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Introduction
The Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case on CSI feedback enhancement with sub-use cases to address overhead reduction, improve CSI accuracy, and to predict CSI.  The text of the study item objectives is included below.
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) [bookmark: _Hlk98704991]Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we discuss the CSI sub-use cases, focusing on the evaluation methodology and providing initial simulation results for these use cases.  The section on CSI feedback with autoencoders primarily addresses the overhead reduction sub-use case, but also applies to improved accuracy.  The section on CSI prediction addresses not only improved performance at higher UE speeds and other advanced use cases, but also can be seen as a way to reduce overhead through fewer measurements and reporting occasions.
[bookmark: _Hlk510705081]Discussion
CSI feedback with Autoencoders 
Evaluation Methodology
Autoencoders, as described in [5], are a natural structure to use for an ML-based approach to CSI feedback due to the presence of a bottleneck where information at the input is compressed before being recovered at the output.  In this section, we discuss the evaluation methodology for ML-based approaches to CSI feedback primarily considering the use of autoencoders.  The evaluation methodology includes simulation assumptions, baseline scenarios for performance comparisons, and key performance indicators (KPIs).
Simulation Assumptions 
For evaluation of ML schemes for CSI feedback, there are two categories of assumptions which apply:
· Assumptions applicable to the training and structure of the ML model
· Assumptions applicable to the performance evaluation of the ML scheme
For the second item, the system level simulation (SLS) assumptions for CSI feedback evaluation can begin with the assumptions used for past CSI development.  Appropriate assumptions were made for the Rel-16 CSI enhancements and were agreed in RAN1#94bis [2].  While the Rel-17 CSI enhancement assumptions in [3] are more recent, they focused on assumptions for evaluating CSI for FDD with partial reciprocity.  The Rel-16 assumptions are more appropriate for this case since partial reciprocity is not a focus.  The Rel-16 assumptions are repeated below in Table 1 for convenience.
Proposal 1: For system level performance evaluation of ML algorithms for CSI feedback, adopt the SLS assumptions from Rel-16, as shown in Table 1, as the starting point.
Following the approach outlined in our companion contribution [4], companies should provide information about the training, structure, and usage of the ML model.  Aspects to be provided for ML algorithms for CSI feedback are shown in Table 2, with examples of the information to be provided.  The purpose for providing this detailed information about the ML algorithm is to not only understand how the ML algorithm is used in the system, but also to be able to reproduce and compare performance and complexity of different ML approaches as well as to compare to baseline non-ML methods.
Proposal 2: Companies to specify their CSI feedback training parameters, ML algorithm configuration, associated pre-processing, output processing, and control mechanisms.


[bookmark: _Ref101383403]Table 1: System level simulation assumptions
	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM

	Multiple access 
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline. 
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, 4GHz.

	Inter-BS distance
	200m 

	Channel model
	According to TR 38.901 

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
· 32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 
· 16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for rank > 2
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2) Type II overhead reduction
Other configuration is not precluded.

	BS Tx power 
	41 dBm

	BS antenna height 
	25m 

	UE antenna height & gain
	Follow TR36.873 

	UE receiver noise figure
	9dB

	Modulation 
	Up to 256QAM 

	Coding on PDSCH 
	LDPC
Max code-block size=8448bit 

	Numerology
	Slot/non-slot 
	14 OFDM symbol slot

	
	SCS 
	15kHz 

	Number of RBs
	52 for 15 kHz SCS

	Simulation bandwidth 
	10 MHz for 15kHz as a baseline, and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered.

	Frame structure 
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU/MU-MIMO with rank adaptation is a baseline for overhead reduction.
For low RU, SU-MIMO or SU/MU-MIMO with rank adaptation are assumed for higher rank extension.
For medium/high RU, SU/MU-MIMO with rank adaptation is assumed for higher rank extension.


	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback 
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms, 
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead 
	Companies shall provide the downlink overhead assumption

	Traffic model
	FTP model 1 with packet size 0.5 Mbytes
Other FTP model is not precluded.

