3GPP TSG RAN WG1#11 San Diego USA, Feb. 29th – March 3rd, 2000

Document R1-00-0234 e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE F	REQU	JEST	Please see embed page for instruction	lded help fil ns on how t	le at the bottom of th to fill in this form corr	is rectly.				
		25.211	CR	033	Curren	ent Version: V3.1.1						
GSM (AA.BB) or 3G (A	AA.BBB) specifica	tion number \uparrow		ר CR ו	number as allocated	l by MCC s	upport team					
For submission to: TSG RAN #7 list expected approval meeting # here ↑ for approval for information X strategic non-strategic (for SMG use only) Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.												
Proposed change (at least one should be ma	e affects: arked with an X)	(U)SIM	ME	X UT	FRAN / Radio	X	Core Network					
Source:	LGIC					Date:	2000-2-29					
Subject:	Clarification	of frame synchro	nization	word and i	its usage							
Work item:												
Category:FA(only one categoryBShall be markedCWith an X)D	Correction Correspond Addition of t Functional r Editorial mo	ls to a correction i feature modification of fea odification	in an ea ature	rlier releas	e Rel	ease:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X				
<u>Reason for</u> <u>change:</u>	TS25.211 do what it shou FSWs and p format 9B of	oes not exactly de Id be used for. Th pilot bit patterns b f table 11 is corre	efine the his CR co ased on cted.	frame syn orrects the R1-00-023	chronization v se ambiguous 32. The numbe	vords. A senten er of bits	and it is not cle ces related to s per slot for sl	ar ot				
Clauses affected:	3, 5.2.1	, 5.3.2										
Other specs Affected: M B C	Other 3G core Other GSM co specificati IS test speci SS test speci SS test specifica	e specifications ore ons fications cifications ations		→ List of C → List of C	CRs: CRs: CRs: CRs: CRs: CRs:							
Other comments:												

3 Abbreviations

For the purposes of t	he present document, the following abbreviations apply:
AI	Acquisition Indicator
AICH	Acquisition Indicator Channel
AP	Access Preamble
BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CD	Collision Detection
CPCH	Common Packet Channel
CPICH	Common Pilot Channel
DCH	Dedicated Channel
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPDCH	Dedicated Physical Data Channel
DSCH	Downlink Shared Channel
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FBI	Feedback Information
FSW	Frame Synchronization Word
MUI	Mobile User Identifier
PCH	Paging Channel
P-CCPCH	Primary Common Control Physical Channel
PCPCH	Physical Common Packet Channel
PDSCH	Physical Downlink Shared Channel
PI	Page Indicator
PICH	Page Indicator Channel
PRACH	Physical Random Access Channel
PSC	Primary Synchronisation Code
RACH	Random Access Channel
RNC	Radio Network Controller
S-CCPCH	Secondary Common Control Physical Channel
SCH	Synchronisation Channel
SF	Spreading Factor
SFN	System Frame Number
SSC	Secondary Synchronisation Code
STTD	Space Time Transmit Diversity
TFCI	Transport Format Combination Indicator
TSTD	Time Switched Transmit Diversity
TPC	Transmit Power Control
UE	User Equipment
UTRAN	UMTS Terrestrial Radio Access Network

5.2.1 Dedicated uplink physical channels

There are two types of uplink dedicated physical channels, the uplink Dedicated Physical Data Channel (uplink DPDCH) and the uplink Dedicated Physical Control Channel (uplink DPCCH).

The DPDCH and the DPCCH are I/Q code multiplexed within each radio frame (see [4]).

The uplink DPDCH is used to carry dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH). There may be zero, one, or several uplink DPDCHs on each Layer 1 connection.

The uplink DPCCH is used to carry control information generated at Layer 1. The Layer 1 control information consists of known pilot bits to support channel estimation for coherent detection, transmit power-control (TPC) commands, feedback information (FBI), and an optional transport-format combination indicator (TFCI). The transport-format combination indicator informs the receiver about the instantaneous parameters of the different transport channels multiplexed on the uplink DPDCH, and corresponds to the data transmitted in the same frame. It is the UTRAN that determines if a TFCI should be transmitted, hence making it mandatory for all UEs to support the use of TFCI in the uplink. There is one and only one uplink DPCCH on each Layer 1 connection.

Figure 1 shows the frame structure of the uplink dedicated physical channels. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period

Figure 1: Frame structure for uplink DPDCH/DPCCH

The parameter k in figure 1 determines the number of bits per uplink DPDCH/DPCCH slot. It is related to the spreading factor SF of the physical channel as $SF = 256/2^k$. The DPDCH spreading factor may thus range from 256 down to 4. Note that an uplink DPDCH and uplink DPCCH on the same Layer 1 connection generally are of different rates, i.e. have different spreading factors and different values of k.

