. Accordingly, L1-RSRPs of 16 beams are sent into the AI/ML model in P-1, then Top-K beams are predicted from all 64 Tx beams for P-2/3 sweeping.
[image: ]
[bookmark: _Ref101955663][bookmark: _Ref101955597]Figure 1. 16 sparse beam pattern within 64 full beam set
Type 2 – Set A is composed of a dense codebook of 256 Tx beams
The dense codebook can achieve 4 times higher resolution than the 64 DFT codebook without changing the size of the gNB antenna array, it provides another option for Set A to explore additional coverage. As an example of this codebook, each gNB antenna element is supposed to correspond to 4 beams, and the mathematical expression to generate this codebook is given by

Similar to Type 1, 16 sparse beams are swept in P-1, so that the overhead will not change. For P-2/3, the Top-K beam is inferred by the gNB from the full set of 256 dense Tx beams. This is expected to improve the coverage due to a finer angular resolution of the beams compared to the 64 DFT codebook. Figure 2 shows how the sparse beam pattern (i.e., the red grids) is selected from the dense codebook.
[image: ]
[bookmark: _Ref102060932]Figure 2. 16 sparse beam pattern within 256 full beam set
EVM for beam prediction in spatial domain
For spatial domain beam prediction, the training inputs to the AI/ML model are the L1-RSRPs of the P-1 sparse beams as previously described and the optimal beam ID is regarded as the training label. For the purpose of evaluation, this can be directly generated from the simulation platform as a starting point. For the construction of the sparse beam set (i.e., Set B), two options can be considered, which are Set B is a subset of Set A with both have narrow beams, and the other one is Set B is different from Set A while Set B consists of wide beams. 
[bookmark: _Ref111192825]Proposal 4: For the evaluation of AI/ML-based spatial domain beam prediction, adopt the L1-RSRP values for the beams contained in Set B as training inputs labeled with the optimal beam ID from Set A. 
· The size of Set B is smaller than Set A.
· Set B can be a narrow-beam subset of Set A or can contain wide beams which are different from the beams in Set A.
As discussed in Section 2.1, the generalization can be performed from the dataset composition perspective or fine-tuning perspective. When it comes to the specific scenarios or configurations for verifying generalization performance under the spatial domain beam prediction sub use case, we consider the following with relatively high priority:
[bookmark: _Ref111192843]Proposal 5: For verifying the AI/ML model generalization for spatial domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model include at least:
· Various channel types, including UMa, UMi, InH
· Various indoor/outdoor ratios, including 10:0, 8:2, 5:5, 2:8, 0:10
· Various numbers of beams in Set A/Set B
EVM for beam prediction in temporal domain
Following the illustration in Figure 3 below, in temporal beam prediction, historical information is collected during an observation window (T1 in Figure 3) consisting of N instances, and M sets of Top-K beams are inferred by the AI/ML model to be used for P-2/3 sweeping in M time durations during the prediction window (T2 in Figure 3).
 [image: ]
[bookmark: _Ref110618044][bookmark: _Ref110618033]Figure 3. Diagram of the temporal domain beam prediction
The key difference between spatial domain beam prediction and the temporal domain beam prediction is that for temporal beam prediction higher UE speed is taken into consideration to reflect the changes of the channel status and the corresponding optimal beams in time domain. Following the agreement in [3], the baseline for UE speed is 30 km/h. We think that an even larger UE speeds is also beneficial to be taken into account and therefore 90 km/h is included in our evaluation. We are therefore making the following proposal: 
[bookmark: _Ref111192911]Proposal 6: For AI/ML-based temporal domain beam prediction evaluation, higher UE speed value(s), e.g., 90km/h or 120km/h, should be considered in addition to 30km/h.
Regarding the trajectory, there are 3 candidate options provided in the last meeting as in below.
	Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
……
· Option #3: Linear trajectory model with random and smooth direction change.
……
· Option #4: Random direction straight-line trajectories. 
……