	Traffic load (Resource utilization)
	· 50/70 % for CSI overhead reduction
· 20/50 % for high rank extension
Companies are encouraged to report the MU-MIMO utilization.

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h) 

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation
	Realistic

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics. 
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback) for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.



[bookmark: _Ref101907191]Table 2: AI/ML specific parameters for CSI feedback
	Parameter
	Example values

	Training data
	Actual and estimated channel response, actual and estimated channel eigenvectors
Source and size of training dataset (simulated channels, field data)

	ML algorithm
	Model topology, such as autoencoder, variational autoencoder
Encoder/decoder layers
Activation function, such as LeakyReLu
Quantization method and feedback overhead
Training and validation procedures, including epochs, batch size, and dataset split between training and validation. Loss function used during training (MSE, cosine similarity)

	Required pre-processing
	Estimate downlink channel, estimate strongest eigenvectors of the transmit covariance matrix

	Output data-processing
	Calculation of channel eigenvectors from an uncompressed channel, calculation of precoding weights from channel eigenvectors

	Control mechanisms
	Communication of encoder and decoder configurations and where control of the configuration is originated (e.g., at the UE or the gNB)



KPIs
The use of ML in CSI acquisition should, of course, provide some gain over existing methods. The baseline for performance comparisons should be the best performing conventional CSI acquisition method in the NR standard matching the style of acquisition used with the ML method.  For example, when acquisition is based on non-beamformed CSI-RS measurements, the Rel-16 eMIMO Type II codebook should be used as the performance baseline.  This assumes that FDD partial reciprocity is not considered as part of the study.  The performance indicators used for the comparison are the throughput and overhead, where an ML method should exhibit performance gain compared to the throughput/overhead tradeoff performance of the Rel-16 Type II codebook.  This further supports the use of the Rel-16 SLS assumptions in the evaluation of ML algorithms, as discussed in the previous section.  Additional factors to consider are any ML-specific measurement processing required to prepare for inference, output data processing, and the relative computational complexity of conventional and various ML algorithms. 
Proposal 3: The baseline for performance comparisons of ML-based CSI acquisition should be the Rel-16 eMIMO Type II codebook. Make the comparisons against conventional methods and among ML alternatives based on the throughput and overhead tradeoffs in the Rel-16 eMIMO Type II codebook.
While throughput and overhead are the system-level standards for comparison, ML feedback methods can also be compared using metrics which gauge the ability of the algorithm to reproduce the desired information at the gNB.  For CSI feedback compressing the channel matrix, this could include the ability to reproduce the channel estimated at the UE at the base station.  A common metric to measure this similarity is the normalized mean-square error (NMSE).  While the NMSE may be appropriate for assessing the performance of channel feedback, it is less appropriate for assessing the performance of eigenvector feedback where the primary concern is with the direction of the eigenvectors.  A more appropriate measure in this case is the cosine similarity which indicates how well the directions of the desired and estimated vectors match.  Cosine similarity may also be used with channel feedback by either tracking the cosine similarity of the actual channel and the channel recovered from feedback or by tracking the eigenvectors of the actual and recovered covariance matrix. Since the channel eigenvectors are the primary source used for calculating transmit coefficients, the cosine similarity of the eigenvectors is an appropriate KPI.  Cosine similarity can also be measure on conventional feedback methods under the assumption that the feedback is approximating the eigenvectors of the channel.
Proposal 4: Consider the cosine similarity between actual and recovered eigenvectors as the KPI for assessing the performance of ML-based CSI feedback.
The proposed KPI’s are summarized in Table 3.
[bookmark: _Ref102030902]Table 3: Proposed KPI’s for CSI feedback
	KPI

	System-level throughput (mean and cell-edge)

