3GPP TSG RAN WG1

San Diego, USA, Feb 29 – Mar 3, 2000

Agenda item:	
Source:	Philips
Title:	CR 25.211 - 013r6: Addition of a downlink channel indicating CPCH status
Document for:	Decision

Introduction

This contains an updated version of CR 25.211 013r3 found in TSGR1#10(00)157. It contains text to add the definition of a CPCH status broadcast channel to 25.211. Following discussion, the main features of the proposal are as follows:

- A new physical channel (CSICH) is defined where information is transmitted in the unused parts of the CPCH AP-AICH, and the description of AICH in section 5.3.3.6 is updated to indicate that the relevant unused parts are not transmitted.
- A new section is added: 5.3.3.8 CPCH Status Indicator Channel (CSICH)
- New terms CSICH and Status Indicator (SI) added to section 3 Abbreviations.
- CSICH added to list of channels on which STTD can be applied in 5.3.1
- CSICH included in list of channels in section 6
- The spreading code is the same as the AP-AICH, so no additional channelization code is required.
- The modulation/demodulation is the same as for the PICH, so there is minimal increase in UE complexity.
- The binary signalling format is the optimum for continuous broadcast of status flags (like in the PICH).
- In a 20ms frame CSICH frame there are 120 bits which are filled by a combination of bit repetition and repetition of status indicators (up to a maximum of 4 per access slot). The bit repetition factor can be adjusted by the network to achieve a compromise between downlink power and update rate of the status information.
- Some limited time diversity is provided by separation between different repetitions of the status indicators
- The broadcast status information is assumed to be provided by higher layers (but CSICH is not defined as a transport channel).
- The information on mapping between Status Indicators and CPCH resource availability is assumed to be provided to Layer 1 by higher layers. This mapping is needed in the CPCH access procedure.

This CR applies for both UE channel selection and VCAM (Versatile Channel Assignment Method).

Related CR's for other specifications in are currently under consideration in RAN1 and RAN2:

- <u>Layer 1 CPCH Access Procedure (UE Channel Assignment)</u>: CR 25.214 xxx "Incorporation of Status Broadcast feature into CPCH and some editorial changes", Source: GBT
- <u>Layer2/3 CPCH MAC</u>, including status broadcast: CR 25.321 035 "MAC Control of CPCH Transmission", Source: GBT
- Layer2/3 CPCH parameters CR 25.331 xxx "Proposed CR to 25.331 for CPCH", Source: GBT and Samsung

3GPP TSG RAN WG1 Meeting #11 San Diego, USA, Feb 29-Mar 3, 2000

help.doc

Document	R1-00-	0265
----------	--------	------

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

	СН	ANGE I	REQU	JEST		mbedded help file a tructions on how to j	t the bottom of this fill in this form correc	ctly.
		25.211	CR	013r	6	Current Versio	on: 3.1.0	
GSM (AA.BB) or 3G	G (AA.BBB) specification nu	mber ↑		↑ <i>CR</i>	number as allo	cated by MCC supp	oort team	
For submission to list expected approval me		for infor	L	X test version of th	iis form is availab	Strate non-strate		nly)
Proposed change af	·	U)SIM	ME	X	UTRAN / I	Radio X	Core Networ	k 📃
Source:	Philips					Date:	2000-02-22	
Subject:	Addition of a down	nlink channel	indicatin	g CPCH	status			
Work item:								
A (only one category B shall be marked C	Correction Corresponds to a c Addition of feature Functional modific Editorial modifica	e cation of featu		release	X	<u>Release:</u>	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> <u>change:</u>	Broadcast of statu	s information	significa	ntly impro	oves perfor	mance of CPC	CH	
Clauses affected:	3, 5.3.1, 5.3.3	8.6, 5.3.3.8, 6						
affected: O M B	other 3G core specif Other GSM core spe AS test specification SS test specification &M specifications	cifications 15		$ \rightarrow \text{ List of} \\ \rightarrow \text{ List of} $	CRs: CRs: CRs:			
Other comments:								

<----- double-click here for help and instructions on how to create a CR.

