			CHAN	IGE F	REQ	UESI	 Please page fo 			ile at the bott to fill in this f		
			25	.214	CR	043	r1	Current	t Versio	on: <mark>3.1.</mark>	1	
GSM (AA.BB) or 3	3G (AA.I	BBB) specifica	ation number	1		Ŷ	CR number a	as allocated	by MCC s	support team		
For submission	al meet	↑		for infor		X			strateo -strateo	gic	(for SM use onl	y)
	Form: CF	R cover sheet, ve	ersion 2 for 3GF	P and SMG	The lates	t version of th	is form is availa	able from: ftp:/	//ftp.3gpp.oi	rg/Information/0	CR-Form-v	/2.doc
Proposed chai			(U)S	IM	ME	X	UTRAN	/ Radio	X	Core Ne	twork	
Source:	L	GIC							Date:	2000-2-	29	
Subject:	0	ptimum ID	Codes fo	or SSDT	Power	Control						
Work item:												
	A C B A C F	orrection orrespond ddition of unctional ditorial mo	feature modificati	on of fea		arlier rele	ase	C Rele	ease:	Phase 2 Release Release Release Release Release	96 97 98 99	X
<u>Reason for</u> <u>change:</u>		ne current odes.	ID codes	for SSD)T powe	er contro	l is not op	otimised.	. This C	CR correc	ts the	
Clauses affect	ed:	5.2.1.4										
Other specs affected:	Oth MS BSS	er 3G cor er GSM c specificati test spec S test spe M specific	ore ions ifications cifications			\rightarrow List c \rightarrow List c \rightarrow List c \rightarrow List c \rightarrow List c	of CRs: of CRs: of CRs:					
<u>Other</u> comments:												

5.2.1.4 Site selection diversity transmit power control

5.2.1.4.1 General

Site selection diversity transmit power control (SSDT) is an optional macro diversity method in soft handover mode.

Operation is summarised as follows. The UE selects one of the cells from its active set to be 'primary', all other cells are classed as 'non primary'. The main objective is to transmit on the downlink from the primary cell, thus reducing the interference caused by multiple transmissions in a soft handover mode. A second objective is to achieve fast site selection without network intervention, thus maintaining the advantage of the soft handover. In order to select a primary cell, each cell is assigned a temporary identification (ID) and UE periodically informs a primary cell ID to the connecting cells. The non-primary cells selected by UE switch off the transmission power. The primary cell ID is delivered by UE to the active cells via uplink FBI field. SSDT activation, SSDT termination and ID assignment are all carried out by higher layer signalling.

5.2.1.4.1.1 Definition of temporary cell identification

Each cell is given a temporary ID during SSDT and the ID is utilised as site selection signal. The ID is given a binary bit sequence. There are three different lengths of coded ID available denoted as "long", "medium" and "short". The network decides which length of coded ID is used. Settings of ID codes for 1-bit and 2-bit FBI are exhibited in table 3 and table 4, respectively.

	ID code				
ID label	"long"	"medium"	"short"		
а	00000000000000	0000000(0)	00000		
		<u>(0)000000</u>			
b	1111111111111111	111111(1)	11111		
	<u>101010101010101</u>	<u>(0)1010101</u>	<u>01001</u>		
С	00000001111111	0000111(1)	00011		
	<u>011001100110011</u>	<u>(0)0110011</u>	<u>11011</u>		
d	1111111000000	1111000(0)	11100		
	<u>110011001100110</u>	<u>(0)1100110</u>	<u>10010</u>		
е	000011111111000	0011110(0)	00110		
	<u>000111100001111</u>	<u>(0)0001111</u>	<u>00111</u>		
f	11110000000111	1100001(1)	11001		
	<u>101101001011010</u>	<u>(0)1011010</u>	<u>01110</u>		
g	001111000011110	0110011(0)	01010		
	<u>011110000111100</u>	<u>(0)0111100</u>	<u>11100</u>		
h	110000111100001	1001100(1)	10101		
	<u>110100101101001</u>	<u>(0)1101001</u>			