	Feedback overhead

	Cosine similarity



Simulation Results 
In this section, we describe an initial set of simulation results for CSI feedback with autoencoders. The suitability and use of autoencoders for CSI feedback is described in our companion contribution [5]. One of the key features is the presence of a bottleneck in the structure, which compresses the input and provides a place for feedback to occur from the UE to the gNB. Here we explore feeding back a compressed version of the channel matrix using an autoencoder structure. The channel matrix is estimated in each PRB at the UE and fed into the autoencoder and recovered at the gNB at the output of the autoencoder. The training dataset is obtained via system simulation using a system which follows the Rel-16 SLS assumptions with key parameters show in Table 4. The training dataset contains the actual channel and the estimated channel, where the estimated channel is obtained using the SLS channel estimation error model. A single channel data point is obtained for each of 21k UE’s.
[bookmark: _Ref101986458]Table 4: System configuration for training/validation dataset
	Parameter
	Value

	Scenario
	Dense Urban, 7 macrocell sites, 3 sectors per site

	Carrier Frequency
	2GHz

	Inter-BS distance
	200m

	Pathloss model
	UMa (with wraparound)

	gNB antenna configuration
	32 ports: (M,N,P,Mg,Ng,N1,N2) = (8,8,2,1,1,2,8), (dH,dV) = ( 0.5, 0.8)λ

	UE antenna configuration
	4 ports: (M,N,P,Mg,Ng,N1,N2) = (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	41 dBm

	BS antenna height
	25m

	Simulation bandwidth
	10MHz

	UE distribution
	80% indoor, 20% outdoor



The ML model is a CSINET-like model [6] with 9 layers in the encoder including convolutional layers, normalization layers, and dense layers. The decoder has 12 layers including convolutional layers, normalization layers, Residual Network structure, and dense layers. The input and output of the entire autoencoder model are a set of real value channel matrices with a size ), where  is the number of samples,  is the number of PRBs (52),  is the number of transmit antennas at the gNB (32), and  is the number of receive antennas at the UE (4). The factor of 2 accounts for the real and imaginary parts of the channel matrix. The set of parameters of the autoencoder-like model is updated by the ADAM algorithm, and the loss function is the mean squared error (MSE) between the input and output channel matrices. The current data set contains 21, 000 samples and is divided into training, validation, and testing sets by a ratio of 8:1:1, respectively. The epoch number is 1000 and the batch size is 200 samples. An exponential-decay learn rate starting from 0.01 is used while training the model. The autoencoder is trained for a range of compression ratios, where the compression ratio is defined as , where  is the number of real-valued channel coefficients and  is the number of real-valued feedback coefficients.  At this time, quantization has not been included in the model, so the compression ratio does not directly reflect bit counts.
[image: ]
[bookmark: _Ref101989556][bookmark: _Ref101989517]Figure 1. Average beam (cosine) similarity between the strongest eigenvectors (beamforming vector) of the actual and reconstructed channels.
The performance of the autoencoders is assessed using the average beam (cosine) similarity metric, which is calculated as:

where  is the reconstructed eigenvector of the nth subchannel (recovered from the output of the autoencoder),  is the actual channel eigenvector of the nth subchannel, and  is the total number of subchannels. Only the eigenvectors of the largest eigenvalues are considered. The results of testing the trained autoencoders are shown in Figure 1. Here, we see that the cosine similarity remains above 83% for compression ratios as low as 1/26.  In addition to the case where 80% of the users are indoors, the autoencoder has been trained on similar datasets with different mixes of indoor and outdoor UE’s for a compression ratio of 1/26. All five of the models were then tested on three common data sets – indoor-only UE’s, outdoor-only UE’s, and 50% indoor/50% outdoor UE’s. The average cosine similarity for these cases is summarized in Table 5, where the indoor/outdoor UE percentages are given by [Indoor percentage, outdoor percentage].
[bookmark: _Ref101990149]Table 5: Average cosine similarity based on different trainings sets, with a compression ratio of 1/26.
UMa [Indoor user percentage, outdoor user percentage]
	
	[100, 0]
	[80, 20]
	[50, 50]
	[20, 80]
	[0, 100]

