TSG-RAN Working Group 1 meeting #11 San Diego (USA), February 28 ~ March 3, 2000

Agenda Item	:
Source	: Samsung, GBT, LGIC, Lucent. Nokia
Title	: CD/CA-ICH for dual mode CPCH (rev. 3)
Document for	: Discussion and approval

For dual mode CPCH, namely, the UE channel selection method and the channel assignment method, the collision detection (CD) and channel assignment (CA) indication channel (CD/CA-ICH) is proposed in this CR instead of CD-ICH. Based on this CR, when the CA is not active, only the CD indicator is transmitted by CD/CA-ICH. On the other hand, in case the CA is active, both of the CD indicator and CA indicator are transmitted by CD/CA-ICH. The hardware structure of CD/CA-ICH is same between two methods. Only the contents of the message are different between two schemes.

3GPP RAN WG1 Meeting #11 San Diego, USA, 28 Feb – 3 Mar 2000

Document	R 1	1-00	0-04	405
	<	- <i></i>		TD 00

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

	CHANG	E REQU			ile at the bottom of this to fill in this form correctly.
	25.21	1 CR	031r3	Current Versio	on: 3.1.1
GSM (AA.BB) or 3G (AA.BI	BB) specification number↑		↑ CR number	as allocated by MCC s	support team
list expected approval meetin	^{g # here} for i ↑	or approval information	X	stratee non-stratee	gic use only)
Form: CR of Proposed change aff (at least one should be marked	.,	SMG The latest w		lable from: ftp://ftp.3gpp.ol	rg/Information/CR-Form-v2.doc
Source: Sa	<mark>msung, GBT, LGIC, Lu</mark>	ucent, Nokia		Date:	28-Feb-2000
Subject: CD	/CA-ICH for dual mode	e CPCH			
Work item:					
A Co (only one category B Ad shall be marked C Fu	rrection rresponds to a correct dition of feature nctional modification o itorial modification			Release:	Phase 2Release 96Release 97Release 98Release 99XRelease 00
change: sele	r dual mode CPCH, th ection method, only the nd, both of the CD and signment method.	e CD indicato	or is transmitted	by CD/CA-ICH	. On the other
Clauses affected:	3, 5.3.3.6 ~ 5.3.3.9 c	of TS25.211			
affected: S MS t BSS	r 3G core specification r GSM core pecifications est specifications test specifications I specifications	\rightarrow \rightarrow \rightarrow \rightarrow	 List of CRs: 		
<u>Other</u> comments:					

<----- double-click here for help and instructions on how to create a CR.

1 Scope

The present document describes the characteristics of the Layer 1 transport channels and physicals channels in the FDD mode of UTRA. The main objectives of the document are to be a part of the full description of the UTRA Layer 1, and to serve as a basis for the drafting of the actual technical specification (TS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
- [1] 3G TS 25.201: "Physical layer general description"
- [2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)"
- [3] 3G TS 25.212: "Multiplexing and channel coding (FDD)"
- [4] 3G TS 25.213: "Spreading and modulation (FDD)"
- [5] 3G TS 25.214: "Physical layer procedures (FDD)"
- [6] 3G TS 25.221: "Transport channels and physical channels (TDD)"
- [7] 3G TS 25.222: "Multiplexing and channel coding (TDD)"
- [8] 3G TS 25.223: "Spreading and modulation (TDD)"
- [9] 3G TS 25.224: "Physical layer procedures (TDD)"
- [10] 3G TS 25.231: "Measurements"
- [11] 3G TS 25.301: "Radio Interface Protocol Architecture"
- [12] 3G TS 25.302: "Services Provided by the Physical Layer"
- [13] 3G TS 25.401: "UTRAN Overall Description"

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

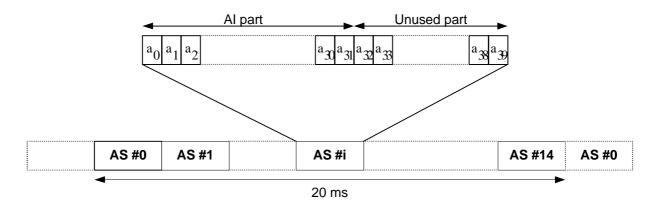
AI	Acquisition Indicator
AICH	Acquisition Indicator Channel
AP	Access Preamble
AP-AICH	Access Preamble Acquisition Indicator Channel
API	Access Preamble Indicator
BCH	Broadcast Channel
CA	Channel Assignment
CAI	Channel Assignment Indicator
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CD	Collision Detection

