NORTEL NETWORKS

R1-00-172

#### Title : Proposal for Downlink Compressed mode method by puncturing

**Source:Nortel Networks** 

### Issue

- Create desired gap in each compressed frame with method A, i.e. using puncturing.
- More explicitly, reduce the number of bits for Transport Channels in each compressed frame, by eliminating supplementary bits compared to what normal Rate Matching requires for these Transport Channels.



## **Process**

1) Calculate number of bits to remove in each TrCh whose TTI contains compressed frame(s).

#### 2) Find the position of the bits to be eliminated.

#### **Requirements to find these positions and eliminate the bits:**

- > minimal implementation changes in the multiplexing chain
- > keep optimal performance of rate matching when deleting supplementary bits



### **Process**

- Step 1 : Calculate number of bits to remove in each TrCh whose TTI contains compressed frame(s).
  - > Example of calculation from Nokia (cf R1-99l33)
    - Calculate for each radio frame the number of bits corresponding to the transmission gap  $N_{TGL}[k]$ , where  $N_{TGL}=0$  when the frame is not compressed.
    - Evaluate the additional number of bits to be removed on each of the transport channels for each radio frame  $k(DN^{cm} [k])$  due to compressed mode using the same formula as given in section (Formula Z)by replacing Ndata by NTGL.
    - For one TrCh, calculate the number of bits corresponding to the transmission gap in frame i, and DN<sup>cm</sup> be the total number of bits to remove for the TTI, sum of DN<sup>cm</sup> [k] for all frames k in the TTI



### **Process**

### Step 2 : Find the position of the bits to be eliminated.

- > Nortel proposal is a follow-up of Nokia R1-99l33 proposal
- > Perform rate matching taking into account supplementary puncturing:

For each TrCh, calculate  $DN = DN^{TTI} + DN^{cm}$ , knowing  $DN^{TTI}$  and  $DN^{cm}$  and apply rate matching on the TTI with DN.

- Insert |\Delta N<sup>cm</sup> [FR k]| bits with value p, in positions corresponding to the first bits of the compressed frames of the TTI using information from the first interleaver.
- > Remove bits p in Physical Channel Mapping step.



# Impact on the processing chain

#### Impacts reduced to

NORTEL

NETWORKS

- > Rate matching block
- > Physical channel mapping (removal of the "p" bits) before transmission



5

## Principle

- Notation :  $\Delta X < 0 \Rightarrow$  puncturing ;  $\Delta X > 0 \Rightarrow$  repetition
- $\Delta N^{TTI} < 0$  then  $\Delta N = \Delta N^{TTI} + \Delta N^{cm} < 0$  since  $\Delta N^{cm} < 0$
- $\Delta N^{TTI} > 0$  and  $|\Delta N^{cm}| > \Delta N^{TTI}$  then  $\Delta N (= \Delta N^{TTI} + \Delta N^{cm}) < 0$ . Although normal rate matching required repetition, some bits actually need to be punctured. So no bit is repeated but  $|\Delta N|$  bits are punctured, and  $|\Delta N^{cm}|$  bits marked p are inserted.
- $\Delta N^{TTI} > 0$  and  $|\Delta N^{cm}| < \Delta N^{TTI}$  then  $\Delta N (= \Delta N^{TTI} + \Delta N^{cm}) > 0$ . No need to puncture bits, reducing repetition is enough. So  $\Delta N$  bits are repeated and  $|\Delta N^{cm}|$  bits marked p are inserted.
- $\Delta N^{TTI} > 0$  and  $|\Delta N^{cm}| = \Delta N^{TTI}$  then  $\Delta N (= \Delta N^{TTI} + \Delta N^{cm}) = 0$ . No need to either repeat or puncture.  $|\Delta N^{cm}|$  bits marked p are inserted.