	Indoor test case [100, 0]
	0.82
	0.74
	0.70
	0.65
	0.74

	Outdoor test case [0, 100]
	0.81
	0.85
	0.83
	0.82
	0.86

	Mixed test case
[50, 50]
	0.77
	0.79
	0.85
	0.74
	0.80



Observation 1: A significant degree of channel compression can be obtained using an autoencoder for CSI feedback.
The above approach compresses the channel matrix, providing the gNB the most flexibility in determining the transmit method and coefficients for the UE. However, it is also possible to compress the channel eigenvectors which is more directly analogous to the conventional codebook-based CSI feedback methods. A description of the eigenvector compression approach can be found in our companion contribution [5].
[bookmark: _Hlk102038574]The eigenvector based CSI feedback compression methods start with a set of set of complex valued channel matrices with size ), where  is the number of samples,  is the number of PRBs,  is the number of transmit antennas at the gNB, and  is the number of receive antennas at the UE. Then the PRB’s are grouped into a smaller number of  subbands, for example, , while , which implies that there will be  adjacent PRB’s per subband. Then for each subband we construct the covariance matrix snapshots , from averaging out the product of , where  and , for all the PRBs over the subband of interest; that is, 

Then we obtain the eigenvalue-eigenvector decomposition of the  matrix for each subband  such that 

and for the rank 1 case we pick the eigenvector that corresponds to the maximum eigenvalue for each subband and denote this eigenvector by . For higher ranks we can pick the largest two for rank two, or the largest three for rank 3, or pick the largest eigenvectors up to rank . For the sake of illustration, we continue with the rank-1 case; hence, we create the joint eigenvector matrix  corresponding to the set of eigenvectors for all of the subbands, i.e.,

The joint eigenvector matrix  is then fed to the autoencoder. In the literature, there are 3 known autoencoders that can be used to work with the joint eigenvector matrix in [6], [7], and [8]. We note that the autoencoder of [6], which is called Csi-Net, is one of the first major contributions that was proposed, but the dimensions of the input and intermediate blocks of the Csi-Net must be adapted to handle the size of the joint eigenvector matrix . The autoencoders proposed in [7] and [8] are directly designed to work with the joint eigenvector matrix and they are called EVCsiNet and bi-ImCsiNet, respectively.
Proposal 5: Study the performance of both channel and eigenvector compression schemes.
CSI prediction 
Evaluation Methodology
CSI prediction can be used to enable advance use cases which are sensitive to CSI aging.  These use cases can include improving performance at higher UE speeds, MU-MIMO precoding, or coherent JT-CoMP.  Prediction can also be used to reduce overhead in both feedback and reference signal transmissions by reducing the number of occasions for both.  Thus, the main goal of CSI prediction is to achieve a high prediction horizon (predicting as far into the future as possible) with as low as possible prediction error. These concepts are discussed in more detail in [5].
In this section, we discuss the evaluation methodology for CSI prediction, including simulation assumptions, baseline scenarios for performance comparisons, and key performance indicators (KPIs).
Simulation Assumptions 
As in the case of CSI feedback, we address both assumptions pertaining to the structure and training of the ML model as well as assumptions pertaining to the system level performance of the CSI prediction scheme.  For CSI prediction, companies should provide similar information about the training, structure, and usage of the ML model.  Parameters to be provided are shown in Table 6, where the example values have been altered to apply to CSI prediction.  Since prediction involves a channel which varies in time, one of the key differences compared to CSI feedback is that channels for training must be known at different physical locations along a spatial track so that predictions can be made from one location to another.  In addition, the model structures used for CSI prediction are likely to be significantly different from those used for CSI feedback.
Proposal 6: Companies to specify their CSI prediction training parameters, ML algorithm configuration, associated pre-processing, output processing, and control mechanisms.
[bookmark: _Ref102068686]Table 6: AI/ML specific parameters for CSI prediction
	Parameter
	Example values

	Training data
	Actual channel response or channel eigenvectors at different physical locations along a predefined spatial track
Source and size of training dataset (simulated channels, field data)

	ML algorithm
	Model topology, such as RNN, LSTM, etc.
Prediction at UE or gNB
Model structure: number of layers, size of layers, etc.
Activation function, such as LeakyReLu
Quantization method and feedback overhead
Training and validation procedures, including epochs, batch size, and dataset split between training and validation. Loss function used during training (MSE, MAE, cosine similarity)