The exact number of bits of the different uplink DPCCH fields (N_{pilot} , N_{TFCI} , N_{FBI} , and N_{TPC}) is determined in table 2. The field order and total number of bits/slot are fixed, though the number of bits per field may vary during a connection. The values for the number of bits per field are given in table 1 and table 2. The channel bit and symbol rates given in table 1 are the rates immediately before spreading. The pilot patterns are given in table 3 and table 4, the TPC bit pattern is given in table 5.

The N_{FBI} bits are used to support techniques requiring feedback between the UE and the UTRAN Access Point (=cell transceiver), including closed loop mode transmit diversity and site selection diversity (SSDT). The exact details of the FBI field are shown in figure 2 and described below.

Figure 2: Details of FBI field

The S field is used for SSDT signalling, while the D field is used for Closed Loop Mode Transmit Diversity Signalling. The S field can be of length 0, 1 or 2. The D field can be of length 0 or 1. The total FBI field size N_{FBI} is according to table 2 (DPCCH fields). Simultaneous use of SSDT power control and Closed Loop Mode Transmit Diversity requires that the S field is of length 1. The use of these FBI fields is described in [5].

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{data}
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80
4	240	240	16	2400	160	160
5	480	480	8	4800	320	320
6	960	960	4	9600	640	640

Table 1: DPDCH fields	Table	1:	DPDCH	fields
-----------------------	-------	----	-------	--------

There are two types of Uplink Dedicated Physical Channels; those that include TFCI(e.g. for several simultaneous services) and those that do not include TFCI(e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 2. In compressed mode, DPCCH slot formats with TFCI fields are changed. There are two possible compressed slot formats for each normal slot format. They are labelled A and B and the selection between them is dependent on the number of slots that are transmitted in each frame in compressed mode. The channel bit and symbol rates given in table 2 are the rates immediately before spreading.

Table 2: DPCCH fields

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{pilot}	N _{TPC}	N _{tfci}	N _{FBI}	Transmitted slots per radio frame
0	15	15	256	150	10	6	2	2	0	15
0A	15	15	256	150	10	5	2	3	0	10-14
0B	15	15	256	150	10	4	2	4	0	8-9
1	15	15	256	150	10	8	2	0	0	8-15
2	15	15	256	150	10	5	2	2	1	15
2A	15	15	256	150	10	4	2	3	1	10-14
2B	15	15	256	150	10	3	2	4	1	8-9
3	15	15	256	150	10	7	2	0	1	8-15
4	15	15	256	150	10	6	2	0	2	8-15
5	15	15	256	150	10	5	1	2	2	15
5A	15	15	256	150	10	4	1	3	2	10-14
5B	15	15	256	150	10	3	1	4	2	8-9

The pilot bit patterns is are described in table 3 and table 4. The shadowed column part of pilot bit pattern is defined as FSW and FSWs can be used to confirm frame synchronization. The shadowed part can be used as frame synchronization words. (The value of the pilot bit pattern other than the frame synchronization word FSWs shall be "1".)

Table 3: Pilot bit patterns for uplink DPCCH with N_{pilot} = 3, 4, 5 and 6

	N	$N_{\text{eff}} = 3$ $N_{\text{eff}} = 4$						N						N – 6						
	IN	pilot =	3	Nilot = 4																
Bit #	0	1	2	0	1	2	3	0	1	2	3	4	0	1	2	3	4	5		
Slot #0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0		
1	0	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	1	0		
2	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1		
3	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0		
4	1	0	1	1	1	0	1	1	0	1	0	1	1	1	0	1	0	1		
5	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0		
6	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	0		
7	1	0	1	1	1	0	1	1	0	1	0	0	1	1	0	1	0	0		
8	0	1	1	1	0	1	1	0	1	1	1	0	1	0	1	1	1	0		
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
10	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1		
11	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0	1	1	1		
12	1	0	1	1	1	0	1	1	0	1	0	0	1	1	0	1	0	0		
13	0	0	1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	1		
14	0	0	1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	1		

Table 4: Pilot bit patterns for uplink DPCCH with N_{pilot} = 7 and 8

	N _{pilot} = 7								N _{pilot} = 8						
Bit #	0	1	2	3	4	5	6	0	1	2	3	4	5	6	7
Slot #0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0
1	1	0	0	1	1	0	1	1	0	1	0	1	1	1	0
2	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1
3	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
4	1	1	0	1	0	1	1	1	1	1	0	1	0	1	1
5	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0
6	1	1	1	1	0	0	1	1	1	1	1	1	0	1	0
7	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
8	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1
11	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
13	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1
14	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1

The relationship between the TPC bit pattern and transmitter power control command is presented in table 5.