Table 3: Settings of ID codes for 1 bit FBI

	ID code (Column and Row denote slot position and FBI-bit position.) "long" "medium" "short"					
ID label						
а	000000(0)	000(0)	000			
	000000(0)	000(0)	000			
	<u>(0)0000000</u>	<u>(0)000</u>				
	<u>(0)000000</u>	<u>(0)000</u>				
b	111111(1)	111(1)	111			
	111111(1)	111(1)	111			
	<u>(0)0000000</u>	<u>(0)000</u>	<u>000</u>			
	<u>(1)111111</u>	<u>(1)111</u>	<u>111</u>			
С	000000(0)	000(0)	000			
	111111(1)	111(1)	111			
	<u>(0)1010101</u>	<u>(0)101</u>	<u>101</u>			
	<u>(0)1010101</u>	<u>(0)101</u>	<u>101</u>			
d	111111(1)	111(1)	111			
	000000(0)	000(0)	000			
	<u>(0)1010101</u>	<u>(0)101</u>	<u>101</u>			
	<u>(1)0101010</u>	<u>(1)010</u>	<u>010</u>			
е	0000111(1)	001(1)	001			
	1111000(0)	110(0)	100			
	<u>(0)0110011</u>	<u>(0)011</u>	<u>011</u>			
	<u>(0)0110011</u>	<u>(0)011</u>	<u>011</u>			
f	1111000(0)	110(0)	110			
	0000111(1)	001(1)	011			
	(0)0110011	<u>(0)011</u>	<u>011</u>			
	<u>(1)1001100</u>	<u>(1)100</u>	<u>100</u>			
g	0011110(0)	011(0)	010			
-	0011110(0)	011(0)	010			
	<u>(0)1100110</u>	<u>(0)110</u>	<u>110</u>			
	(0)1100110	(0)110	<u>110</u>			
h	1100001(1)	100(1)	101			
	1100001(1)	100(1)	101			
	<u>(0)1100110</u>	<u>(0)110</u>	<u>110</u>			
	(1)0011001	(1)001	001			

Table 4: Settings of ID codes for 2 bit FBI

ID must be terminated within a frame. If FBI space for sending a given ID cannot be obtained within a frame, hence if the entire ID is not transmitted within a frame but must be split over two frames, the <u>lastfirst</u> bit(s) of the ID is(are) punctured. The relating bit(s) to be punctured are shown with brackets in table 3 and table 4.

5.2.1.4.2 TPC procedure in UE

The TPC procedure of the UE in SSDT is identical to that described in subclause5.2.1.2 or 5.2.1.3 in compressed mode.

5.2.1.4.3 Selection of primary cell

The UE selects a primary cell periodically by measuring the RSCP of CPICHs transmitted by the active cells. The cell with the highest CPICH RSCP is detected as a primary cell.

5.2.1.4.4 Delivery of primary cell ID

The UE periodically sends the ID code of the primary cell via portion of the uplink FBI field assigned for SSDT use (FBI S field). A cell recognises its state as non-primary if the following conditions are fulfilled simultaneously:

- the received primary ID code does not match with the own ID code,
- the received uplink signal quality satisfies a quality threshold, Qth, a parameter defined by the network.
- and, when the uplink link compressed mode, does not results in excessive levels of puncturing on the coded ID. The acceptable level of puncturing on the coded ID is less than (int)N_{ID}/3 symbols in the coded ID (where N_{ID} is the length of the coded ID).

Otherwise the cell recognises its state as primary.

The state of the cells (primary or non-primary) in the active set with update synchronous. If a cell receives the last portion of the coded ID in uplink slot #j, the state of cell is updated in downlink slot# $\{(j+1+T_{os}) \mod 15\}$. Where T_{os} is defined as a constant of 2 time slots. The updating of cell state is unchanged by the operation of downlink compressed mode.

At the UE, the primary ID code to be sent to the cells is segmented into a number of portions. These portions are distributed in the uplink FBI S-field. The cell in SSDT collects the distributed portions of the primary ID code and then detects the transmitted ID. Period of primary cell update depends on the settings of code length and the number of FBI bits assigned for SSDT use as shown in table 5

	The number of FBI bits per slot assigned for SSDT			
code length	1	2		
"long"	1 update per frame	2 updates per frame		
"medium"	2 updates per frame	4 updates per frame		
"short"	3 updates per frame	5 updates per frame		

Table 5: Period of primary cell update