Source: NTT DoCoMo<br>Title: $\quad$ Revised CR for parity bit attachment to 0 bit transport block<br>Document for: Decision

## Introduction

In WG1\#9, the following features are discussed to measure BLER during DTX of a transport channel for the outer-loop power control:

1) Parity bits can be attached to 0 bit-transport block to measure the quality for the outer loop TPC.
2) Necessity of the parity bits attachment is designated via TFS. The number of transport blocks $=0$ designates that the parity bits need not to be attached to 0 bit- transport block. The number of transport blocks $\neq 0$ and transport block size $=0$ designate that the parity bits shall be attached to 0 bit- transport block.
3) The parity bit pattern is the same as CRC parity bit pattern of transport block size $=0$, i.e. all parity bit equals to 0 .

Before WG1 approval of a CR to include above features, WG1 sent a LS (R1-99L45) on above features to WG2 in order to avoid inconsistency between RAN WG1 and RAN WG2.

In WG1\#10, WG1 received LS (R1-00-0184) from WG2 as a response to R1-99L45. R1-00-0184 informed WG1 that WG2 has modified TS25.331 and TS25.302 to include above features and that there is no inconsistency between WG1 and WG2 on this issue.

This document proposes a CR to include above features in TS25.212 since it is confirmed that there is no inconsistency between WG1 and WG2 on this issue.

### 25.212 CR 025r2

Current Version:
3.1.1

GSM (AA.BB) or $3 G$ (AA.BBB) specification number $\uparrow$
$\uparrow$ CR number as allocated by MCC support team

For submission to: TSG RAN \#7
list expected approval meeting \# here


Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
(U)SIM $\square$ ME $\square \mathbf{X}$ UTRAN / Radio $\quad \mathbf{X}$ Core Network $\qquad$
(at least one should be marked with an X)
Source: NTT DoCoMo
Date: 2000-02-29
Subject: $\quad$ CR for parity bit attachment to 0 bit transport block

## Work item:

Category: F Correction
(only one category
A Corresponds to a correction in an earlier release
B Addition of feature
shall be marked
C Functional modification of feature
with an X)
D Editorial modification


Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00


Reason for Simulation results of correspondences between the physical channel BER on DPCCH change: and BER after decoding shows that the physical channel BER on DPCCH is not enough for outer loop TPC during DPCCH OFF. In order to improve outer loop TPC performance, parity bit attachment for 0 bit-transport block is proposed to measure BLER during DTX. This issue was decided in RAN\#6 as one of remaining open issues for release 99.

## Clauses affected:

Other specs Other 3G core specifications affected:

Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

| $\square$ |
| :--- |$\rightarrow$ List of CRs:

## Other

comments:
<--------- double-click here for help and instructions on how to create a CR.

### 4.2.1 Error detection

Error detection is provided on transport blocks through a Cyclic Redundancy Check. The CRC is $24,16,12,8$ or 0 bits and it is signalled from higher layers what CRC length that should be used for each TrCH .

### 4.2.1.1 CRC Calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials:

$$
\begin{aligned}
& g_{C R C 24}(D)=D^{24}+D^{23}+D^{6}+D^{5}+D+1 \\
& g_{C R C 16}(D)=D^{16}+D^{12}+D^{5}+1 \\
& g_{C R C 12}(D)=D^{12}+D^{11}+D^{3}+D^{2}+D+1 \\
& g_{C R C 8}(D)=D^{8}+D^{7}+D^{4}+D^{3}+D+1
\end{aligned}
$$

Denote the bits in a transport block delivered to layer 1 by $a_{i m 1}, a_{i m 2}, a_{i m 3}, \ldots, a_{i m A_{i}}$, and the parity bits by $p_{i m 1}, p_{i m 2}, p_{i m 3}, \ldots, p_{i m L_{i}} . A_{i}$ is the length of a transport block of $\operatorname{TrCH} i, m$ is the transport block number, and $\mathrm{L}_{i}$ is $24,16,12,8$, or 0 depending on what is signalled from higher layers.
The encoding is performed in a systematic form, which means that in $\operatorname{GF}(2)$, the polynomial $a_{i m 1} D^{A_{i}+23}+a_{i m 2} D^{A_{i}+22}+\ldots+a_{i m A_{i}} D^{24}+p_{i m 1} D^{23}+p_{i m 2} D^{22}+\ldots+p_{i m 23} D^{1}+p_{i m 24}$
yields a remainder equal to 0 when divided by $g_{\text {CRC24 }}(\mathrm{D})$, polynomial
$a_{i m 1} D^{A_{i}+15}+a_{i m 2} D^{A_{i}+14}+\ldots+a_{i m A_{i}} D^{16}+p_{i m 1} D^{15}+p_{i m 2} D^{14}+\ldots+p_{i m 15} D^{1}+p_{i m 16}$
yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC16}}(\mathrm{D})$, polynomial

$$
a_{i m 1} D^{A_{i}+11}+a_{i m 2} D^{A_{i}+10}+\ldots+a_{i m A_{i}} D^{12}+p_{i m 1} D^{11}+p_{i m 2} D^{10}+\ldots+p_{i m 11} D^{1}+p_{i m 12}
$$

yields a remainder equal to 0 when divided by $g_{\text {CRC12 }}(\mathrm{D})$ and polynomial
$a_{i m 1} D^{A_{i}+7}+a_{i m 2} D^{A_{i}+6}+\ldots+a_{i m A_{i}} D^{8}+p_{i m 1} D^{7}+p_{i m 2} D^{6}+\ldots+p_{i m 7} D^{1}+p_{i m 8}$
yields a remainder equal to 0 when divided by $g_{C R C 8}(\mathrm{D})$.
If no transport blocks are input to the CRC calculation ( $M_{i}=0$ ), no CRC attachment shall be done. If transport blocks are input to the CRC calculation $\left(M_{i} \neq 0\right)$ and the size of a transport block is zero $\left(A_{i}=0\right)$, CRC shall be attached, i.e. all parity bits equal to zero.

### 4.2.1.1.1 Relation between input and output of the Cyclic Redundancy Check

The bits after CRC attachment are denoted by $b_{i m 1}, b_{i m 2}, b_{i m 3}, \ldots, b_{i m B_{i}}$, where $B_{i}=A_{i}+L_{i}$. The relation between $a_{i m k}$ and $b_{i m k}$ is:
$\begin{array}{rlrl}b_{i m k} & =a_{i m k} & k=1,2,3, \ldots, A_{i} \\ b_{i m k} & =p_{i m\left(L_{i}+1-\left(k-A_{i}\right)\right)} & k=A_{i}+1, A_{i}+2, A_{i}+3, \ldots, A_{i}+L_{i}\end{array}$

### 4.2.2 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than $Z$, the maximum size of a code block in question, then code block segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depends on whether convolutional coding, turbo coding or no coding is used for the TrCH .