In our understanding, Option#4 (i.e., Random direction straight-line trajectories) is preferred as a starting point which drops the UE in a cell randomly and the initial moving direction is randomized. This better simulates the outdoor straight & fast moving behavior of at least 30 km/h. Other options can be also considered in the verification of the generalization scenarios.
[bookmark: _Ref111192924]Proposal 7: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point. 
The key component to support temporal domain beam prediction is the spatial consistency. In this paper, we consider procedure B in TR38.901 which updates all small scale parameters and large scale parameters along with the trajectory.
For the generalization verification, our proposal is similar to the proposal for spatial domain multiplexing, with the addition that UEs with various types of trajectories and various speeds should be also considered for AI/ML inference.
[bookmark: _Ref111192949]Proposal 8: For verifying the AI/ML model generalization for temporal domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model include at least: 
· Various channel types, including UMa, UMi, InH
· Various indoor/outdoor ratios, including 10:0, 8:2, 5:5, 2:8, 0:10
· Various UE speeds (e.g., 30km/h, 60km/h, 90km/h)
· Various types of trajectories
· Various numbers of beams in Set A/Set B
[bookmark: _Ref129681832]Evaluations for spatial domain beam prediction
Procedure for spatial domain beam prediction
For the AI/ML-based sparse beam prediction, the target is to increase the accuracy compared to the legacy method under less or comparable overhead as baseline. Figure 4 below provides a flow chart to illustrate how the AI/ML-based BM is operated. In the outlined approach, the Network-side AI/ML model is considered where the AI/ML model is assumed to be trained and inferring at the gNB side. Supervised learning is considered in this evaluation, where the UE feeds back the L1-RSRP for each Tx beam as the ground-truth information for training input. For the AI/ML training phase, the gNB performs beam sweeping over sparse (narrow or wide) beams in Set B, and the UE feeds back the L1-RSRPs of the sparse beams and the optimal beam ID over the full beam set (i.e., Set A) to the gNB, which then will be used to train the AI/ML model. When the trained AI/ML model is used for inference, the gNB will sweep the sparse beams at P-1 (e.g., 16 beams), and the UE will report the corresponding L1-RSRPs for all the measured sparse beams to the gNB for inferring the Top-K beams. CSI-RS beam sweeping based on the inferred Top-K beams will then be carried out in P-2/3 as in the legacy system, and the optimal beam from the Top-K beams will then be fed back from the UE. 
[image: ]
[bookmark: _Ref102039974]Figure 4. Flow chart for AI/ML-based spatial domain beam management
Description of the AI/ML model 
The AI/ML model related parameters for spatial domain beam prediction are given in below.
Table 1. AI/ML model and training parameters for spatial domain beam prediction
	Parameter
	Value

	AI/ML (NN) model architecture type
	Convolutional Neural Network (CNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	45000/5000 samples

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie aided Top-1 beam ID as label

	Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	100

	Learning rate
	Starting at 0.001 with certain LR scheduler setting


Simulation results for beam prediction in spatial domain
Systems level simulations are performed for spatial domain beam prediction, based on the agreements in the RAN1 #109-e session note [3]. The AI/ML model performance together with the baseline scheme for spatial domain beam prediction is given in the tables (i.e., Table 2-Table 5) and figures (i.e., Figure 5 and Figure 6) below. Regarding the baseline solutions, there are two options agreed in the last meeting as shown in below. We consider both options in the evaluations.
	Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.


[bookmark: _Ref101955953][bookmark: _Ref111143692]Sparse beam sweeping based on 64 DFT codebook (Type-1)
According to Table 2 shown below, AI/ML schemes are simulated for different numbers of Top-K beams and compared with two non-AI/ML schemes.
· Exhaustive 64 (Option 1), is the exhaustive beam sweeping over all 64 Tx beams, which can be regarded as the upper bound; with this method, the gNB will always get the genie-aided Top-1 beam. It gives the best performance but also requires the largest overhead and power consumption. 
· Baseline (Option 2), is the traditional sparse beam sweeping under non-AI/ML, where 16 sparse Tx beams are swept at P-1, and after the UE feeds back the optimal P-1 beam ID, the gNB will determine the Tx beams for P-2 to include this optimal P-1 beam as well as its 4 fixed neighboring beams; this is to align the overhead and compare the accuracy with the AI/ML-based approach under K=5. In addition, the optimal P-1 beam directly applied to without P-2 sweeping is also provided to align the overhead with AI/ML-based K=1. In the baseline, it can be seen that Set B is a subset of Set A.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme. It is noted that ‘BS X * UE Y’ denotes the X Tx beams are swept and Y Rx beams are swept during the corresponding stage.
[bookmark: _Ref101955388]Table 2. Schemes for evaluating the DFT codebook Type
	Schemes
	P-1
	P-2/3

