## N(ORTEL <br> NETWORKS

## Title : Proposal for Downlink Compressed mode method by puncturing

Source:Nortel Networks

## Issue

- Create desired gap in each compressed frame with method A, i.e. using puncturing.
- More explicitly, reduce the number of bits for Transport Channels in each compressed frame, by eliminating supplementary bits compared to what normal Rate Matching requires for these Transport Channels.


## Process

1) Calculate number of bits to remove in each TrCh whose TTI contains compressed frame(s).
2) Find the position of the bits to be eliminated.

Requirements to find these positions and eliminate the bits:
$>$ minimal implementation changes in the multiplexing chain
$>$ keep optimal performance of rate matching when deleting supplementary bits

## Process

- Step 1 : Calculate number of bits to remove in each TrCh whose TTI contains compressed frame(s).
$>$ Example of calculation from Nokia (cf R1-99133)
- Calculate for each radio frame the number of bits corresponding to the transmission gap $N_{T G L}[k]$, where $N_{T G L}=0$ when the frame is not compressed.
- Evaluate the additional number of bits to be removed on each of the transport channels for each radio frame $k\left(\Delta N^{c m}[k]\right)$ due to compressed mode using the same formula as given in section (Formula Z)by replacing Ndata by NTGL.
- For one TrCh, calculate the number of bits corresponding to the transmission gap in frame $i$, and $\Delta N^{\mathrm{Nm}}$ be the total number of bits to remove for the $T T I$, sum of $\Delta \mathrm{N}^{\mathrm{cm}}$ [k] for all frames $k$ in the TTI


## Process

- Step 2 : Find the position of the bits to be eliminated.
$>$ Nortel proposal is a follow-up of Nokia R1-99133 proposal
$>$ Perform rate matching taking into account supplementary puncturing:
For each TrCh, calculate $\Delta N=\Delta N^{T T I}+\Delta N^{c m}$, knowing $\Delta N^{T T I}$ and $\Delta N^{c m}$ and apply rate matching on the TTI with $\Delta N$.
$>$ Insert $|\Delta \mathrm{Ncm}[F R \mathrm{k}]|$ bits with value p , in positions corresponding to the first bits of the compressed frames of the TTI using information from the first interleaver.
$>$ Remove bits p in Physical Channel Mapping step.


## Impact on the processing chain

- Impacts reduced to
> Rate matching block
> Physical channel mapping (removal of the "p" bits) before transmission

NERTEL
NETWORKS


## Principle

- Notation : $\Delta X<0 \Rightarrow$ puncturing ; $\Delta X>0=>$ repetition
- $\Delta \mathbf{N}^{\text {TII }}<0$ then $\Delta \mathbf{N}=\Delta \mathbf{N}^{\text {TII }}+\Delta \mathbf{N}^{\mathrm{cm}}<0$ since $\Delta \mathbf{N}^{\mathrm{cm}}<0$
- $\Delta \mathbf{N}^{\mathrm{TTI}}>0$ and $\left|\Delta \mathbf{N}^{\mathrm{cm}}\right|>\Delta \mathbf{N}^{\mathrm{TTI}}$ then $\Delta \mathbf{N}\left(=\Delta \mathbf{N}^{\mathrm{TTI}}+\Delta \mathbf{N}^{\mathrm{cm}}\right)<0$. Although normal rate matching required repetition, some bits actually need to be punctured. So no bit is repeated but $|\Delta N|$ bits are punctured, and $\left|\Delta N^{\mathrm{cm}}\right|$ bits marked $\mathbf{p}$ are inserted.
- $\Delta \mathbf{N}^{\mathrm{TTI}}>0$ and $\left|\Delta \mathbf{N}^{\mathrm{cm}}\right|<\Delta \mathbf{N}^{\mathrm{TTI}}$ then $\Delta \mathbf{N}\left(=\Delta \mathbf{N}^{\mathrm{TTI}}+\Delta \mathbf{N}^{\mathrm{cm}}\right)>0$. No need to puncture bits, reducing repetition is enough. So $\Delta \mathbf{N}$ bits are repeated and $\left|\Delta \mathbf{N}^{\mathrm{cm}}\right|$ bits marked p are inserted.
- $\Delta \mathbf{N}^{\text {TII }}>0$ and $\left|\Delta \mathbf{N}^{\mathrm{cm}}\right|=\Delta \mathbf{N}^{\text {TII }}$ then $\Delta \mathbf{N}\left(=\Delta \mathbf{N}^{\mathrm{TTI}}+\Delta \mathbf{N}^{\mathrm{cm}}\right)=0$. No need to either repeat or puncture. $\left|\Delta N^{\mathrm{cm}}\right|$ bits marked $p$ are inserted.