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

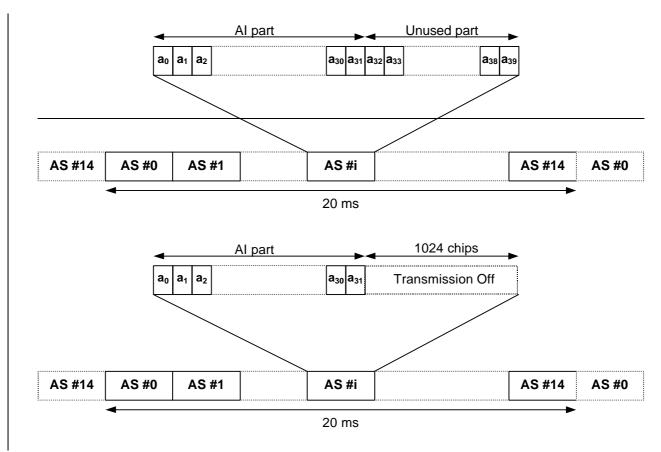
AI	Acquisition Indicator
AICH	Acquisition Indicator Channel
AP	Access Preamble
BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CD	Collision Detection
CPCH	Common Packet Channel
CPICH	Common Pilot Channel
CSICH	CPCH Status Indicator Channel
DCH	Dedicated Channel
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPDCH	Dedicated Physical Data Channel
DSCH	Downlink Shared Channel
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FBI	Feedback Information
MUI	Mobile User Identifier
PCH	Paging Channel
P-CCPCH	Primary Common Control Physical Channel
PCPCH	Physical Common Packet Channel
PDSCH	Physical Downlink Shared Channel
PI	Page Indicator
PICH	Page Indicator Channel
PRACH	Physical Random Access Channel
PSC	Primary Synchronisation Code
RACH	Random Access Channel
RNC	Radio Network Controller
S-CCPCH	Secondary Common Control Physical Channel
SCH	Synchronisation Channel
SF	Spreading Factor
SFN	System Frame Number
SI	Status Indicator
SSC	Secondary Synchronisation Code
STTD	Space Time Transmit Diversity
TFCI	Transport Format Combination Indicator
TSTD	Time Switched Transmit Diversity
TPC	Transmit Power Control
UE	User Equipment
UTRAN	UMTS Terrestrial Radio Access Network

5.3.1 Downlink Transmit Diversity

Table 10 summarizes the possible application of open and closed loop Transmit diversity modes on different downlink physical channels. Simultaneous use of STTD and closed loop modes on DPCH and PDSCH is not allowed.

16

Table 10: Application of Tx diversity modes on downlink physical channels "X" – can be applied, "–" – not applied


Channel	Open lo	Closed loop	
	TSTD	STTD	Mode
Р-ССРСН	_	Х	-
SCH	Х	-	_
S-CCPCH	_	Х	_
DPCH	_	Х	Х
РІСН	_	Х	_
PDSCH (associated with DPCH)	_	Х	Х
AICH	_	Х	-
<u>CSICH</u>	Ξ	<u>_X</u>	Ξ

5.3.3.6 Acquisition Indicator Channel (AICH)

The Acquisition Indicator channel (AICH) is a physical channel used to carry Acquisition Indicators (AI). Acquisition Indicator AI_s corresponds to signature s on the PRACH or PCPCH. Note that for PCPCH, the AICH either corresponds to an access preamble or a CD preamble. The AICH corresponding to the access preamble is an AP-AICH and the AICH corresponding to the CD preamble is a CD-AICH. The AP-AICH and CD-AICH use different channelization codes, see further[4], Section 4.3.3.2.

Figure 19 illustrates the structure of the AICH. The AICH consists of a repeated sequence of 15 cone<u>s</u>ecutive *access slots* (AS), each of length 40 bit intervals. Each access slot consists of two parts, an *Acquisition-Indicator* (AI) part consisting of 32 real-valued symbols $a_0, ..., a_{31}$ and an unused part of duration 1024 chips with no transmission consisting of 8 real-valued symbols $a_{32}, ..., a_{39}$.

The phase reference for the AICH is the Primary CPICH.

The real-valued symbols a_0, a_1, \ldots, a_{31} in Figure 19 are given by

$$a_j = \sum_{s=0}^{15} AI_s b_{s,j}$$

where AI_s, taking the values +1, -1, and 0, is the acquisition indicator corresponding to signature s and the sequence $b_{s,0}, ..., b_{s,31}$ is given by Table 20.

The real valued symbols a_{32} , a_{33} , ..., a_{39} in Figure 19 are undefined.

3GPP

In case STTD-based open-loop transmit diversity is applied to AICH, STTD encoding according to section 5.3.1.1.1 is applied to each sequence $b_{s,0}$, $b_{s,1}$, ..., $b_{s,31}$ separately before the sequences are combined into AICH symbols a_0 , ..., a_{31} .

s														ł	D _{s,0} ,	b _{s,1}	,	b _{s,3}	1													
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
2	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
3	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
4	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
5	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
6	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
7	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
9	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1		1	1	-1	-1	1	1	-1	-1	1	1
10	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1
11	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1
12	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1
13	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1
14	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
15	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1

Table 20: AICH signature patterns

5.3.3.8 CPCH Status Indicator Channel (CSICH)

The CPCH Status Indicator Channel (CSICH) is a fixed rate (SF=256) physical channel used to carry CPCH status information.

