Document R1-00-0227 3GPP TSG RAN WG1 Meeting #11 e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx San Diego, USA, FEB. 29 - MARCH 03, 2000 Please see embedded help file at the bottom of this **CHANGE REQUEST** page for instructions on how to fill in this form correctly. Current Version: 3.1.1 25.225 CR 005rev2 GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team For submission to: RAN#7 for approval strategic (for SMG use only) list expected approval meeting # here for information non-strategic Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc ME X UTRAN / Radio X Proposed change affects: (U)SIM Core Network (at least one should be marked with an X) Source: Siemens AG Date: Feb. 23, 2000 Subject: Editorial modifications to 25.225 Measurements for TDD (CR005 rev2) Work item: Release: Category: Correction Phase 2 Corresponds to a correction in an earlier release Release 96 (only one category Release 97 B Addition of feature shall be marked С Functional modification of feature Release 98 with an X) D Editorial modification Release 99 X Release 00 The following modifications are included in this CR: Reason for Names of the mapped measurement levels are aligned with FDD 25.215 change: Resolution values for power measurements were changed from dBm to dB as already proposed in CR 003 rev1 (R1-99L43). Clauses affected: Chapter 5 Other specs Other 3G core specifications → List of CRs: affected: Other GSM core → List of CRs: specifications MS test specifications → List of CRs: BSS test specifications List of CRs: **O&M** specifications List of CRs: CR history: CR005 rev1: R1-00-0181, CR005: R1-00-143 **Other**

help doc

comments:

<----- double-click here for help and instructions on how to create a CR.

4.4 Measurements for DCA

DCA is used to optimise the resource allocation by means of a channel quality criteria or traffic parameters. The DCA measurements are configured by the UTRAN. The UE reports the measurements to the UTRAN.

For DCA no measurements are performed in idle mode in the serving TDD cell.

When connecting with the initial access the UE immediately starts measuring the ISCP of time slots which are communicated on the BCH. The measurements and the preprocessing are done while the UTRAN assigns an UL channel for the UE for signalling and measurement reporting.

In connected mode the UE performs measurements according to a measurement control message from the UTRAN.

4.5 Measurements for timing advance

To update timing advance of a moving UE the UTRAN measures 'Received Timing Deviation', i.e. the time difference of the received UL transmission (PRACH, DPCH, PUSCH) in relation to its timeslot structure that means in relation to the ideal case where an UL transmission would have zero propagation delay. The measurements are reported to higher layers, where timing advance values are calculated and signalled to the UE.

5 Measurement abilities for UTRA TDD

In this chapter the physical layer measurements reported to higher layers. (this may also include UE internal measurements not reported over the air-interface) are defined.

5.1 UE measurement abilities

- NOTE 1: Measurements for TDD which are specified on the Primary CCPCH (P-CCPCH) are carried out on the P-CCPCH or other physical channels with beacon function, see [6].
- NOTE 2: For those channels providing beacon function [6], the received power measurements are based on the sum of the received powers for midambles $m^{(1)}$ and $m^{(2)}$.
- NOTE 3: The UTRAN has to take into account the UE capabilities when specifying the timeslots to be measured in the measurement control message.
- NOTE 4: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.
- NOTE 5: The line 'applicable for' indicates whether the measurement is applicable for inter-frequency and/or intra-frequency and furthermore for idle and/or connected mode.

5.1.1 P-CCPCH RSCP

Definition	Received Signal Code Power, the received power on P-CCPCH of own or neighbour cell after			
Deminion				
	despreading. The reference point for the RSCP is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (intra-frequency & inter-frequency)			
Range/mapping	P-CCPCH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.			
	P-CCPCH RSCP shall be reported in the unit P-CCPCH_RSCP_LEV where:			
	P-CCPCH_RSCP_LEV_00: P-CCPCH_RSCP < -115dBm			
	P -CCPCH_RSCP_LEV_01: -115dBm \leq P -CCPCH_RSCP $<$ $-$ 114dBm			
	P-CCPCH_RSCP_LEV_02: -114dBm ≤ P-CCPCH_RSCP < −113dBm			
	P -CCPCH_RSCP_LEV_89: -27dBm \leq P -CCPCH_RSCP $<$ $-26dBm$			
	P -CCPCH_RSCP_LEV_90: -26dBm \leq P -CCPCH_RSCP $<$ $-25dBm$			
	P-CCPCH RSCP LEV 91: -25dBm ≤ P-CCPCH RSCP			