## Example with puncturing (assuming no first interleaver)

- Hypothesis:
$>\mathrm{TTI}=40 \mathrm{~ms}$ i.e. $\mathrm{F}=4$,
$>$ Normal rate matching requires 1 bit puncturing : $\Delta \mathrm{NTTI}=-1$,
> Compressed mode requires to remove 3 bits in frame number 2: $\Delta \mathrm{Ncm}[2]=-3$, So for the TTI: $\Delta \mathrm{N}=-4$, assume no first interleaver.
- Input bits flow

1234567891011121314151617181920
Normal RM $=>$ puncture bits 1, 6, 11, 16
Compressed Mode=> insert 3 bits p to go in column 2

- Bit flow after rate matching block

23 p $4 \quad 57$ p $8 \quad 910$ p $12 \quad 13141516 \quad 17181920$

- Bits in radio frames:

| 2 | 3 | $p$ | 4 |
| ---: | ---: | ---: | ---: |
| 5 | 7 | $p$ | 8 |$\quad$ frame 0: $2 \mathbf{c}_{2} 91318$

## Example with puncturing (with first interleaver)

- Hypothesis:
$>\mathrm{TTI}=40 \mathrm{~ms}$ i.e. $\mathrm{F}=4$,
$>$ Normal rate matching requires 1 bit puncturing : $\Delta \mathrm{NTTI}=-1$,
$\rightarrow$ Compressed mode requires to remove 3 bits in frame number 2: $\Delta \mathrm{Ncm}[2]=-3$,
So for the TTI: $\Delta \mathrm{N}=-4$, first interleaver is bit reversal.
- Input bits flow

1234567891011121314151617181920
Normal RM algorithm $=>$ puncture bits 1, 6, 11, 16
Compressed Mode $=>$ insert 3 bits p to go in column 1 (since 1=BR[2])

- Bit flow after rate matching block

2 p 345 p 789 p 101213141517181920

- Bits in first interleaver before columns permutation:

2 p 34
5 p 78
9 p 1012
13141517
181920 d
N ORTEL

## Example with puncturing (with first interleaver)

- Bits in first interleaver after columns permutation:

| 2 | 3 | $p$ | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 7 | $p$ | 8 |
| 9 | 10 | $p$ | 12 |
| 13 | 15 | 14 | 17 |
| 18 | 20 | 19 | $d$ |

- Bits in each frame after radio frame segmentation
frame 0: 2591318
frame 1: 37101520
frame 2: p p p 1419
frame 3: $4 \mathbf{8 1 2 1 7 d}$


## Example with repetition (assuming no first interleaver)

- Hypothesis:
$>\mathrm{TTI}=40 \mathrm{~ms}$ i.e. $\mathrm{F}=4$,
$>$ Normal rate matching requires 7 bit repetition : $\Delta \mathrm{NTTI}=+7$,
$>$ Compressed mode requires to remove 3 bits in frame number 2: $\Delta \mathrm{Ncm}[2]=-3$, So for the TTI: $\Delta \mathrm{N}=+4$, assume no first interleaver.
- Input bits flow

1234567891011121314151617181920
Normal RM $=>$ repeat once bits $1,6,11,16$
Compressed Mode $=>$ insert 3 bits p to go in column 2

- Bit flow after rate matching block

11 p $2 \quad 34$ p 566 p $7891011 \quad 1112131415161617181920$

- Bits in frames:

| 1 | 1 | $p$ | 2 |
| ---: | :---: | :---: | :---: |
| 3 | 4 | $p$ | 5 |
| 6 | 6 | $p$ | 7 |
| 8 | 9 | 10 | 11 |
| 11 | 12 | 13 | 14 |
| 15 | 16 | 16 | 17 |
| 18 | 19 | 20 | $d$ |

frame 0: 1368111518
frame 1: 1469121619
frame 2: ppp10 131620
frame 3: 257111417 d

## Example with repetition (with first interleaver)

- Hypothesis:
$>\mathrm{TTI}=40 \mathrm{~ms}$ i.e. $\mathrm{F}=4$,
$>$ Normal rate matching requires 1 bit puncturing : $\Delta$ NTTI $=+7$,
$>$ Compressed mode requires to remove 3 bits in frame number 2: $\Delta \mathrm{Ncm}[2]=-3$, So for the TTI: $\Delta \mathrm{N}=+4$, first interleaver is bit reversal.
- Input bits flow

1234567891011121314151617181920
Normal RM $=>$ repeat once bits 1, 6, 11, 16
Compressed Mode $=>$ insert 3 bits p to go in column 1 (since 1=BR[2])

- Bit flow after rate matching block

1 p12 3 p $45 \quad 6$ p $67 \quad 891011 \quad 1112131415161617181920$

- Bits in first interleaver before columns permutation:

1 p 12
3 p 45
6 p 67
891011
11121314
15161617
NERTEL
181920 d

## Example with repetition (with first interleaver)

- Bits in first interleaver after columns permutation:

11 p 2
34 p 5
66 p 7
810911
11131214
15161617
182019 d

- Bits in each frame after radio frame segmentation
frame 0: $1 \begin{array}{llllllll}3 & 6 & 8 & 11 & 15 & 18\end{array}$
frame 1: $14 \begin{array}{llllll}6 & 10 & 13 & 16 & 20\end{array}$
frame 2: p p p $9 \quad 121619$
frame 3: $2 \begin{array}{llllllll}5 & 7 & 11 & 14 & 17 & \mathrm{~d}\end{array}$


## Corresponding modifications to $\mathbf{2 5 . 2 1 2}$

- Change request contained in R1-00-121