	Exhaustive 64 
(Option 1)
	BS 64 * UE 4
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	BS 16 * UE 4
Sparse beam sweep
	One best measured beam and 4 neighbors
	

	AI/ML
	BS 16 * UE 4
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


The simulation results are shown in Table 3 below. It can be seen that the performance gap between the Baseline (legacy sparse beam sweeping) and the Exhaustive 64 (i.e., genie aided Top-1) is large. The baseline only achieves a prediction accuracy of 55.3%, i.e. there is only a 55.3% chance that the optimal beam is included in the Top-5 candidates that are identified with the legacy method. The performance gap compared to the upper bound Exhaustive 64 is significantly narrowed when the AI/ML-based approach is taken instead. With the same overhead as the baseline (i.e. K=5), AI/ML can achieve a prediction accuracy as high as 94.95%. Additionally, even when the AI/ML model is configured to operate with a lower overhead than the baseline, i.e. K=1 or K=3, its performance is still better.
The simulation results are also illustrated in Figure 5 below where the CDF of the prediction accuracy is shown for various L1-RSRP differences. It can be clearly seen that all AI/ML-based approaches outperform the Baseline and that as larger the value of K is chosen, the better the prediction result of the AI/ML-based method.
Based on the above discussion we make the following observations:
[bookmark: _Ref111192585]Observation 1: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
[bookmark: _Ref111192664]Observation 2: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
[bookmark: _Ref110512540]Table 3. KPIs for AI/ML model performance for spatial domain beam prediction with 64-DFT
	 

	Prediction Accuracy [%]
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Average L1-RSRP differencee [dB]
	BM measurement overhead reduction [%] compare to Exhaustive 64

	Method
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5

	Exhaustive 64
non-AI/ML beam selection (64 CSI-RS/SSB)
	100
	-
	-
	100
	-
	-
	0
	-
	-
	0
	-
	-

	Baseline
(top 5 beams)
non-AI/ML beam selection (16SSB + 5 CSI-RS)
	-
	-
	55.3
	-
	-
	59.65
	-
	-
	1.0260
	
	-
	67.19

	non-AI/ML beam selection (16SSB)
(top 1 beam)
	22.13
	-
	-
	29.45
	-
	-
	1.5428
	-
	-
	75
	-
	-

	AI/ML-based beam selection (input 16 narrow beam Set B, output Top-K IDs in 64 DFT codebook)
	65.5
	89.2
	94.95
	69.5
	92.5
	97.95
	0.4062
	0.0832
	0.0304
	75
	70.31
	67.19

	AI/ML-based beam selection (input 16 wide beam Set B, output Top-K IDs in 64 DFT codebook)
	46.2
	80.2
	91.1
	51.2
	84.4
	95.3
	1.0501
	0.1027
	0.0489
	75
	70.31
	67.19



[image: ]
[bookmark: _Ref110522972]Figure 5. CDF of L1-RSRP difference of Top-K prediction beam for 64 DFT codebook
Furthermore, it can be seen that the larger the K, i.e. the more beams are inferred by the AI/ML model, the better becomes the prediction accuracy of the AI/ML-model. We are therefore making following proposal: 
[bookmark: _Ref111192963]Proposal 9: Since the prediction accuracy obtained from the AI/ML increases significantly with a larger K and then clearly outperforms the legacy baseline, adopt Top-K, K>1 (e.g. K=3,5) for evaluation of spatial beam prediction accuracy.
In the last meeting it had also been discussed whether Set B (the input to the AI/ML model) should be a subset of Set A (the full set of possible beams) or if Set B also could contain beams that are not part of Set A. As seen the last two rows of Table 3, we performed simulations for both cases. In the second but last row, Set B is a sparse subset with 16 beams from the 64 narrow beams contained in Set A, and in the last row, Set B consists of wide beams. 
[bookmark: _Ref111192685]Observation 3: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
To further illustrate the advantages of AI/ML in spatial domain beam prediction, from both overhead and performance perspectives, both Option 1 and Option 2 in [3] should be considered as the upper bound and lower bound, respectively. It can be found from the simulation results that AI/ML can provide near optimal performances with much lower overhead than the upper bound and much better performances than the lower bound for approximately the same overhead.
[bookmark: _Ref111192968]Proposal 10: Regarding the baselines for spatial domain beam prediction, both options should be considered, where Option 1 should consider exhaustive sweep of Set A.
Sparse beam sweeping based on 256 dense codebook (Type-2)
The schemes for the 256 dense codebook are provided in Table 4, where two non-AI/ML schemes are also considered for comparison. 
· The exhaustive 64 Tx beam sweeping under the 64 DFT codebook described in Section 2.1.2 is considered as the upper bound achievable with the legacy 64 Tx beam sweeping. This is also taken as the baseline to evaluate the relative gain of the following two schemes under the 256 dense codebook.
· The exhaustive 256 Tx beam sweeping under the dense codebook of 256 Tx beams described in Section 2.1.2 can lead to genie-aided Top-1 beam ID and is considered as the upper performance bound of the 256 Tx beams scheme.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme. It is noted that ‘BS X * UE Y’ denotes the X Tx beams are swept and Y Rx beams are swept during the corresponding stage. Hence, the overhead is the same as the AI/ML-based scheme in Section 3.3.1, but the inferred beams are taken from the dense codebook of 256 Tx beams.
[bookmark: _Ref101955887]Table 4.  Schemes for evaluating the 256 dense codebook
	Schemes
	P-1
	P-2/3