A CSICH is always associated with a physical channel used for transmission of CPCH AP-AICH and uses the same channelization and scrambling codes. Figure 23 illustrates the frame structure of the CSICH. The CSICH frame consists of 15 consecutive access slots (AS) each of length 40 bits. Each access slot consists of two parts, a part of duration 4096 chips with no transmission, and a Status Indicator (SI) part consisting of 8 bits b_{8i} b_{8i+7} , where i is the access slot number. The modulation used by the CSICH is the same as for the PICH. The phase reference for the CSICH is the Primary CPICH.

Figure 23: Structure of CPCH Status Indicator Channel (CSICH)

<u>N Status Indicators {SI₀, ..., SI_{N-1}} shall be transmitted in each CSICH frame. The mapping from {SI₀, ..., SI_{N-1}} to the CSICH bits {b₀, ..., b₁₁₉} is according to table 22. The Status Indicators shall be transmitted in all the access slots of the CSICH frame, even if some signatures and/or access slots are shared between CPCH and RACH.</u>

Table 22: Mapping of Status Indicators (SI) to CSICH bits

Number of SI per frame (N)	<u>SIn = 1</u>	<u>SIn = 0</u>
<u>N=1</u>	$\{\underline{b_0, \ldots, b_{119}}\} = \{1, 1, \ldots, 1\}$	$\{b_0, \dots, b_{119}\} = \{0, 0, \dots, 0\}$
<u>N=3</u>	$\{\underline{b}_{40n, \dots, \underline{b}_{40n+39}}\} = \{1, 1, \dots, 1\}$	$\{b_{40n}, \ldots, b_{40n+39}\} = \{0, 0, \ldots, 0\}$
<u>N=5</u>	$\{b_{24n}, \ldots, b_{24n+23}\} = \{1, 1, \ldots, 1\}$	$\{b_{24n}, \dots, b_{24n+23}\} = \{0, 0, \dots, 0\}$
<u>N=15</u>	$\{\underline{b}_{8n}, \dots, \underline{b}_{8n+7}\} = \{1, 1, \dots, 1\}$	$\{b_{8n}, \ldots, b_{8n+7}\} = \{0, 0, \ldots, 0\}$
<u>N=30</u>	$\{b_{4n}, \ldots, b_{4n+3}\} = \{1, 1, 1, 1\}$	$\{b_{4n}, \ldots, b_{4n+3}\} = \{0, 0, 0, 0\}$
<u>N=60</u>	$\{b_{2n}, b_{2n+1}\} = \{1, 1\}$	$\{b_{2n}, b_{2n+1}\} = \{0, 0\}$

When transmit diversity is employed for the CSICH, STTD encoding is used on the CSICH bits as described in section 5.3.1.1.1.

At the UTRAN the values of the Status Indicators are set by higher layers.

At the UE the number of status indicators per frame is a higher layer parameter. The higher layers shall provide Layer 1 with the mapping between the values of the Status Indicators and the availability of CPCH resources .

6 Mapping of transport channels onto physical channels

Figure 21 summarises the mapping of transport channels onto physical channels.

<u>Transport Channels</u>	Physical Channels
DCH	- Dedicated Physical Data Channel (DPDCH)
	Dedicated Physical Control Channel (DPCCH)
RACH —	- Physical Random Access Channel (PRACH)
СРСН ———	- Physical Common Packet Channel (PCPCH)
	Common Pilot Channel (CPICH)
ВСН	- Primary Common Control Physical Channel (P-CCPCH)
FACH	- Secondary Common Control Physical Channel (S-CCPCH)
РСН	
	Synchronisation Channel (SCH)
DSCH —	- Physical Downlink Shared Channel (PDSCH)
	Acquisition Indication Channel (AICH)
	Page Indication Channel (PICH)

Transport Channels	Physical Channels
DCH	- Dedicated Physical Data Channel (DPDCH)
	Dedicated Physical Control Channel (DPCCH)
RACH ———	- Physical Random Access Channel (PRACH)
СРСН ———	- Physical Common Packet Channel (PCPCH)
	Common Pilot Channel (CPICH)
ВСН ———	- Primary Common Control Physical Channel (P-CCPCH)
FACH	- Secondary Common Control Physical Channel (S-CCPCH)
РСН	
	Synchronisation Channel (SCH)
DSCH —	- Physical Downlink Shared Channel (PDSCH)
	Acquisition Indication Channel (AICH)
	Page Indication Channel (PICH)
	CPCH Status Indicator Channel (CSICH)

Figure 21: Transport-channel to physical-channel mapping

The DCHs are coded and multiplexed as described in [3], and the resulting data stream is mapped sequentially (first-in-first-mapped) directly to the physical channel(s). The mapping of BCH and FACH/PCH is equally straightforward, where the data stream after coding and interleaving is mapped sequentially to the Primary and Secondary CCPCH respectively. Also for the RACH, the coded and interleaved bits are sequentially mapped to the physical channel, in this case the message part of the random access burst on the PRACH.

30