
TSG-RAN Working Group 1 meeting No. 11 TSGR1#11(00)0255
Februar 29 – March 3, San Diego, USA

Agenda Item: 14. Contributions on issues were CRs are still needed for
Release–99 specifications

Source: Siemens,

Title: CR 25.212-052 and CR 25.222-026: Padding function for Turbo coding
of small blocks

Document for: Decision

Introduction

At the WG1 meeting #10 in Beijing it was decided to lower the minimum block size for turbo coding to 40 bits. The
definition of a function to adjust the block size to 40 bits for blocks smaller than 40 bits was left open. Padding bits of
value zero provides a good solution with least added complexity. However there are different implications for the
receiver depending on the position of the padded ‘zeros’. Depending on whether the padding is performed in the
beginning or in the end, the receiver can optionally make use of different a-priori information.

The following two cases are described for discussion:

A) Padding at the end of the input block (‘end padding’)

B) Padding at the beginning of the input block (‘front padding’)

Case B) has a performance advantage over case A) , if an optional optimisation possibility is utilised in the decoder
while the coder shows no complexity increase.

Because the performance will probably not be critical for release 99, no unnecessarily complex handling should be
mandated for release 99. However, as there is no guarantee that this will always be the case, there should be the
possibility to extend the performance later on, of course accepting a higher complexity then. Furthermore this extended
solution should be compatible on the air interface with the solution for release 99 in order to avoid compatibility
problems.

Taking all this in mind we propose to implement case B) for release 99.

Description

A) Padding at the end of the input block (‘end padding’)

The short input block is followed by a number of padding bits of value zero to achieve a total block size of 40 bits. The
turbo coder remains unchanged. This was proposed by NEC recently on the reflector and is used as a starting point for
the discussion.

input

systematic

1st parity

2nd parity

Turbo Coder

T

T

2 T

data zeros
⋅⋅⋅ 0 ⋅⋅⋅

⋅⋅⋅ 0 ⋅⋅⋅

Xi Yi

Xi Yi

Figure 1: end padding

As described in Figure 1, at the output of the coder the systematic bits will start with the original data block of length
Xi followed by Yi = 40 – Xi bits of value zero and then the tail bits for termination of the coder (T = 3 bits). Since the
convolutional coder is recursive, the 1st parity bit sequence will not consist of pre-determined bits of value zero after

the block of size Xi was encoded. The contents of the registers of the coder is fed back until termination is initiated. To
exploit this fed back information the receiver structure needs to be changed which increases complexity considerably.

The 2nd parity bits are not predictable in a straight-forward way because of the internal interleaver. They are not subject
to this proposal and are therefore not treated by this discussion.

B) Padding at the beginning of the input block (‘front padding’)

Bits of value zero are padded at the beginning (rather than the end) of the input data block. For the systematic and the
1st parity output sequence the coded data bits are now transmitted right before the tail bits. Since the coder starts in the
‘all-zero-state’ the output of the 1st parity path remains zero until the actual data block starts (Figure 2). This way more
pre-defined knowledge is available at the receiver, which can be exploited by ignoring the first Yi = 40 – Xi bits of the
systematic and the 1st parity path and setting them firmly to zero before entering them to the soft-decoder. The structure
of the Turbo decoder itself remains unchanged. In this way an improved performance can be realised for little extra
complexity.

input

systematic

1st parity

2nd parity

Turbo Coder

T

T

2 T

datazeros
⋅⋅⋅ 0 ⋅⋅⋅

⋅⋅⋅ 0 ⋅⋅⋅

XiYi

XiYi

⋅⋅⋅ 0 ⋅⋅⋅

Figure 2: front padding

Performance evaluation

Figure 3: Performance advantage of using the a priori information available in method B

The performance advantage of the scheme stems from the fact, that the receiver can utilise the a priori information that
some of the received raw bits have a predetermined value of 0. Instead of using the value which is actually received via
the air-interface, the receiver can instead substitute the a-priori knowledge. Because the latter does not contain any
noise or other degradation, the data can be detected more reliable. When this a priori information is not taken into
account, both case A and B will have the same performance.

Figure 3 shows this performance comparison. All simulations were conducted using AWGN conditions. The three
upper curves show the performance without making use of the a priori information assuming 20, 11 or 8 information
bits. When the receiver does make use of the a-priori information, then a performance advantage can be realised, as is
shown in the lower three curves, again for blocksizes of 20, 11 and 8 bits. The performance advantage increases with
decreasing blocksize (increasing number of padding bits).