5.1.2 CPICH RSCP

Definition	Received Signal Code Power, the received power on the CPICH code after despreading. The			
	reference point for the RSCP is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (inter-frequency)			
Range/mapping	CPICH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.			
	CPICH RSCP shall be reported in the unit CPICH_RSCP_LEV where:			
	CPICH_RSCP_LEV_00: CPICH_RSCP < -115dBm			
	CPICH_RSCP_LEV_01: -115dBm ≤ CPICH_RSCP < -114dBm			
	$CPICH_RSCP_LEV_02: -114dBm \leq CPICH_RSCP < -113dBm$			
	 			
	$CPICH_RSCP_LEV_89: -27dBm \le CPICH_RSCP < -26dBm$			
	$CPICH_RSCP_LEV_90: -26dBm \le CPICH_RSCP < -25dBm$			
	CPICH RSCP LEV 91: -25dBm ≤ CPICH RSCP			

5.1.3 RSCP

Definition	Received Signal Code Power, the received power on the code of a specified DPCH or PDSCH after despreading. The reference point for the RSCP is the antenna connector at the UE.		
Applicable for	connected mode (intra-frequency)		
Range/mapping	RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.		
	RSCP shall be reported in the unit UE_RSCP_LEV where:		
	UE_RSCP_LEV00: RSCP < -115dBm		
	UE_RSCP_LEV01: -115dBm ≤ RSCP < −114dBm		
	UE_RSCP_LEV02: -114dBm ≤ RSCP < −113dBm		
	UE_RSCP_LEV89: -27dBm ≤ RSCP < −26dBm		
	UE_RSCP_LEV90: -26dBm ≤ RSCP < -25dBm		
	UE_RSCP_LEV91: -25dBm ≤ RSCP		

5.1.4 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot					
	after despreading. Only the non	after despreading. Only the non-orthogonal part of the interference is included in the				
	measurement. The reference po	oint for the ISCP is	s the antenna connector at the UE.			
Applicable for	connected mode (intra-frequence	connected mode (intra-frequency)				
Range/mapping	Timeslot ISCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.					
	Timeslot ISCP shall be reported	Timeslot ISCP shall be reported in the unit UE_TS_ISCP_LEV where:				
	UE_TS_ISCP_LEV_00:		Timeslot_ISCP < -115dBm			
	UE_TS_ISCP_LEV_01: -11	5dBm ≤	Timeslot_ISCP < -114dBm			
	UE_TS_ISCP_LEV_02: -11	4dBm ≤	Timeslot_ISCP < -113dBm			
	UE_TS_ISCP_LEV_89: -27	′ dBm ≤	Timeslot_ISCP < -26dBm			
	UE_TS_ISCP_LEV_90: -26	3dBm ≤	Timeslot_ISCP < -25dBm			
	UE_TS_ISCP_LEV_91: -25	5dBm ≤	Timeslot_ISCP			

5.1.5 UTRA carrier RSSI

	Definition	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a UTRAN DL carrier. The reference point for the RSSI is the antenna connector at the UE.			
	Applicable for	idle mode, connected mode (intra- & inter-frequency)			
	Range/mapping	UTRA carrier RSSI is given with a	a resolution	of 1 d	Bm with the range [-94,, -32]
•		dBm.			
		UTRA carrier RSSI shall be repor	ted in the u	ınit UT	RA carrier RSSI LEV where:
		UTRA_carrier_RSSI_LEV_00:			UTRA_carrier_RSSI < -94dBm
		UTRA_carrier_RSSI_LEV_01:	-94dBm	\leq	UTRA_carrier_RSSI < -93dBm
		UTRA_carrier_RSSI_LEV_02:	-93dBm	≤	UTRA_carrier_RSSI < -92dBm
		UTRA_carrier_RSSI_LEV_61:	-34dBm	\leq	UTRA_carrier_RSSI < -33dBm
		UTRA_carrier_RSSI_LEV_62:	-33dBm	\leq	UTRA_carrier_RSSI < -32dBm
		UTRA_carrier_RSSI_LEV_63:	-32dBm	≤	UTRA_carrier_RSSI

5.1.6 GSM carrier RSSI

	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a GSM BCCH carrier. The reference point for the RSSI is the antenna connector at the UE.
Applicable for	idle mode, connected mode (inter-frequency)
Range/mapping	According to the definition of RXLEV in GSM 05.08.