	Exhaustive 64
	BS 64 * UE 4
Exhaustive sweep
	Optimal beam
	

	Exhaustive 256
(Option 1)
	BS 256 * UE 4
Exhaustive sweep
	Optimal Beam
	

	AI/ML
	BS 16 * UE 4
Sparse beam sweep
	Predicted Top-K beams from 256 dense beams
	


[bookmark: _Ref110522915]The simulation results are shown in Table 5 below.
[bookmark: _Ref110615871][bookmark: _Ref110615859]Table 5. KPIs for AI/ML model performance for spatial domain beam prediction with 256 dense codebook
	 

	Prediction Accuracy [%]
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Average L1-RSRP differencee [dB] of Top-K predicted beams
	Average L1-RSRP over Exhaustive 64 
no-ML beam selection 

	Method
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5

	Exhaustive 256: non-AI/ML beam selection  256 dense DFT codebook
	100
	-
	-
	100
	-
	-
	0
	-
	-
	1.2
	
	

	AI/ML -based beam selection (input 16 narrow beam Set B, output Top-K IDs in 256 dense codebook )
	44.9
	65.5
	73.2
	51.8
	71.2
	81.5
	0.75
	0.23
	0.1
	
	
	1.1

	AI/ML -based beam selection (input 16 wide beam Set B, output Top-K IDs in 256 dense codebook)
	33.7
	61.45
	73.1
	41.1
	68.9
	80.55
	1.1198
	0.2377
	0.12
	