Implementation in conjunction with code block segmentation.

There is already a padding function integrated in the code block segmentation. It is used to make sure that all blocks
after segmentation have the same size. It is therefore proposed, that the padding function for turbo codes is also
integrated into this section.

There are two options to implement the front padding option in the code block segmentation section:

1) Front padding is implemented individually for turbo codes with blocksizes smaller than 40 bits.

2) Front padding is implemented both for padding of small turbo code blocks and for padding for segmentation of
large blocks

There is probably only a marginal difference as far as the implementational complexity of this scheme is concerned.
We use option 2 for the appended CR, because it allows a more elegant formulation and provides a slight performance
advantage for convolutionally coded data. The reason for this advantage is as follows: Because eini has recently been
changed to be 1, always the first bit of a coded block will be punctured (assuming that at least one bit is punctured of
course). If the first bit corresponds to a padding bit, then of course this minimises the impact of this first punctured bit
on the data bits.

Proposal

We propose to implement the ‘front padding’ function to adjust the block size of small blocks to 40 bits for release 99 .

Using front padding the receiver can (as a receiver implementation option) ignore the first Yi = 40 – Xi bits of the
systematic and the 1st parity path and set them to zero without loosing any information since these bits would be zero
anyway. This will actually improve the performance of the receiver, because the predetermined bits do not carry noise
and therefore do not cause misdetections, as would be the case for received bits.

While it is generally expected that the performance of turbo codes for small block sizes will not be crucial in the
system because this case will seldom occur, the discussion about the AMR mode signalling clearly shows that such
generally agreed assumptions can easily turn out to be incorrect sooner or later. Therefore it would be highly desirable
to build some potential for performance optimisations into the system if they do not cause extra complexity if the
performance is not needed.

The attached CR implements the front padding procedure i.e. case B) is implemented according to option 2) for release
99.

3GPP/SMG Meeting #11 Document R1-00-0255
San Diego, USA, 29 April-03 March 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.1.125.212 CR 052
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: WG1 #11 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: Siemens AG Date: 29.02.2000

Subject: Padding Function for Turbo coding of small blocks

Work item: TS 25.212

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature X Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

At the last meeting #10 the smallest block size for Turbo coding was set to 40. It was
left over to include a functionality to handle blocks of smaller size than 40 bits. This is
added in the specification by this CR.

Clauses affected: 4.2.2.2 Code block segmentation

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

The corresponding CR for TDD mode is 25.222-026.

3G TS25.212 version 3.1.1 (1999-12) 11

4.2.2 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than Z, the maximum size
of a code block in question, then code block segmentation is performed after the concatenation of the transport blocks.
The maximum size of the code blocks depends on whether convolutional coding, turbo coding or no coding is used for
the TrCH.

4.2.2.1 Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by
iimBimimim bbbb ,,,, 321 K where i is the TrCH

number, m is the transport block number, and Bi is the number of bits in each block (including CRC). The number of

transport blocks on TrCH i is denoted by Mi. The bits after concatenation are denoted by
iiXiii xxxx ,,,, 321 K , where i

is the TrCH number and Xi=MiBi. They are defined by the following relations:

kiik bx 1= k = 1, 2, …, Bi

)(,2, iBkiik bx −= k = Bi + 1, Bi + 2, …, 2Bi

)2(,3, iBkiik bx −= k = 2Bi + 1, 2Bi + 2, …, 3Bi

K

))1((,, iii BMkMiik bx −−= k = (Mi - 1)Bi + 1, (Mi - 1)Bi + 2, …, MiBi

4.2.2.2 Code block segmentation

Segmentation of the bit sequence from transport block concatenation is performed if Xi>Z. The code blocks after
segmentation are of the same size. The number of code blocks on TrCH i is denoted by Ci. If the number of bits input to
the segmentation, Xi, is not a multiple of Ci, filler bits are added to the beginning of the first last block. The filler bits are
transmitted and they are always set to 0. The maximum code block sizes are:

convolutional coding: Z = 504

turbo coding: Z = 5114

no channel coding: Z = unlimited

The bits output from code block segmentation are denoted by
iirKiririr oooo ,,,, 321 K , where i is the TrCH number, r is

the code block number, and Ki is the number of bits.

