CHANGE REQUEST
25.222 CR 025

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

Current Version: V3.1.1

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team
For submission to: TSG RAN \#7
list expected approval meeting \# here

for approval	
for information	\mathbf{X}

strategic \square non-strategic (for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
ME \qquad

UTRAN / Radio \mathbf{X}

Core Network \qquad
Proposed change affects:
(U)SIM \square -
(at least one should be marked with an X)

Source:
 LGIC

Date: 2000-2-29
Subject: \quad Change of TFCI basis for TDD

Work item:

Category:
F Correction
A Corresponds to a correction in an earlier release
(only one category
B Addition of feature
Shall be marked
With an X)
C Functional modification of feature
D Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for For the most commonality between FDD and TDD TFCI basis, this CR is proposed. change:

Clauses affected: $\quad 4.3 .1 .1,4.3 .1 .2 .2$
Other specs
Other 3G core specifications
Affected:
Other GSM core specifications
MS test specifications
BSS test specifications
O\&M specifications

\rightarrow List of CRs:

Other
 comments:

4.3 Coding for layer 1 control

4.3.1 Coding of transport format combination indicator (TFCI)

Encoding of the TFCI bits depends on the number of them. If there are 6-10 bits of TFCI the channel encoding is done as described in section 4.3.1.1. Also specific coding of less than 6 bits is possible as explained in section 4.3.1.2.

4.3.1.1 Coding of long TFCI lengths

The TFCI bits are encoded using a $(32,10)$ sub-code of the second order Reed-Muller code. The coding procedure is as shown in figure 4.3.3.1-1.

Figure 4.3.3.1-1: Channel coding of TFCI bits
TFCI is encoded by the $(32,10)$ sub-code of second order Reed-Muller code. The code words of the $(32,10)$ sub-code of second order Reed-Muller code are linear combination of some among 10 basis sequences. The basis sequences are as follows in table 4.3.1-1.

Table 4.3.1-1: Basis sequences for $(32,10)$ TFCI code

1	$\mathrm{M}_{\mathrm{i}, 0}$	$\mathrm{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathrm{i}, 2}$	$\mathrm{M}_{\mathrm{i}, 3}$	$\mathrm{M}_{1,4}$	$\mathrm{M}_{\mathrm{i}, 5}$	$\mathrm{M}_{\mathrm{i}, 6}$	$\mathrm{M}_{\mathrm{i}, 7}$	$\mathrm{M}_{\mathrm{i}, 8}$	$\mathrm{M}_{\mathrm{i}, 9}$
0	17	04	00	$\underline{0}$	$\underline{0}$	10	0	0	0	0
1	$\underline{0}$	10	-1	$\underline{0} 0$	$\underline{0}$	10	1	0	0	0
2	17	17	07	$\underline{0}$	$\underline{0}$	10	0	0	0	1
3	-1	$\underline{0}$	10	04	$\underline{0}$	10	1	0	1	1
4	17	-1	10	-1	$\underline{0}$	10	0	0	0	1
5	-1	10	17	04	$\underline{0}$	10	0	0	1	0
6	17	17	17	04	$\underline{0}$	10	0	1	0	0
7	-1	$\underline{0}$	00	10	04	10	0	1	1	0
8	17	$\underline{0}$	00	10	-1	10	1	1	1	0
9	- ${ }^{1}$	10	- 4	10	07	10	1	0	1	1
10	17	17	07	10	07	10	0	0	1	1
11	-1	$\underline{0}$	10	17	07	10	0	1	1	0
12	17	$\underline{0}$	10	17	-1	10	0	1	0	1
13	-1	10	17	17	07	10	1	0	0	1
14	17	17	17	17	07	10	1	1	1	1
15	17	$\underline{0} 4$	00	$\underline{0} 0$	10	17	1	1	0	0
16	- ${ }^{1}$	10	- ${ }^{\text {- }}$	$\underline{0}$	10	14	1	1	0	1
17	17	17	07	$\underline{0}$	10	14	1	0	1	0
18	- 1	$\underline{0}$	10	04	10	17	0	1	1	1
19	14	-1	10	-1	10	14	0	1	0	1
20	-1	10	17	04	10	14	0	0	1	1
21	14	14	17	07	10	17	0	1	1	1
22	-1	$\underline{0}$	00	10	17	17	0	1	0	0
23	17	-4	$\underline{0}$	10	17	14	1	1	0	1
24	-1	10	- 4	10	17	17	1	0	1	0
25	17	17	-1	10	17	17	1	0	0	1
26	$\underline{0}$	$\underline{0}$	10	14	17	14	0	0	1	0
27	14	04	10	17	17	17	1	1	0	0
28	-1	10	17	17	17	14	1	1	1	0
29	17	17	$1{ }^{1}$	17	17	17	1	1	1	1
30	-1	$\underline{0} 0$	$\underline{0} 0$	$\underline{0} 0$	$\underline{0}$	10	0	0	0	0
31	-1	$\underline{0} 0$	$\underline{0} 0$	$\underline{0} 0$	10	17	1	0	0	0

For TFCI bits $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\left(a_{0}\right.$ is LSB and a_{9} is MSB $)$, the output code word bits b_{i} are given by: $b_{i}=\sum_{n=0}^{9}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 31 . \mathrm{N}_{\mathrm{TFCI}}=32$.