5.1.7 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of a DPCH or PDSCH divided by ISCP of the			
	same timeslot. The reference point for the SIR is the antenna connector of the UE.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB.			
	SIR shall be reported in the unit UE SIR where:			
	<u>UE_SIR_00:</u> SIR < -11.0dB			
	<u>UE</u> SIR_01: -11.0dB ≤ SIR < -10.5dB			
	$\underline{UE}_{SIR} = 02: -10.5 dB \leq SIR < -10.0 dB$			
	<u>UE_</u> SIR_61: 19.0dB ≤ SIR < 19.5dB			
	$\overline{\text{UE}}$ SIR_62: 19.5dB \leq SIR < 20.0dB			
	UE_SIR_63: 20.0dB ≤ SIR			

5.1.8 CPICH Ec/No

Definition	The received energy per chip divided by the power density in the band. The Ec/No is identical to			
	RSCP/RSSI. The reference point for Ec/No is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (inter-frequency)			
Range/mapping	CPICH Ec/No is given with a resolution of 1 dB with the range [-24,, 0] dB.			
	CPICH Ec/No shall be reported in the unit CPICH Ec/No where:			
	CPICH_Ec/No_00: CPICH_Ec/No < -24dB			
	CPICH_Ec/No_01: -24dB ≤ CPICH_Ec/No < -23dB			
	CPICH_Ec/No_02: -23dB ≤ CPICH_Ec/No < -22dB			
	CPICH_Ec/No_23: -2dB ≤ CPICH_Ec/No < -1dB			
	CPICH_Ec/No_24: -1dB ≤ CPICH_Ec/No < 0dB			
	CPICH_Ec/No_25: 0dB ≤ CPICH_ Ec/No			

5.1.9 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel				
	decoding of the data.				
Applicable for	connected mode (intra-frequency)				
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range				
	[10^-4.03 1] including a separate case Physical channel BER=0.				
	Physical channel BER shall be reported in the unit PhCH_BER_LOGdB, w	here:			
	PhCH_BER_LOGeB_00: BER = 0				
	PhCH_BER_LOGdB_01: -∞ < Log10(Physical channel BER) <	-4.030			
	PhCH_BER_LOGdB_02: -4.030 ≤ Log10(Physical channel BER) <	-3.965			
	PhCH_BER_LOGdB_03: -3.965 ≤ Log10(Physical channel BER) <	-3.900			
	 PhCH_ BER_LOGdB_61: -0.195 ≤ Log10(Physical channel BER) <	-0.130			
	PhCH_BER_LOGdB_62: -0.130 ≤ Log10(Physical channel BER) <	-0.065			
	PhCH_BER_LOGdB_63: -0.065 ≤ Log10(Physical channel BER) ≤	0.000			

5.1.10 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be based				
		on evaluating the CRC on each transport block.			
Applicable for	connected mode (intra-fre	connected mode (intra-frequency)			
Range/mapping	Transport channel BLER i	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range			
	[10^-4.03 1] including a	separate cas	se Transport channel BLER=0.		
	Transport channel BLER s	shall be repor	ted in the unit TCH_ BLER <u>LOGdB</u> , where:		
	TCH_BLER_LOGdB_00:	BLER = 0			
	TCH_BLER_LOGdB_01:	-∞	< Log10(Transport channel BLER) <	-4.030	
	TCH_BLER_LOGdB_02:	-4.030	≤ Log10(Transport channel BLER) <	-3.965	
	TCH_BLER_LOGdB_03:	-3.965	≤ Log10(Transport channel BLER) <	-3.900	
	TCH_BLER_LOGdB_61:	-0.195	≤ Log10(Transport channel BLER) <	-0.130	
	TCH_BLER_LOGdB_62:	-0.130	≤ Log10(Transport channel BLER) <	-0.065	
	TCH_BLER_LOGdB_63:	-0.065	≤ Log10(Transport channel BLER) ≤	0.000	

5.1.11 UE transmitted power

Definition	The total UE transmitted power on one carrier measured in a timeslot. The reference point for the			
	UE transmitted power shall be the UE antenna connector.			
Applicable for	connected mode (intra-frequency).			
Range/mapping	UE transmitted power is given with a resolution of 1dBm with the range [-50,, 33] dBm. UE transmitted power shall be reported in the unit UE_TX_POWER, where:			
	UE_TX_POWER_000 to UE_TX_POWER_020: reserved UE_TX_POWER_021: -50dBm ≤ UE_transmitted_power < -49dBm UE_TX_POWER_022: -49dBm ≤ UE_transmitted_power < -48dBm UE_TX_POWER_023: -48dBm ≤ UE_transmitted_power < -47dBm			
	UE_TX_POWER_102: 31dBm ≤ UE_transmitted_power < 32dBm UE_TX_POWER_103: 32dBm ≤ UE_transmitted_power < 33dBm UE_TX_POWER_104: 33dBm ≤ UE_transmitted_power < 34dBm			