CD/CA-ICH	Collision Detection/Channel Assignment Indicator Channel
CDI	Collision Detection Indicator
CPCH	Common Packet Channel
CPICH	Common Pilot Channel
DCH	Dedicated Channel
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPDCH	Dedicated Physical Data Channel
DSCH	Downlink Shared Channel
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FBI	Feedback Information
MUI	Mobile User Identifier
PCH	Paging Channel
P-CCPCH	Primary Common Control Physical Channel
PCPCH	Physical Common Packet Channel
PDSCH	Physical Downlink Shared Channel
PI	Page Indicator
PICH	Page Indicator Channel
PRACH	Physical Random Access Channel
PSC	Primary Synchronisation Code
RACH	Random Access Channel
RNC	Radio Network Controller
S-CCPCH	Secondary Common Control Physical Channel
SCH	Synchronisation Channel
SF	Spreading Factor
SFN	System Frame Number
SSC	Secondary Synchronisation Code
STTD	Space Time Transmit Diversity
TFCI	Transport Format Combination Indicator
TSTD	Time Switched Transmit Diversity
TPC	Transmit Power Control
UE	User Equipment
UTRAN	UMTS Terrestrial Radio Access Network

A DSCH may be mapped to multiple parallel PDSCHs as well, as negotiated at higher layer prior to starting data transmission. In such a case the parallel PDSCHs shall be operated with frame synchronization between each other.

Slot format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	Ndata
0	30	15	256	300	20	20
1	60	30	128	600	40	40
2	120	60	64	1200	80	80
3	240	120	32	2400	160	160
4	480	240	16	4800	320	320
5	960	480	8	9600	640	640
6	1920	960	4	19200	1280	1280

Table 19: PDSCH fields


When transmit diversity is employed for the PDSCH, STTD encoding is used on the data bits as described in section 5.3.1.1.1.

5.3.3.6 Acquisition Indicator Channel (AICH)

The Acquisition Indicator channel (AICH) is a physical channel used to carry Acquisition Indicators (AI). Acquisition Indicator AI_s corresponds to signature s on the PRACH<u>.</u> or PCPCH. Note that for PCPCH, the AICH either corresponds to an access preamble or a CD preamble. The AICH corresponding to the access preamble is an AP AICH and the AICH corresponding to the CD preamble is a CD AICH. The AP AICH and CD AICH use different channelization eodes, see further[4], Section 4.3.3.2.

Figure 19 illustrates the structure of the AICH. The AICH consists of a repeated sequence of 15 concecutive *access slots* (AS), each of length 40 bit intervals. Each access slot consists of two parts, an *Acquisition-Indicator* (AI) part consisting of 32 real-valued symbols $a_0, ..., a_{31}$ and an unused part consisting of 8 real-valued symbols $a_{32}, ..., a_{39}$.

The phase reference for the AICH is the Primary CPICH.

Figure 19: Structure of Acquisition Indicator Channel (AICH)

The real-valued symbols a_0, a_1, \ldots, a_{31} in Figure 19 are given by

$$a_{j} = \sum_{s=0}^{15} AI_{s} \times b_{s,j}$$

where AI_s, taking the values +1, -1, and 0, is the acquisition indicator corresponding to signature s and the sequence $b_{s,0}$, ..., $b_{s,31}$ is given by Table 20.

The real-valued symbols a_{32} , a_{33} , ..., a_{39} in Figure 19 are undefined.

In case STTD-based open-loop transmit diversity is applied to AICH, STTD encoding according to section 5.3.1.1.1 is applied to each sequence $b_{s,0}$, $b_{s,1}$, ..., $b_{s,31}$ separately before the sequences are combined into AICH symbols a_0 , ..., a_{31} .