	
	1.08



[image: ]
[bookmark: _Ref110522975][bookmark: _Ref110615919]	Figure 6. CDF of L1-RSRP difference of Top-K prediction beam for 256 dense codebook	
From the simulation results shown in Table 5 and Figure 6, it can be seen that by using a dense 256 codebook (i.e. applying Exhaustive 256), the upper bound performance of the legacy approach given by Exhaustive 64 can be pushed higher, where an increased L1-RSRP with 1.2 dB can be achieved. However, the overhead and the power consumption of the legacy Exhaustive 64 method is already very high. Going straight forward to a non-AI/ML based Exhaustive 256 approach is therefore not feasible, since the already high costs would be further increased by 400%.
AI/ML-based solutions, can here be applied instead to reduce the beam sweeping overhead, but at the same time, to enhance the coverage of the legacy system. The dense codebook containing 256 beams, only increases the number of beams in Set A from 64 to 256. The number of beams in Set B remains unchanged compared to the settings in Section 3.3.1, i.e. 16 sparse narrow beams or 16 wide beams can be used. Therefore, the beam sweeping overhead is the same as for the AI/ML approached described in the previous section. The Top-K beams are then inferred by the AI/ML model.
It can be found from the simulation results that Set B with 16 sparse dense beams can offer 1.1 dB gain in terms of the L1-RSRP while the overhead is only 33% of the Exhaustive 64. When the Set B contains wide beams and Set A is 256 dense codebook, it can offer 1.08dB over the Exhaustive 64. This motivates the following observation that:
[bookmark: _Ref111192698]Observation 4: The AI/ML-based beam prediction based on the Set A with 256 beams (Type-2) provides a considerable gain over the legacy upper bound Exhaustive 64 (Type-1) in achieved L1-RSRP and cost with a small fraction of the overhead.
The previous discussion has shown that it is clear that AI/ML-based solutions are not only suitable to reduce overhead of legacy based solutions. They can also be used to increase the legacy performance. Or even better, they could also increase the system performance and still reduce the overhead. We are therefore making the following proposal: 
[bookmark: _Ref111192988]Proposal 11: For the evaluation of beam prediction, RAN1 should study multiple sizes of Set A to improve beam management related system performance and overhead KPIs, e.g. to improve the achievable coverage over the legacy baseline.
Evaluations for beam prediction in temporal domain
Procedure of AI/ML-based spatial domain beam prediction
Figure 7 below provides a flow chart to illustrate how the AI/ML-based temporal domain BM is operated, and Network-side operation mode is considered here where the AI/ML model is assumed to be trained and inferred at the gNB side.
Different from the spatial domain BM, temporal beam prediction includes an observation phase. During the observation window, sparse beam sweeping at P-1 (e.g., 16 beams) is performed N times over N observation durations and the corresponding L1-RSRPs are fed back from the UE and regarded as historical information, which are utilized for beam prediction in the temporal domain. This historical information is given as input to the AI/ML network to infer M Top-K subsets each of which is from the full beam set (e.g., 64 beams), and the each of the M subsets are to be applied for a second round sweeping over the Top-K beams in a prediction duration to determine the corresponding optimal beam ID for that prediction duration.
Another the approach as opposed to using the L1-RSRPs from the sparse beam as input to the AI/ML model, would be to perform a full beam sweep and to feed the AI/ML model with the L1-RSRPs from all beams out of Set A. However, this requires too much overhead in our view and is the reason why sparse beam sweeping has been introduced for spatial domain beam prediction. We think similar principle should be taken for temporal beam prediction and we are making the following proposal:
[bookmark: _Ref111193007]Proposal 12: To reduce the overhead of temporal beam prediction, sparse beam sweeping should be used to generate the input to the AI/ML model, where Set B should be a subset of Set A or a different set from Set A but with smaller size.
[image: ]
[bookmark: _Ref109491522]Figure 7. Flow chart of AI/ML-based temporal domain beam management
Description of the AI/ML model
For the design of the AI/ML structure, Table 6 gives a detailed introduction, while RNN is considered for the temporal domain prediction. N=M=2 is assumed. Same as the spatial domain method, L1-RSPP is chosen to be the input and the output are the Top-K candidates with the highest probability to represent the optimal beam. Please note that the time distance between the two prediction durations is assumed as 0.08s or 0.16s, to evaluate the impact of spatial consistency. The spatial consistency becomes weaker for longer durations.
[bookmark: _Ref109721039]Table 6. AI/ML model and training parameters for temporal domain beam prediction
	Parameter
	Value

	AL/ML (NN) model architecture type
	Recurrent Neural Network (RNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	10000/1000 samples

	
	Trajectory length
	20 time durations, 0.08s/0.16s per time duration

	
	UE speed
	30km/h, 90km/h

	
	Observation window
	2 observation durations

	
	Prediction window
	2 prediction durations

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie aided Top-1 beam ID as label

	 Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	At least 100

	Learning rate
	0.00001


Simulation results for beam prediction in temporal domain
For the simulations for temporal domain beam prediction, we follow the agreement in [3] to define baselines, where the upper bound baseline is the Option 1a which exhaustively sweeps all beams in each prediction duration so that the genie-aided Top-1 beam ID can be obtained for each predicted instance. For the lower bound baseline, the Option 2 is selected which means that the selected beam ID for each predicted instance is kept as same as the optimal beam ID resulting from the exhaustive sweeping for the latest observation duration. The detailed setup for simulation schemes can be found in Table 7, for the AI/Ml-based scheme, the values of K are assumed to be 1, 2, 4 and 8 for the inference of Top-K beams for P-2. Two speeds are selected (i.e., 30km/h, 90km/h), and combined with two sets of prediction durations (i.e., 0.08s, 0.16s), 4 sets of evaluation results are provided for evaluating the temporal domain beam prediction. 
[bookmark: _Ref109720823][bookmark: _Ref109720815]Table 7. Schemes for evaluating the temporal domain beam prediction
	Schemes
	P-1
	P-2/3