5.1.12 SFN-SFN observed time difference

Definition	SFN-SFN observed time difference is the time difference of the reception times of frames from					
	two cells (serving and target) measured in the UE and expressed in chips. It is distinguished in					
	two types: Type 2 applies if the serving and the target cell have the same frame timing and SFN					
	numbering. Type 1 applies in all other cases.					
	Type 1:					
	SFN-SFN observed time difference = OFF×38400+ T _m in chips, where:					
	T _m = T _{RxSFNk} - T _{RxSFNi} , given in chip units with the range [0, 1,, 38399] chips					
	T _{RXSFNi} : time of start of the received frame SFN _i of the serving TDD cell i.					
	T_{RxSFNk} : time of start of the received frame SFN_k of the target UTRA cell k after the time					
	instant T _{RxSFNi} in the UE. If the next frame of the target UTRA cell is received					
	exactly at T_{RxSFNk} then $T_{RxSFNk} = T_{RxSFNk}$ (which leads to $T_m = 0$).					
	OFF=(SFN _k - SFN _i) mod 256, given in number of frames with the range [0, 1,, 255] frames					
	SFNi: system frame number for downlink frame from serving TDD cell i in the UE at the					
	time T _{RxSFNi} .					
	SFNk: system frame number for downlink frame from target UTRA cell k received in the					
	UE at the time T _{RXSFNk} .(for FDD: the P-CCPCH frame)					
	Type 2:					
	SFN-SFN observed time difference = T_{RxTSi} , T_{RxTSi} , in chips, where					
	T _{RxTSi} : time of start of a timeslot received of the serving TDD cell i.					
	T _{RxTSk} : time of start of a timeslot received from the target UTRA cell k that is closest in					
	time to the start of the timeslot of the serving TDD cell i.					
Applicable for	idle mode, connected mode (intra-frequency)					
Range/mapping	Type 1:					
	SFN-SFN observed time difference is given with a resolution of 1 chip with the range					
	[0; 9830400) chips (24 bits).					
	SFN-SFN observed time difference shall be reported in the unit T1_SFN-SFN_TIME, where					
	T1_SFN-SFN_TIME_N:					
	N* 1 chip ≤ SFN-SFN observed time difference < (N+1)* 1 chip					
	With N= 0, 1, 2,, 9830399					
	Type 2:					
	SFN-SFN observed time difference is given with a resolution of 0.25 chip with the range					
	(-1280; 1280] chips (14 bits).					
	SFN-SFN observed time difference shall be reported in the unit T2_SFN-SFN_TIME, where					
	T2_SFN-SFN_TIME_N:					
	N* 0.25 chip −1280 chips < SFN-SFN observed time difference ≤ (N+1)* 0.25 chip −1280 chips					
	With N= 0, 1, 2,, 10239					

5.1.13 Observed time difference to GSM cell

Definition	Observed time difference to GSM cell is the time difference T _m in ms, where			
	$T_{m} = T_{RxGSMk} - T_{RxSFN0i}$			
	T _{RxSFN0i} : time of start of the received frame SFN=0 of the serving TDD cell i			
	T _{RXGSMk} : time of start of the received 51-GSM-multiframe of the considered target GSM			
	beacon frequency k which is following next after the start of frame SFN=0 of the			
	serving TDD cell.			
Applicable for	Idle mode, connected mode (inter-frequency)			
Range/mapping	Observed time difference to GSM cell is given with a resolution of 3060ms/(13*4096) (12 bit) with			
	the range [0, 3060) ms.			
	Observed time difference to GSM cell shall be reported in the unit GSM_TIME, where			
	GSM_TIME_N:			
	N* 3060ms/(13*4096) ≤ Observed time difference to GSM cell < (N+1)* 3060ms/(13*4096)			
	With N= 0, 1, 2,, 4095			

5.2 UTRAN measurement abilities

NOTE 1: If the UTRAN supports multiple frequency bands then the measurements apply for each frequency band individually.

NOTE 2: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.