4.3.1.2 Coding of short TFCI lengths

4.3.1.2.1 Coding very short TFCls by repetition

If the number of TFCI bits is 1 or 2 , then repetition will be used for coding. In this case each bit is repeated to a total of 4 times giving 4-bit transmission ($\mathrm{N}_{\mathrm{TFCI}}=4$) for a single TFCI bit and 8-bit transmission $\left(\mathrm{N}_{\mathrm{TFCI}}=8\right)$ for 2 TFCI bits. In the case of two TFCI bits denoted b_{0} and b_{1} the TFCI word shall be $\left\{b_{0}, b_{1}, b_{0}, b_{1}, b_{0}, b_{1}, b_{0}, b_{1}\right\}$.

4.3.1.2.2 Coding short TFCIs using bi-orthogonal codes

If the number of TFCI bits is in the range 3 to 5 the TFCI bits are encoded using a $(16,5)$ bi-orthogonal (or first order Reed-Muller) code. The coding procedure is as shown in figure 4-8.

Figure 4-8: Channel coding of short length TFCI bits
The code words of the $(16,5)$ bi-orthogonal code are linear combinations of 5 basis sequences as defined in table 4.3.12 below.

Table 4.3.1-2: Basis sequences for $(16,5)$ TFCI code

i	$\mathrm{M}_{\mathrm{i}, 0}$	$\mathrm{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathrm{i}, 2}$	$\mathrm{M}_{\mathrm{i}, 3}$	$\mathrm{M}_{\mathrm{i}, 4}$
0	$\underline{1} 4$	$\underline{0} 4$	$\underline{0} \theta$	$\underline{0} \theta$	$\underline{1} \theta$
1	$\underline{0} 4$	$\underline{1} \theta$	$\underline{0} 4$	$\underline{0} \theta$	$\underline{1} \theta$
2	$\underline{1} 4$	$\underline{1} 4$	$\underline{0} 4$	$\underline{0} \theta$	$\underline{1} \theta$
3	$\underline{0} 4$	$\underline{0} \theta$	$\underline{1} \theta$	$\underline{0} 4$	$\underline{1} \theta$
4	$\underline{1} 4$	$\underline{0} 4$	$\underline{1} \theta$	$\underline{0} 4$	$\underline{1} \theta$
5	$\underline{0} 4$	$\underline{1} \theta$	$\underline{14}$	$\underline{0} 4$	$\underline{1} \theta$
6	$\underline{1} 4$	$\underline{1} 4$	$\underline{1} 4$	$\underline{0} 4$	$\underline{1} \theta$
7	$\underline{0} 4$	$\underline{0} \theta$	$\underline{0} \theta$	$\underline{1} \theta$	$\underline{1} 4$
8	$\underline{1} 4$	$\underline{0} 4$	$\underline{0} \theta$	$\underline{1} \theta$	$\underline{1} 4$
9	$\underline{0} 4$	$\underline{1} \theta$	$\underline{0} 4$	$\underline{1} \theta$	$\underline{1} 4$
10	$\underline{1} 4$	$\underline{1} 4$	$\underline{0} 4$	$\underline{1} \theta$	$\underline{1} 4$
11	$\underline{0} 4$	$\underline{0} \theta$	$\underline{1} \theta$	$\underline{1} 4$	$\underline{1} 4$
12	$\underline{1} 4$	$\underline{0} 4$	$\underline{1} \theta$	$\underline{1} 4$	$\underline{1} 4$
13	$\underline{0} 4$	$\underline{1} \theta$	$\underline{1} 4$	$\underline{1} 4$	$\underline{1} 4$
14	$\underline{1} 4$				
15	$\underline{0} 4$	$\underline{0} \theta$	$\underline{0} \theta$	$\underline{0} \theta$	$\underline{1} \theta$

For TFCI information bits $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\left(a_{0}\right.$ is LSB and a_{4} is MSB), the $)$, the output code word bits b_{j} are given by: $b_{i}=\sum_{n=0}^{4}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 15 . \mathrm{N}_{\mathrm{TFCI}}=16$.