	Exhaustive 64
(Option 1a)
	BS 64 * UE 4
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	BS 64 * UE 4
Exhaustive sweep
	Same as the optimal beam in previous observation duration
	

	AI/ML
	BS 16 * UE 4
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


As discussed earlier, the main benefit of temporal domain beam prediction is that it can reduce the beam sweeping overhead, for example compared to very frequent spatial domain beam prediction that otherwise could be required in case of UE mobility. The beam sweeping overhead contains two components, one comes from the beam sweeping during the observation window and the other from the beam sweeping during the predictions. We are therefore making the following proposal:
[bookmark: _Ref111220475]Proposal 13: For the overhead calculation of temporal domain beam prediction, the observation window and prediction window should be considered jointly, and the overhead reduction compared to a reference should be regarded as averaged combined reduction.
According to the simulations results illustrated in the following tables and figures, the AI/ML-based Top-K (K>1) can achieve significant gain over Top-1 with only a slight increase of overhead. Moreover, in most cases (except 90km/h, 0.16s time interval), Top-1 inference has lower performance than the baseline. This motivates us to encourage Top-K, K>1 prediction in addition to only inferring K=1 beam with the AI/ML model. We are making the following proposal:
[bookmark: _Ref111193022]Proposal 14: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.
[bookmark: _Ref110618420][bookmark: _Ref111124961]The performances of temporal domain beam prediction in different set of scenarios are shown in Table 8 - Table 11 and Figure 8, Figure 9 in below.
Table 8. Simulation results for UE at 30km/h with 0.08s between 2 prediction durations
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1 
	Top-2 
	Top-4
	Top-8
	Top-1
	Top-2 
	Top-4 
	Top-8 
	Top-1 
	Top-3 
	Top-4 
	Top-8 
	Top-1 
	Top-2 
	Top-4 
	Top-8 

	non-AI/ML beam selection(option 2)  
	63.25
	-
	
	
	69.19
	
	
	
	2.1407
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection 
	56.35
	71.54
	81.73
	89.58
	62.11
	75.83
	84.68
	91.98
	2.9567
	1.8333
	0.9908
	0.4210
	87.5
	85.94
	84.38
	81.25



Table 9. Simulation results for UE at 30km/h with 0.16s between 2 prediction durations
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-3
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8

	non-AI/ML beam selection(option 2)
	58.45
	-
	
	
	64.01
	
	
	
	3.1223
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection
	52.73
	65.17
	75.37
	86.23
	57.71
	69.19
	79.01
	88.85
	3.8485
	2.5848
	1.4712
	0.6119
	87.5
	85.94
	84.38
	81.25



[image: ]
[bookmark: _Ref110618458]Figure 8. CDF of L1-RSRP difference for UE at 30km/h

Table 10. Simulation results for UE at 90km/h with 0.08s between 2 prediction durations
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-3
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8

	non-AI/ML beam selection(option 2)
	55.48
	-
	
	
	60.85
	
	
	
	3.5468
	-
	-
	
	50
	-
	-
	

	ML-based beam selection
	45.37
	57.58
	69.16
	81.98
	50.23
	62.12
	73.40
	85.40
	4.6884
	3.1618
	1.8800
	0.8234
	87.5
	85.94
	84.38
	81.25



[bookmark: _Ref110618423]Table 11.  Simulation results for UE at 90km/h with 0.16s between 2 prediction durations
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1 
	Top-2 
	Top-4
	Top-8
	Top-1
	Top-2 
	Top-4 
	Top-8 
	Top-1 
	Top-3 
	Top-4 
	Top-8 
	Top-1 
	Top-2 
	Top-4 
	Top-8 

	non-AI/ML beam selection (option 2) 
	45.92
	-
	
	
	50.09
	
	
	