	Required pre-processing
	Number of pre-measured channels (observation time), feedback of CSI (e.g., when prediction is performed at the gNB)

	Output data-processing
	Calculation of channel eigenvectors from a predicted channel, calculation of precoding weights from channel eigenvectors, transformation of a prediction into a feedback quantity

	Control mechanisms
	Communication of the ML model and where control of the configuration is originated (e.g., at the UE or the gNB)



Once an ML model has been developed to predict CSI, its performance must be evaluated in a system-level setting and compared against existing methods for obtaining CSI.  Since NR currently does not currently define CSI prediction, there is no corresponding legacy mode for direct comparison.  In order to benchmark CSI prediction against the existing standard, it would be appropriate to compare performance at the system level to CSI feedback using the Rel-16 eType II codebook.  For example, the period of the Rel-16 feedback can be set to coincide with the effective feedback period of the CSI prediction, allowing a comparison of both throughput and overhead performance.  In addition, Kalman-based filtering can be used as a performance reference since it can be used as a proprietary implementation for CSI prediction within the existing standard or can be considered as an alternative to ML-based prediction.  As a result, the Rel-16 SLS assumptions for CSI feedback are an appropriate starting point for SLS assumptions for CSI prediction.  However, some alterations in these assumptions are necessary to assess the performance of CSI prediction.  For example, in order to assess the effect of CSI prediction on higher speed UEs, the mix of outdoor and indoor UEs may need to shift to a higher percentage of outdoor UEs.  Also, since users will be in motion, the channel will need to vary with position.  We propose to use the spatial consistency procedure A defined in TR 38.901.
Proposal 7: For system level performance evaluation of ML algorithms for CSI prediction, adopt the SLS assumptions from Rel-16, as shown in Table 1, as the starting point. Adopt changes to the assumptions (such as a higher percentage of outdoor UE’s and the use of spatial consistency procedure A) as required for CSI prediction.
KPIs
As discussed in the previous section, it is important to compare the system level performance of CSI prediction to a baseline scenario.  The Rel-16 eMIMO Type II codebook is a legacy mode which can be used as a baseline for prediction performance.  The performance of the CSI prediction model can be compared against the Rel-16 codebook for both throughput and overhead.  The overhead, in this case, should include both the reference signal overhead as well as the feedback overhead, since one of the desired effects of CSI prediction is to reduce not only the number of CSI feedback occasions, but also the number of CSI-RS transmissions required to meet a certain performance level.  Kalman filtering can also be considered as a performance baseline due to its optimal qualities for prediction.
Proposal 8: Adopt the Rel-16 eType II codebook as the baseline for performance comparisons of ML-based CSI prediction, considering both throughput and overhead, where the overhead includes both reference signal and feedback overhead.  Kalman filtering can also be considered as a performance baseline.
As already indicated, both throughput and overhead are KPI’s for system level performance of CSI prediction. Another important KPI for CSI prediction is the prediction horizon, which is typically a measure of the normalized mean square error (NMSE) of the predicted CSI over time and/or spatial movement of the UE relative to one RF wavelength. A typical target value might be –20 dB at 10 ms, which would support high end precoding schemes at least for nomadic users, or users with moderate mobility of less than 15 km/h.
Another relevant KPI for channel prediction is the inference latency, as CSI information is outdated extremely fast. Obviously, the inference latency should be significantly smaller than the intended, or achievable prediction time. Therefore, ideal values would be in the range of one to less than 10 ms for the FR1 frequency range below 6 GHz. Channel prediction for the FR2 bands becomes even more challenging due to the shorter wavelength, but also less relevant due to lower number of multipath components per narrow beam.
A third relevant KPI is then the processing complexity, which is related to the latency and to the required CSI accuracy. Relative complexity of an ML-based predictor should be compared to conventional methods, such as legacy (Rel-16) codebook-based methods for obtaining CSI and methods such as Kalman filtering.
Another sub-use case specific KPI is the required observation time tobserve, which might range for different prediction methods from a few ms to 500 ms or even seconds. Note that methods which achieve a high prediction horizon with few channel observations reduce the overhead for CSI-RSs and are more practical than methods which require a channel observation over 500 ms.
Table 7: Proposed KPIs for CSI Prediction
	KPI
	Measured in
	Target Value