## **Example with puncturing** (assuming no first interleaver)

#### **Hypothesis:** •

- TTI = 40ms i.e. F=4, >
- Normal rate matching requires 1 bit puncturing :  $\Delta NTTI=-1$ , >
- Compressed mode requires to remove 3 bits in frame number 2:  $\Delta Ncm[2] = -3$ , >
- So for the TTI:  $\Delta N = -4$ , assume no first interleaver. >

#### Input bits flow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Normal RM => puncture bits 1, 6, 11, 16 Compressed Mode=> insert 3 bits p to go in column 2

#### **Bit flow after rate matching block**

**23p4 57p8 910p12 13141516 17181920** 

#### Bits in radio frames:

VETWORKS

NØRTEL

| 2 3 p 4     | frame 0: 2 5 9 13 18  |
|-------------|-----------------------|
| 57p8        | frame 1: 3 7 10 14 19 |
| 910 p12 =>  | frame 2: p p p 15 20  |
| 13 14 15 17 | frame 3: 4 8 12 17 d  |
| 18 19 20 d  |                       |

## Example with puncturing (with first interleaver)

### • Hypothesis:

- > TTI = 40ms i.e. F=4,
- > Normal rate matching requires 1 bit puncturing : △NTTI=-1,
- > Compressed mode requires to remove 3 bits in frame number 2: △Ncm[2]= -3,
- > So for the TTI:  $\Delta N$ = 4, first interleaver is bit reversal.

#### Input bits flow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Normal RM algorithm => puncture bits 1, 6, 11, 16 Compressed Mode=> insert 3 bits p to go in column 1 (since 1=BR[2])

### Bit flow after rate matching block

2 p 3 4 5 p 7 8 9 p 10 12 13 14 15 17 18 19 20

#### Bits in first interleaver before columns permutation:

2 p 3 4 5 p 7 8 9 p 10 12 13 14 15 17 18 19 20 d Example with puncturing (with first interleaver)

Bits in first interleaver after columns permutation:



• Bits in each frame after radio frame segmentation

frame 0: 2 5 9 13 18 frame 1: 3 7 10 15 20 frame 2: p p p 14 19 frame 3: 4 8 12 17 d



### Example with repetition (assuming no first interleaver)

#### • Hypothesis:

- > TTI = 40ms i.e. F=4,
- > Normal rate matching requires 7 bit repetition :  $\Delta$ NTTI=+7,
- > Compressed mode requires to remove 3 bits in frame number 2:  $\Delta Ncm[2] = -3$ ,
- > So for the TTI:  $\Delta N$ = + 4, assume no first interleaver.

#### Input bits flow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Normal RM => repeat once bits 1, 6, 11, 16 Compressed Mode=> insert 3 bits p to go in column 2

#### Bit flow after rate matching block

**1 1 p 2 3 4 p 5 6 6 p 7 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20** 

#### Bits in frames:

| NETWORKS | 18 | 19 | 20 | d  |
|----------|----|----|----|----|
| RTEL     | 15 | 16 | 16 | 17 |
|          | 11 | 12 | 13 | 14 |
|          | 8  | 9  | 10 | 11 |
|          | 6  | 6  | р  | 7  |
|          | 3  | 4  | р  | 5  |
|          | 1  | 1  | р  | 2  |
|          |    |    |    |    |

frame 0: 1 3 6 8 11 15 18 frame 1: 1 4 6 9 12 16 19 frame 2: ppp 10 13 16 20 frame 3: 2 5 7 11 14 17 d

## Example with repetition (with first interleaver)

#### • Hypothesis:

- > TTI = 40ms i.e. F=4,
- > Normal rate matching requires 1 bit puncturing :  $\Delta$ NTTI=+7,
- > Compressed mode requires to remove 3 bits in frame number 2:  $\Delta Ncm[2] = -3$ ,
- **So for the TTI:**  $\Delta N = + 4$ , first interleaver is bit reversal.

#### Input bits flow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Normal RM => repeat once bits 1, 6, 11, 16

Compressed Mode=> insert 3 bits p to go in column 1 (since 1=BR[2])

#### Bit flow after rate matching block

1 p 1 2 3 p 4 5 6 p 6 7 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20

#### Bits in first interleaver before columns permutation:



## Example with repetition (with first interleaver)

#### • Bits in first interleaver after columns permutation:

#### Bits in each frame after radio frame segmentation

frame 0: 1 3 6 8 11 15 18 frame 1: 1 4 6 10 13 16 20 frame 2: p p p 9 12 16 19 frame 3: 2 5 7 11 14 17 d



# **Corresponding modifications to 25.212**

Change request contained in R1-00-121