	5.2119
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection 
	45.97
	55.36
	66.18
	81.05
	50.43
	59.22
	70.07
	84.34
	5.1366
	3.5828
	2.2035
	0.9421
	87.5
	85.94
	84.38
	81.25
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[bookmark: _Ref110618460]Figure 9. CDF of L1-RSRP difference for UE at 90km/h
Comparing both 30km/h and 90km/h results under different time distances between prediction durations, we can have the following observations:
[bookmark: _Ref111192742]Observation 5: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed. 
· When the time duration is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
[bookmark: _Ref111192769]Observation 6: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time durations are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction durations from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/Ml Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction durations from 0.08s to 0.16s
Conclusion
Based on the previous discussions, following observations and proposals are provided.
Observation 1: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
Observation 2: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
Observation 3: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
Observation 4: The AI/ML-based beam prediction based on the Set A with 256 beams (Type-2) provides a considerable gain over the legacy upper bound Exhaustive 64 (Type-1) in achieved L1-RSRP and cost with a small fraction of the overhead.
Observation 5: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed.
· When the time duration is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
Observation 6: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time durations are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction durations from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/ML Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction durations from 0.08s to 0.16s
Proposal 1: As KPI for the evaluation of the prediction accuracy, Option 2 should be considered, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”. 
Proposal 2: The evaluation for beam prediction should take one-sided AI/ML model into consideration, including the Network-side AI/ML model and UE-side AI/ML model.
Proposal 3: To verify the generalization of AI/ML models on AI/ML-based beam management in both spatial and temporal domains, the following cases to construct the training dataset and testing dataset should be considered:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios
· Case 4: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
Proposal 4: For the evaluation of AI/ML-based spatial domain beam prediction, adopt the L1-RSRP values for the beams contained in Set B as training inputs labeled with the optimal beam ID from Set A.
· The size of Set B is smaller than Set A.
· Set B can be a narrow-beam subset of Set A or can contain wide beams which are different from the beams in Set A.
Proposal 5: For verifying the AI/ML model generalization for spatial domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model include at least:
· Various channel types, including UMa, UMi, InH
· Various indoor/outdoor ratios, including 10:0, 8:2, 5:5, 2:8, 0:10
· Various numbers of beams in Set A/Set B
Proposal 6: For AI/ML-based temporal domain beam prediction evaluation, higher UE speed value(s), e.g., 90km/h or 120km/h, should be considered in addition to 30km/h.
Proposal 7: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point.
Proposal 8: For verifying the AI/ML model generalization for temporal domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model include at least:
· Various channel types, including UMa, UMi, InH
· Various indoor/outdoor ratios, including 10:0, 8:2, 5:5, 2:8, 0:10
· Various UE speeds (e.g., 30km/h, 60km/h, 90km/h)
· Various types of trajectories
· Various numbers of beams in Set A/Set B
Proposal 9: Since the prediction accuracy obtained from the AI/ML increases significantly with a larger K and then clearly outperforms the legacy baseline, adopt Top-K, K>1 (e.g. K=3,5) for evaluation of spatial beam prediction accuracy.
[bookmark: _GoBack]Proposal 10: Regarding the baselines for spatial domain beam prediction, both options should be considered, where Option 1 should consider exhaustive sweep of Set A.
Proposal 11: For the evaluation of beam prediction, RAN1 should study multiple sizes of Set A to improve beam management related system performance and overhead KPIs, e.g. to improve the achievable coverage over the legacy baseline.
Proposal 12: To reduce the overhead of temporal beam prediction, sparse beam sweeping should be used to generate the input to the AI/ML model, where Set B should be a subset of Set A or a different set from Set A but with smaller size.
Proposal 13: For the overhead calculation of temporal domain beam prediction, the observation window and prediction window should be considered jointly, and the overhead reduction compared to a reference should be regarded as averaged combined reduction.
Proposal 14: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.
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Appendix
Objectives in SID
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 
……
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI/ML model(s) for calibration
· AI/ML model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
……
Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.


Simulation configuration
Table 12.  Simulation assumptions
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz with SCS of 120 kHz

	Deployment
	200m ISD

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	Spatial domain: 3km/h
Temporal domain: 30km/h, 90km/h

	UE distribution
	FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded. 
Spatial domain and temporal domain: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline] 
Spatial domain: number of BS beams equals to 64 and 256 for different types
Temporal domain: number of BS beams equals to 64

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,1)]
        single panel 
Number of UE beams equals to 4

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Traffic Model
	Full buffer

	Inter-panel calibration for UE
	Ideal

	Control channel decoding
	Ideal 

	BF scheme
	EZF

	Other potential impairments
	Not modelled (assumed ideal).