	System-level throughput (mean and cell-edge)
	Spectral efficiency (bits/sec/Hz)
	

	Feedback overhead
	Bits
	

	Reference signal overhead
	Transmissions per second
	

	Channel prediction horizon
	NMSE over the prediction time or, alternatively, cosine similarity in case of PMI prediction
	-20dB at 10ms

	Inference latency
	Time (ms) between CSI-RS transmission to inference of the predicted CSI
	< 1 to 10ms

	Processing complexity
	FLOPS, tic toc (MATLAB), memory size, number of NN weights, quantization of NN weights, …
	

	Observation time
	Minimum channel observation time needed, e.g., minimum number of CSI-RS measurements needed
	



Proposal 9: Adopt specific KPIs related to channel prediction such as throughput, overhead, channel prediction horizon, observation time, and inference latency.
Simulation Results
The most basic assumption for the channel prediction is to do it per beam pair, where the best beam pairs between UE and gNB are then inferred from the related beam management, which is not part of this sub-use case. To each relevant beam pair, the gNB allocates an AP and regularly transmits the AP-specific CSI-RS. Ideally, for optimum channel estimation and prediction performance, the gNB transmits the CSI-RS over the full RF bandwidth, i.e., over all PRBs. 
Obviously, this needs a sequence of consecutive CSI-RS signals tracked by the moving UE, which should follow some predefined spatial tracks.
The gNB transmit beams and the UE beams must be fixed over a certain time period, i.e., the observation time tobserve for estimating the radio channel evolution over at least two or fewer CSI-RS occasions plus the intended prediction time tpredict. 
The first simulation results are then on link level for the above-described best beam pairs(s), while for system level simulations it is proposed to generate from the link level results a corresponding CSI error model, which in this case depends then on the UE mobility as well as the related prediction time tpredict.
Some initial channel prediction methods have been implemented based on a single neural network as described above: a pure iterative PHY based model and a more advanced combined PHY/ML model. The ML parameters for these prediction methods are summarized in Table 8.
[bookmark: _Ref102084599]Table 8: CSI Prediction Parameters
	Parameter
	Value

	Training data
	Simulated channels using the MATLAB LTE Toolbox (Figure 2)
Field data from the Nokia campus in Munich (Figure 3) and the Nokia campus in Stuttgart (Figure 4)

	ML algorithm
	RNN / LSTM: 10 LSTM cells followed by one dense layer
Activation function: tanh
Training epochs: 25
Batch size: 1 sample
Loss function: MSE