5.2.1 RSCP

Definition	Received Signal Code Power, the received power on one DPCH, PRACH or PUSCH code after despreading. The reference point for the RSCP shall be the antenna connector.		
Range/mapping	RSCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm.		
	RSCP shall be reported in the unit UTRAN_RSCP_LEV where:		
	UTRAN_RSCP_LEV_00: RSCP < -120.0dBm		
	UTRAN_RSCP_LEV_01: -120.0dBm ≤ RSCP < -119.5 dBm		
	UTRAN_RSCP_LEV_02: -119.5dBm ≤ RSCP < -119.0 dBm		
	$\frac{UTRAN_{RSCP}}{LEV_{79}}: -81.0dBm \leq RSCP < -80.5dBm$		
	$\frac{\text{UTRAN}_{RSCP}}{\text{RSCP}} = -80.5 \text{dBm} \leq RSCP < -80.0 \text{dBm}$		
	UTRAN_RSCP_LEV_81: -80.0dBm ≤ RSCP		

5.2.2 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot after despreading. Only the non-orthogonal part of the interference is included in the				
	measurement. The reference point for the ISCP shall be the antenna connector.				
Range/mapping	Timeslot ISCP is given with a r	resolution of 0.	5 dB <mark>m</mark> with	the range [-120,, -80] dBm.	
	Timeslot ISCP shall be reporte	ed in the unit U	TRAN_TS_	_ISCP_LEV where:	
	UTRAN_TS_ISCP_LEV_00:			Timeslot_ISCP < -120.0dBm	
	UTRAN_TS_ISCP_LEV_01:	-120.0dBm	\leq	Timeslot_ISCP < -119.5dBm	
	UTRAN_TS_ISCP_LEV_02:	-119.5dBm	≤	Timeslot_ISCP < -119.0dBm	
	•••				
	UTRAN_TS_ISCP_LEV_79:	-81.0dBm	\leq	Timeslot_ISCP < -80.5dBm	
	UTRAN_TS_ISCP_LEV_80:	-80.5dBm	≤	Timeslot_ISCP < -80.0dBm	
	UTRAN_TS_ISCP_LEV_81:	-80.0dBm	≤	Timeslot_ISCP	

5.2.3 RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the UTRAN UL <u>carrier</u> channel bandwidth in a specified timeslot. The reference point for the RSSI shall be the antenna connector.		
Range/mapping	RSSI is given with a resolution of 0.5dBm with the range [-105,, -74] dBm.		
	RSSI shall be reported in the unit RSSI_LEV, where:		
	RSSI_LEV_00: RSSI < -105.0dBm		
	$RSSI_LEV_01$: $-105.0dBm \le RSSI < -104.5dBm$		
	$RSSI_LEV_02: -104.5dBm \le RSSI < -104.0dBm$		
	$ RSSI_LEV_61: -75.0dBm \le RSSI < -74.5dBm$		
	$ RSS LEV_{62}$: $-74.5dBm \le RSS < -74.0dBm$		
	RSSI_LEV_63: -74.0dBm ≤ RSSI		

5.2.4 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of the DPCH or PUSCH divided by ISCP of				
	the same timeslot. The reference point for the SIR shall be the antenna connector.				
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB.				
	SIR shall be reported in the unit <u>UTRAN_SIR</u> where:				
	UTRAN_SIR_00: SIR < -11.0dB				
	$ \underline{UTRAN}_{SIR} SIR_{O1}: -11.0 dB \leq SIR < -10.5 dB $				
	<u>UTRAN_</u> SIR_02: -10.5dB ≤ SIR < -10.0dB				
	$ \underline{UTRAN}_{SIR} SIR_{62} : 19.5dB \leq SIR < 20.0dB $				
	<u>UTRAN_</u> SIR_63: 20.0dB ≤ SIR				

5.2.5 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) of a DPCH or PUSCH before channel decoding of the data.			
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range [10^-4.03 1] including a separate case Physical channel BER=0. Physical channel BER shall be reported in the unit PhCH_BER_LOGdB, where: PhCH_BER_LOGdB_00: BER = 0			
	PhCH_BER_LOGdB_01: $-\infty$ < Log10(Physical channel BER) < -4.030 PhCH_BER_LOGdB_02: $-4.030 \le \text{Log10}(\text{Physical channel BER}) < -3.965$ PhCH_BER_LOGdB_03: $-3.965 \le \text{Log10}(\text{Physical channel BER}) < -3.900$			
	PhCH_BER_LOGdB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130 PhCH_BER_LOGdB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065 PhCH_BER_LOGdB_63: -0.065 ≤ Log10(Physical channel BER) ≤ 0.000			