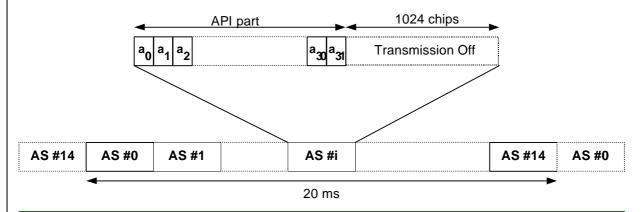

S														k) _{s.0} ,	b _{s,1}	,	b _{s,3}	1													
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
2	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
3	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
4	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
5	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
6	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
7	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
9	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1
10	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1
11	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1
12	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1
13	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1
14	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
15	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1

Table 20: AICH signature patterns

5.3.3.7 <u>CPCH Access Preamble Acquisition Indicator Channel (AP-AICH)</u>

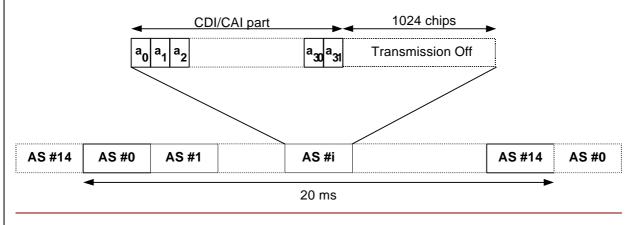
The Access Preamble Acquisition Indicator channel (AP-AICH) is a physical channel used to carry AP acquisition indicators (API) of CPCH. AP acquisition indicator API corresponds to AP signature *s* transmitted by UE.

AP-AICH and PRACH/AICH may use the same or different channelisation codes. The phase reference for the AP-AICH is the Primary CPICH. Figure 20 illustrates the structure of AP-AICH. The AP-AICH has a part of duration of 4096chips where the AP acquisition indicator (API) is transmitted, followed by a part of duration 1024chips with no transmission.of the indicator part of CPCH (AP AICH and CD/CA-ICH).

Figure 20: Structure of AP-CPCH Acquisition Indicator Channel (AP-AICH and CD/CA-ICH)

The real-valued symbols a₀, a₁, ..., a₃₁ in Figure 20 are given by

$$\mathbf{a}_{j} = \sum_{s=0}^{15} \mathbf{API}_{s} \times \mathbf{b}_{s,j}$$


where API_s, taking the values +1, -1, and 0, is the AP acquisition indicator corresponding to Access Preamble signature s transmitted by UE and the sequence $b_{s,0}, \dots, b_{s,31}$ is given by in Table 20.

In case STTD-based open-loop transmit diversity is applied to AP-AICH, STTD encoding according to section 5.3.1.1.1 is applied to each sequence $b_{s,0}$, $b_{s,1}$, ..., $b_{s,31}$ separately before the sequences are combined into AP-AICH symbols a_{02} , ..., a_{312} .

5.3.3.8 <u>CPCH Collision Detection/Channel Assignment Indicator Channel (CD/CA-</u> ICH)

The Collision Detection Channel Assignment Indicator channel (CD/CA-ICH) is a physical channel used to carry CD Indicator (CDI) only if the Channel Assignment messageCA is not active, or CD Indicator/CA Indicator (CDI/CAI) at the same time if the Channel Assignment messageCA is active. The structure of CD/CA-ICH is shown in Figure 210. CD/CA-ICH and AP-AICH may use the same or different channelisation codes.

The CD/CA-ICH has a part of duration of 4096chips where the CDI/CAI is transmitted, followed by a part of duration 1024chips with no transmission.

Figure 21: Structure of CD/CA Indicator Channel (CD/CA-ICH)

In case STTD-based open-loop transmit diversity is applied to AP-AICH, STTD encoding according to section 5.3.1.1.1 is applied to each sequence $b_{s,0}$, $b_{s,1}$, ..., $b_{s,31}$ separately before the sequences are combined into CD/CA-ICH symbols a_{02} ..., a_{31} .

In case CA is not active, the real-valued symbols a_0, a_1, \dots, a_{31} in Figure 210 are given by

$$\mathbf{a}_{j} = \sum_{s=0}^{15} \mathbf{CDI}_{s} \times \mathbf{b}_{s,j}$$

where CDI_s , taking the values +1, and 0, is the CD indicator corresponding to CD preamble signature *s* transmitted by UE and the sequence $b_{s,0}, \dots, b_{s,31}$ is given by Table 20.