	Input
	Estimated downlink channel H, k time instance



In Figure 2 we present the results for CSI prediction with LSTM and compare its performance with a Kalman filter which is the optimum theoretic solution for channel prediction. The channels are simulated using the MATLAB LTE Toolbox.  The R.13 channel configuration is assumed, with a single antenna at the gNB and UE, and channel model EVA7, maximum Doppler frequency of 7Hz. A total of 50 random seeds are used and 50 OFDM frames are collected per seed. The LSTM is trained to do a prediction of one time-step ahead after watching the last three time-steps. The Kalman filter uses an autoregressive model of order three and updates the state-space equations to predict. As can be observed in Figure 2, the LSTM has a better performance for the 5ms prediction (one time-step ahead). For the second time-step prediction, the LSTM has slightly worse performance than the Kalman filter. However, the LSTM was not trained for a two-step prediction. 
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[bookmark: _Ref102082761]Figure 2: Channel prediction with Kalman filter (blue) and LSTM (red) considering a SISO-OFDM channel with maximum Doppler frequency of 7Hz.
In the following, we provide two exemplary such simulation results for real-world radio channels, which have been measured i) in the Nokia campus in Munich in Figure 3 and ii) in the Nokia campus in Stuttgart (Figure 4) from the massive MIMO channel sounder. Both measurements include either a transmit and/or a receive beamformer to form a single beam pair. We achieve, as intended, for nomadic users channel prediction horizons of 15 to 30 ms for a very low NMSE of -20 dB based on a limited number of channel observations. Note that as reference we used a state of the art Kalman filter based solution. 
The results in Figure 3 have been implemented by a combined PHY plus ML scheme so that we could also achieve a relatively low processing time of 4 ms for a NN start parameter inference plus about 15 ms for the iterative PHY based tracking relative to the start parameters.  The UE in this case is a nomadic user moving with a speed of 3.6 km/h.  Note that so far, the NN for inference of the start parameters provides a strong variation of the inference quality so that the direct usage of the start parameter inference is not suitable.  Therefore, the combined inference with a first rough estimate of the start parameters plus a then fast iterative optimization of these start parameters is currently the best choice.
The results in Figure 4 are for the advanced combined PHY plus ML based channel prediction for an exemplary track of the 16 x 4 massive MIMO 10 MHz channel sounder measurements at the Nokia Stuttgart campus.  The system uses the typical NR numerology with a 15 kHz subcarrier spacing and a 2.18 GHz RF frequency.  The mobile speed had been about 5 km/h and the channel was measured with a 0.5 ms repetition rate. For this realization of the channel prediction, the channel had been observed over 15 ms at the time instances 5 to 20 ms (red circles).  At a prediction time of 5 ms, the NMSE is -25 dB and at 10 ms it is – 20 dB (black circles).
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[bookmark: _Ref102082953]Figure 3: Simulation results for the channel prediction based on the profiling method (blue) versus Kalman filtering (red) for the same NLOS scenario in the Nokia Munich campus.
[image: ]
[bookmark: _Ref102082969]Figure 4: Results for the advanced combined PHY plus ML based channel prediction.

Observation 2: Initial results indicate promising performance for CSI prediction.
Proposal 10: Continue to study the performance of CSI prediction.
Conclusion
In this contribution, we have discussed the CSI sub-use cases, focusing on the evaluation methodology and providing initial simulation results for these use cases. Our observations and proposals are:
For CSI feedback:
Proposal 1: For system level performance evaluation of ML algorithms for CSI feedback, adopt the SLS assumptions from Rel-16, as shown in Table 1, as the starting point.
Proposal 2: Companies to specify their CSI feedback training parameters, ML algorithm configuration, associated pre-processing, output processing, and control mechanisms.
Proposal 3: The baseline for performance comparisons of ML-based CSI acquisition should be the Rel-16 eMIMO Type II codebook. Make the comparisons against conventional methods and among ML alternatives based on the throughput and overhead tradeoffs in the Rel-16 eMIMO Type II codebook.
Proposal 4: Consider the cosine similarity between actual and recovered eigenvectors as the KPI for assessing the performance of ML-based CSI feedback.
Observation 1: A significant degree of channel compression can be obtained using an autoencoder for CSI feedback.
Proposal 5: Study the performance of both channel and eigenvector compression schemes.
For CSI prediction:
Proposal 6: Companies to specify their CSI prediction training parameters, ML algorithm configuration, associated pre-processing, output processing, and control mechanisms.
Proposal 7: For system level performance evaluation of ML algorithms for CSI prediction, adopt the SLS assumptions from Rel-16, as shown in Table 1, as the starting point. Adopt changes to the assumptions (such as a higher percentage of outdoor UE’s and the use of spatial consistency procedure A) as required for CSI prediction.
Proposal 8: Adopt the Rel-16 eType II codebook as the baseline for performance comparisons of ML-based CSI prediction, considering both throughput and overhead, where the overhead includes both reference signal and feedback overhead.  Kalman filtering can also be considered as a performance baseline.
Proposal 9: Adopt specific KPIs related to channel prediction such as throughput, overhead, channel prediction horizon, observation time, and inference latency.
Observation 2: Initial results indicate promising performance for CSI prediction.
Proposal 10: Continue to study the performance of CSI prediction.
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