TPC Bit	Pattern	Transmitter power
N _{TPC} = 1	N _{TPC} = 2	control command
1	11	1
0	00	0

Table 5: TPC Bit Pattern

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain combination of bit rates of the DCHs currently in use. This correspondence is (re-)negotiated at each DCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

Multi-code operation is possible for the uplink dedicated physical channels. When multi-code transmission is used, several parallel DPDCH are transmitted using different channelization codes, see [4]. However, there is only one DPCCH per connection.

5.3.2 Dedicated downlink physical channels

There is only one type of downlink dedicated physical channel, the Downlink Dedicated Physical Channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH), is transmitted in time-multiplex with control information generated at Layer 1 (known pilot bits, TPC commands, and an optional TFCI). The downlink DPCH can thus be seen as a time multiplex of a downlink DPDCH and a downlink DPCCH, compare section 5.2.1. It is the UTRAN that determines if a TFCI should be transmitted, hence making it is mandatory for all UEs to support the use of TFCI in the downlink. In case of USTS, the TPC bits in slot #14 in frames with CFN mod 2 = 0 are replaced by Time Alignment Bits (TABs) as described in section 9.3 of [5]

Figure 8 shows the frame structure of the downlink DPCH. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period.

One radio frame, $T_f = 10 \text{ ms}$

Figure 8: Frame structure for downlink DPCH

The parameter k in figure 8 determines the total number of bits per downlink DPCH slot. It is related to the spreading factor SF of the physical channel as $SF = 512/2^k$. The spreading factor may thus range from 512 down to 4.

The exact number of bits of the different downlink DPCH fields (N_{pilot} , N_{TPC} , N_{TFCI} , N_{data1} and N_{data2}) is determined in table 11. The overhead due to the DPCCH transmission has to be negotiated at the connection set-up and can be renegotiated during the communication, in order to match particular propagation conditions.

There are basically two types of downlink Dedicated Physical Channels; those that include TFCI (e.g. for several simultaneous services) and those that do not include TFCI(e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 11. In compressed mode, a different slot format is used compared to normal mode. There are two possible compressed slot formats that are labelled A and B. Format B is used for compressed mode by spreading factor reduction and format A is used for all other transmission time reduction methods. The channel bit and symbol rates given in table 11 are the rates immediately before spreading.

Slot	Channel	Channel	SF	Bits/	DPDCH Bite/Slot		0	PCCH	4	Transmitted
Format #i	(kbps)	Symbol Rate		5100	BIts	5101	в	115/510	τ	slots per radio frame
<i>T</i> 1	(Kopo)	(ksps)			N _{Data1}	N _{Data2}	N _{TPC}	NTFCI	N _{Pilot}	N _{Tr}
0	15	75	512	10	0	4	2	0	4	15
0A	15	7.5	512	10	0	4	2	0	4	8-14
0B	30	15	256	20	0	8	4	0	8	8-14
1	15	7.5	512	10	0	2	2	2	4	15
1B	30	15	256	20	0	4	4	4	8	8-14
2	30	15	256	20	2	14	2	0	2	15
24	30	15	256	20	2	14	2	0	2	8-14
2R	60	30	128	40	<u> </u>	28	4	0	<u>2</u> 4	8-14
20	30	15	256	20	7	12	2	2	2	15
34	30	15	256	20	2	10	2	<u> </u>	2	8-1/
38	50 60	30	128	20	<u> </u>	24	<u></u>	4	<u> </u>	8-14
3D 4	20	15	256	20	-	12	2	4	4	15
4 1 A	30	15	250	20	2	1∠ 12	2	0	4 1	10 8_1/
4A 4P	- 30 - 60	20	120	20	Z 	12	<u> </u>	0	4 0	0-14 9 1/
4D	20	15	120	40	4	2 4	- 4	0	0	0-14
C C	30	15	200	20	2	10	2	2	4	
5D	30	10	200	20	Z	0	<u> </u>	4	4	0-14
DD C	00	30	120	40	4	20	4	4	0	0-14
6	30	15	256	20	2	8	2	0	8	15
6A	30	15	256	20	2	8		0	8	8-14
6B	60	30	128	40	4	16	4	0	16	8-14
/	30	15	256	20	2	6	2	2	8	15
7A	30	15	256	20	2	4	2	4	8	8-14
7B	60	30	128	40	4	12	4	4	16	8-14
8	60	30	128	40	6	28	2	0	4	15
8A	60	30	128	40	6	28	2	0	4	8-14
8B	120	60	64	80	12	56	4	0	8	8-14
9	60	30	128	40	6	26	2	2	4	15
9A	60	30	128	40	6	24	2	4	4	8-14
9B	120	60	64	<u>80</u> 40	12	52	4	4	8	8-14
10	60	30	128	40	6	24	2	0	8	15
10A	60	30	128	40	6	24	2	0	8	8-14
10B	120	60	64	80	12	48	4	0	16	8-14
11	60	30	128	40	6	22	2	2	8	15
11A	60	30	128	40	6	20	2	4	8	8-14
11B	120	60	64	80	12	44	4	4	16	8-14
12	120	60	64	80	12	48	4	8*	8	15
12A	120	60	64	80	12	40	4	16*	8	8-14
12B	240	120	32	160	24	96	8	16*	16	8-14
13	240	120	32	160	28	112	4	8*	8	15
13A	240	120	32	160	28	104	4	16*	8	8-14
13B	480	240	16	320	56	224	8	16*	16	8-14
14	480	240	16	320	56	232	8	8*	16	15
14A	480	240	16	320	56	224	8	16*	16	8-14
14B	960	480	8	640	112	464	16	16*	32	8-14
15	960	480	8	640	120	488	8	8*	16	15
15A	960	480	8	640	120	480	8	16*	16	8-14
15B	1920	960	4	1280	240	976	16	16*	32	8-14
16	1920	960	4	1280	248	1000	8	8*	16	15
16A	1920	960	4	1280	248	992	8	16*	16	8-14