Number of code blocks: Ci = Xi / Z

Number of bits in each code block:

if Xi < 40 and Turbo coding is used, then
Ki = 40

 else
 Ki = Xi / Ci

 end if

Number of filler bits: Yi = CiKi - Xi

If Xi ≤ Z, then

 01 =kio k = 1, 2, ..., Yi

3G TS25.212 version 3.1.1 (1999-12) 12

)(,1 iYkiki xo −= oi1k = xik k = Yi+1, Yi+2, …, Ki

end if

, and Ki = Xi.

If Xi >≥ Z, then

01 =kio k = 1, 2, …, Yi

)(,1 iYkiki xo −= iki xo = k = i+ Yi 2, …, i

)(2 ii Ykii xo −=)(,2 iKkiki xo += k = 1, 2, …, Ki

)2(,3 ii YKkiki xo −+=)2(,3 iKkiki xo += k = 1, 2, …, Ki

K

))1((, iiii YKCkikiC xo −−+=))1((iii KCkikiC xo −+= k = 1, 2, …, Ki - Yi

0=kiC i
o k = (Ki - Yi) + 1, (Ki - Yi) + 2, …, KI

end if

3GPP/SMG Meeting #11 Document R1-00-0255
San Diego, USA, 29 April-03 March 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.1.125.222 CR 026
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: WG1 #11 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: Siemens AG Date: 29.02.2000

Subject: Padding Function for Turbo coding of small blocks

Work item: TS 25.222

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature X Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

At the last meeting #10 the smallest block size for Turbo coding was set to 40. It was
left over to include a functionality to handle blocks of smaller size than 40 bits. This is
added in the specification by this CR.

Clauses affected: 4.2.2.2 Code block segmentation

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

The corresponding CR for FDD mode is 25.212-052.

3G TS25.222 version 3.1.1 (1999-12)

3GPP

13

4.2.2 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than Z, then code block
segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depend
on if convolutional or turbo coding is used for the TrCH.

4.2.2.1 Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by
iimBimimim bbbb ,,,, 321 K where i is the TrCH

number, m is the transport block number, and Bi is the number of bits in each block (including CRC). The number of

transport blocks on TrCH i is denoted by Mi. The bits after concatenation are denoted by
iiXiii xxxx ,,,, 321 K , where i

is the TrCH number and Xi=MiBi. They are defined by the following relations:

kiik bx 1= k = 1, 2, …, Bi

)(,2, iBkiik bx −= k = Bi + 1, Bi + 2, …, 2Bi

)2(,3, iBkiik bx −= k = 2Bi + 1, 2Bi + 2, …, 3Bi

K

))1((,, iii BMkMiik bx −−= k = (Mi – 1)Bi + 1, (Mi – 1)Bi + 2, …, MiBi

4.2.2.2 Code block segmentation

NOTE: It is assumed that filler bits are set to 0.

Segmentation of the bit sequence from transport block concatenation is performed if Xi>Z. The code blocks after
segmentation are of the same size. The number of code blocks on TrCH i is denoted by Ci. If the number of bits input to
the segmentation, Xi, is not a multiple of Ci, filler bits are added to the beginning of the first last block. The filler bits are
transmitted and they are always set to 0. The maximum code block sizes are:

convolutional coding: Z = 504

turbo coding: Z = 5114

no channel coding: Z = unlimited

The bits output from code block segmentation are denoted by
iirKiririr oooo ,,,, 321 K , where i is the TrCH number, r is

the code block number, and Ki is the number of bits.

Number of code blocks: Ci = Xi / Z

Number of bits in each code block:

if Xi < 40 and Turbo coding is used, then
Ki = 40

else
Ki = Xi / Ci

end if
Number of filler bits: Yi = CiKi – Xi

If Xi ≤ Z, then

 01 =kio k = 1, 2, ..., Yi

)(,1 iYkiki xo −= oi1k = xik k = Yi+1, Yi+2, …, Ki

3G TS25.222 version 3.1.1 (1999-12)

3GPP

14

end if

, and Ki = Xi.

If Xi >≥ Z, then

01 =kio k = 1, 2, …, Yi

)(,1 iYkiki xo −= ikki xo =1 k = Yi+1, Yi+2, …, Ki

)(,2 ii YKkiki xo −+=)(,2 iKkiki xo += k = 1, 2, …, Ki

)2(,3 ii YKkiki xo −+=)2(,3 iKkiki xo += k = 1, 2, …, Ki

K

))1((, iiii YKCkikiC xo −−+=))1((iii KCkikiC xo −+= k = 1, 2, …, Ki – Yi

0=kiC i
o k = (Ki – Yi) + 1, (Ki – Yi) + 2, …, Ki

end if