5.2.6 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER) of a DCH or USCH. The BLER				
	estimation shall be based	estimation shall be based on evaluating the CRC on each transport block.			
Range/mapping	Transport channel BLER is	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range			
	[10^-4.03 1] including a	separate cas	se Transport channel BLER=0.		
	Transport channel BLER s	hall be repor	ted in the unit TCH_ BLER_ <u>LOG</u> dB, where:		
	TCH_BLER_LOGdB_00:	BLER = 0			
	TCH_BLER_LOGdB_01:	-∞	< Log10(Transport channel BLER) <	-4.030	
	TCH_BLER_LOGdB_02:	-4.030	≤ Log10(Transport channel BLER) <	-3.965	
	TCH_BLER_LOGdB_03:	-3.965	≤ Log10(Transport channel BLER) <	-3.900	
	TCH_BLER_LOGdB_61:	-0.195	≤ Log10(Transport channel BLER) <	-0.130	
	TCH_BLER_LOGdB_62:	-0.130	≤ Log10(Transport channel BLER) <	-0.065	
	TCH_BLER_LOGdB_63:	-0.065	≤ Log10(Transport channel BLER) ≤	0.000	

5.2.7 Transmitted carrier power

Definition	Transmitted carrier power, is the total transmitted power on one DL carrier from one UTRAN access point measured in a timeslot. The reference point for the UTRAN total transmitted power measurement shall be the antenna connector.		
Range/mapping	Transmitted carrier power is given with a resolution of 0.5dBm with the range [0,, 50] dBm. Transmitted carrier power shall be reported in the unit UTRAN_TX_POWER, where: UTRAN_TX_POWER_000 to UTRAN_TX_POWER_015: reserved UTRAN_TX_POWER_016: 0.0dBm ≤ Transmitted carrier power < 0.5dBm UTRAN_TX_POWER_017: 0.5dBm ≤ Transmitted carrier power < 1.0dBm UTRAN_TX_POWER_018: 1.0dBm ≤ Transmitted carrier power < 1.5dBm		
	UTRAN_TX_POWER_114: 49.0dBm ≤ Transmitted carrier power < 49.5dBm UTRAN_TX_POWER_115: 49.5dBm ≤ Transmitted carrier power < 50.0dBm UTRAN_TX_POWER_116: 50.0dBm ≤ Transmitted carrier power < 50.5dBm		

5.2.8 Transmitted code power

Definition	Transmitted Code Power, is the transmitted power on one carrier and one channelisation code in			
	one timeslot. The reference point for the transmitted code power measurement shall be the			
	antenna connector at the UTRAN access point cabinet.			
Range/mapping	Transmitted code power is given with a resolution of 0.5dBm with the range [-10,, 46] dBm.			
	Transmitted code power shall be reported in the unit UTRAN_TX_CODE_POWER, where:			
	UTRAN_TX_CODE_POWER_000 to UTRAN_TX_POWER_009: reserved			
	UTRAN_TX_ CODE_POWER_010: -10.0dBm ≤ CODE_POWER < -9.5dBm			
	UTRAN_TX_ CODE_POWER_011: -9.5dBm ≤ CODE_POWER < -8.5dBm			
	UTRAN_TX_ CODE_POWER_012: -8.5dBm ≤ CODE_POWER < -7.5dBm			
	UTRAN_TX_ CODE_POWER_120: 45.0dBm ≤ CODE_POWER < 45.5dBm			
	UTRAN_TX_ CODE_POWER_121: 45.5dBm ≤ CODE_POWER < 46.0dBm			
	UTRAN TX_CODE_POWER_122: 46.0dBm ≤ CODE_POWER < 46.5dBm			

5.2.9 RX Timing Deviation

Definition	'RX Timing Deviation' is the time difference TRXdev = TTS - TRXpath in chips, with		
	TRXpath: time of the reception in the Node B of the first significant uplink path to be used		
	in the detection process		
	TTS: time of the beginning of the respective slot according to the Node B internal		
	timing		
Range/mapping	RX Timing Deviation is given with a resolution of 0.25 chip with the range [0; 1024) chips (12 bit).		
	RX Timing Deviation cell shall be reported in the unit RX_TIME_DEV, where		
	RX_TIME_DEV: N* 0.25 chips ≤ RX Timing Deviation < (N+1)* 0.25 chips		
	With N= 0, 1, 2,, 4095		

NOTE: This measurement can be used for timing advance calculation or location services.