Table 11: DPDCH and DPCCH fields

* If TFCI bits are not used, then DTX shall be used in TFCI field.

NOTE1: Compressed mode is only supported through spreading factor reduction for SF=512 with TFCI.

NOTE2: Compressed mode by spreading factor reduction is not supported for SF=4.

The pilot bitsymbol patterns are is described in table 12. The shadowed column part of pilot bit pattern is defined as

<u>FSW</u> and FSWs can be used to confirm frame synchronization. (The value of the pilot bit pattern other than FSWs shall <u>be "11".)</u>The shadowed part can be used as frame synchronization words. (The symbol pattern of the pilot symbols other than the frame synchronization word shall be "11".) In table 12, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

In downlink compressed mode through spreading factor reduction, the number of bits in the TPC and Pilot fields are doubled. Symbol repetition is used to fill up the fields. Denote the bits in one of these fields in normal mode by x_1 , x_2 , x_3 , ..., x_X . In compressed mode the following bit sequence is sent in corresponding field: x_1 , x_2 , x_1 , x_2 , x_3 , x_4 , x_3 , x_4 ,..., x_X .

								N. 40							
	Npilot	Npilo	ot = 4	Npilot = 8				Npilot = 16							
	= 2														
Symbol	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7
#															
Slot #0	11	11	11	11	11	11	10	11	11	11	10	11	11	11	10
1	00	11	00	11	00	11	10	11	00	11	10	11	11	11	00
2	01	11	01	11	01	11	01	11	01	11	01	11	10	11	00
3	00	11	00	11	00	11	00	11	00	11	00	11	01	11	10
4	10	11	10	11	10	11	01	11	10	11	01	11	11	11	11
5	11	11	11	11	11	11	10	11	11	11	10	11	01	11	01
6	11	11	11	11	11	11	00	11	11	11	00	11	10	11	11
7	10	11	10	11	10	11	00	11	10	11	00	11	10	11	00
8	01	11	01	11	01	11	10	11	01	11	10	11	00	11	11
9	11	11	11	11	11	11	11	11	11	11	11	11	00	11	11
10	01	11	01	11	01	11	01	11	01	11	01	11	11	11	10
11	10	11	10	11	10	11	11	11	10	11	11	11	00	11	10
12	10	11	10	11	10	11	00	11	10	11	00	11	01	11	01
13	00	11	00	11	00	11	11	11	00	11	11	11	00	11	00
14	00	11	00	11	00	11	11	11	00	11	11	11	10	11	01

Table 12: Pilot bitSymbol Ppatterns for downlink DPCCH with Npilot = 2, 4, 8 and 16

NOTE: In compressed mode through spreading factor reduction, symbol repetition is applied to the symbol patterns described in table 12.