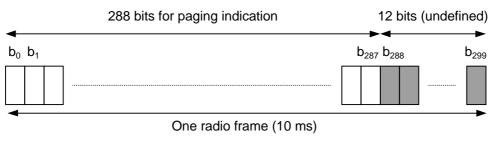
In case CA is active, the real-valued symbols a_0, a_1, \dots, a_{31} in Figure 210 are given by

$$\mathbf{a}_{\mathbf{j}} = \sum_{i=0}^{15} \mathbf{CDI}_i \times \mathbf{b}_{s_i,\mathbf{j}} + \sum_{k=0}^{15} \mathbf{CAI}_k \times \mathbf{b}_{s_k,\mathbf{j}}$$

where the subscript s_i , s_k depend on the indexes *i*, *k* according to Table 21, respectively, and indicate the signature number *s* in Table 20. The sequence $b_{s,0}, \ldots, b_{s,31}$ is given in Table 20. where the subscript *s* in $b_{s,i}$ is the signature number in table 20 and associated with the index *i* as given in table 21. CDI_{i_k} taking the values +1/0 or -1/0, is the CD indicator corresponding to the CD preamble *i* transmitted by the UE, and CAI_{ki_k} , taking the values +1/0 or -1/0, is the CA indicator corresponding to the assigned channel index *ki* as given in table 21. The sequence $b_{s,0}, \ldots, b_{s,31}$ is given by Table 20.

Table :	21.	Generation	of	<u>CDI</u>	/CAl _{ik}

<u>UE transmitted</u> <u>CD Preamble</u> <u>i</u>	<u>CDI_i</u>	<u>signature</u> <u>S</u> i	<u>Channel</u> <u>Assignment</u> <u>Index</u> <u>k</u>	<u>CAI</u> k	<u>signature</u> <u>S</u> k
<u>0</u>	<u>+1/0</u>	<u>1</u>	<u>0</u>	<u>+1/0</u>	<u>0</u>


<u>1</u>	<u>-1/0</u>		<u>1</u>	<u>-1/0</u>	
<u>2</u>	+1/0	3	2	<u>+1/0</u>	0
<u>3</u>	<u>-1/0</u>	<u>3</u>	<u>3</u>	-1/0	<u>8</u>
<u>4</u>	+1/0	5	<u>4</u>	+1/0	4
<u>5</u>	<u>-1/0</u>	<u>5</u>	<u>5</u>	+1/0 -1/0	<u>4</u>
<u>6</u>	+1/0	7	<u>6</u>	+1/0 -1/0	12
<u>7</u>	-1/0	<u>7</u>	<u>7</u>	<u>-1/0</u>	<u>12</u>
<u>8</u>	+1/0	0	8	+1/0	2
<u>9</u>	-1/0	<u>9</u>	<u>9</u>	+1/0 -1/0	<u>2</u>
<u>10</u>	<u>+1/0</u>	11	<u>10</u>	+1/0 -1/0	6
<u>11</u>	-1/0	<u>11</u>	<u>11</u>	-1/0	<u>6</u>
<u>11</u> <u>12</u>	<u>+1/0</u>	12	<u>12</u>	<u>+1/0</u>	10
<u>13</u>	-1/0	<u>13</u>	<u>13</u>	-1/0	<u>10</u>
<u>13</u> <u>14</u>	+1/0	15	<u>14</u>	+1/0	14
<u>15</u>	<u>-1/0</u>	<u>15</u>	<u>15</u>	<u>-1/0</u>	<u>14</u>

30

5.3.3.79 Page Indicator Channel (PICH)

The Page Indicator Channel (PICH) is a fixed rate (SF=256) physical channel used to carry the Page Indicators (PI). The PICH is always associated with an S-CCPCH to which a PCH transport channel is mapped.

Figure 20-22 illustrates the frame structure of the PICH. One PICH frame of length 10 ms consists of 300 bits (b_0 , b_1 , ..., b_{299}). Of these, 288 bits (b_0 , b_1 , ..., b_{287}) are used to carry Page Indicators. The remaining 12 bits (b_{288} , b_{289} , ..., b_{299}) are undefined.

Figure 220: Structure of Page Indicator Channel (PICH)

N Page Indicators {PI₀, ..., PI_{N-1}} are transmitted in each PICH frame, where N=18, 36, 72, or 144.

The PI calculated by higher layers for use for a certain UE, is mapped to the paging indicator PI_p , where *p* is computed as a function of the PI computed by higher layers, the SFN of the P-CCPCH radio frame during which the start of the PICH radio frame occurs, and the number of paging indicators per frame (N):