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



image3.png
((A)

Time (bN+1)  Time ()  RSRPwuy Topken  ToPken  Topkenn
wemem LEL T S :
EEEEEE oo momoE 3 Top-kit- .
mmiml mmml RS0, kg
= 2 "
2 Y
o/ 29/ " oase
e AR N
Q* & "ffb §§
5_ & T S time
N





image4.png
AI/ML model at NW side

1. Full-beam sweep

2. Obtain training inputs (.9
RSRP, optimal beam ID)

3. Feedback training inputs

Training inputs

5. Sparse/wide SSB beam sweep

collection and
model training
phase

6. RSRP feedback

8. Top-k CSI-RS beam sweep

»>|

9. Determine optimal
CSI-RS beam

10. Feedback optimal CSI-RS ID

11, Transmit with optimal CSLRS beam |





image5.png
0ss
0s
oss
os
Bon
o
oes
o

055

05
o

(CDF of LI-RSRP difference for Top-K predicted beams (64 codebock)

1

Prediction with
sparse narrow
beams

0ss
os
oss
os
Bon
o
oes

05,

055 —AiTop1]
—AiTop3
—AITop5
05
3 45 6 7 8 0 0 1 2 3 4 5 6 7 8 9 10

LLRSRP difference (d8)

LI-RSRP difference (d8)




image6.png
bl

09

os

o7

06

os

0a

03

CDF of L1-RSRP difference for Top-K predicted beams (256 codebook)
1

Prediction with
sparse narrow

beams

—aTop1)
—aTop3)
—

coF

—aiTop1.
—aTop3
—aiTops,

03

o

1

2

3 4 5 6 7 8 9
LL-RSRP difference (d8)

10

o 1 2 3 a4 5 6 7 8 o
LLRSRP difference (d8)

10




image7.png
Al/ML model at NW side

1. Full-beam sweep

2. Obtain training inputs (e.g.
RSRP, optimal beam ID)

3. Feedback training inputs Training inputs

collection and
model training
phase

5. Sparse/wide SSB beam sweep

H R >
2 CRCR 6. RSRP feedback
s [ Observation
5 < phase, fix
E pattern SSB
H 7. Repeat step 5, 6 for N time intervals | beam sweep.
g —
H
S
i
'
'
'
'
H : - 9. Top-k CSI-RS beam sweep o
2 ]
2 B
H | 70. Determine optimal
s H CSI-RS beam pair
§< !
' 11. Feedback optimal CSI-RS ID
' phase, CSI-RS
'
| 12. Transmit optimal CSI-RS beam beam sweep
| »| for each time
' interval
'
| 13. Repeat step 8-12 for M time intervals
!





image8.png
0.95
0.9
0.85
0.8

W
00.75

Q
0.7
0.65

0.6

CDF of L1-RSRP difference for Top-K predicted beams (30km/h)

Time interval = 0.08s

1
0.95
0.9
0.85
0.8
W
00.75
Q
0.7

0.65

Time interval = 0.16s

b 0.6 b
—— Baseline
—— Baseline
A Topsl] 055 —— Al Top-8 |
—— Al Top-4 —— Al Top-4
—— Al Top-2 —— Al Top-2
—— Al Top-1 —— Al Top-1
I I T 0.5 I I T
5 10 15 20 0 5 10 15 20

L1-RSRP difference (dB)

L1-RSRP difference (dB)




image9.png
0.6

0.5

0.4

CDF of L1-RSRP difference for Top-K predicted beams (90km /h)

1

Time interval = 0.08s

CDF

0.6

0.5

Time

interval = 0.16s

—— Baseline —— Baseline
—— Al Top-8 —— Al Top-8
-~ Al Top-4 -~ Al Top-4
—— Al Top-2 —— Al Top-2
—— Al Top-1 —— Al Top-1
| | T 0.4 I | T
5 10 15 20 0 5 10

L1-RSRP differ

nce (dB)

L1-RSRP differen

20




image1.png
H H EHE
EEEEEEEE
]
EEEEEEEE

o HH @
EEEEEEEE
o H e
CEP L L





image2.png
12 K 2 0 e ) B E D B ER D B
1 3 B G B
[ [ [ [ o [ e o e |
1 G G
v [ [ [ e [ e[ [ o
1 G G
HEE O REER
1 o 2 i G
I s B
o i
I ) B
[ 15 [l [ [ s [ o [ [
e o e e
1 Wl [ [ (oo o e [
0 5 ) G
- R EEEEEEEE

w
9
B

»

¢ ]
[ © ]
¢ ]
[ © ]

MR I I I I R R Y -
=1 I I R S e S 4]





