25.212 CR 044

Current Version:
GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team

For submission to: RAN \#7
list expected approval meeting \# here
for approval \mathbf{X}
for information

strategic non-strategic
Proposed change affects: (U)SIM \square ME $\quad \mathbf{X}$ UTRAN / Radio $\quad \mathbf{X}$ Core Network \square
(at least one should be marked with an X)
Source: NTT DoCoMo and Nortel Networks
Date: 21-Jan-2000
Subject: Modification of Turbo code internal interleaver

Work item:

Category:
(only one category -告 shall be marked with an X)

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Release: Phase 2

Release 96
Release 97
Release 98
Release 99
Release 00

Reason for Addition of Turbo code internal interleaver for smaller block size from 40-bit to 319-bit change:

Clauses affected: $\quad 4.2 .3 .2 .3$ of 25.212

Other specs	Other 3G core specifications affected: Other GSM core specifications	\square
	\rightarrow List of CRs:	
	\rightarrow List of CRs:	
	MS test specifications BSS test specifications O\&M specifications	\square
	\rightarrow List of CRs:	
	\rightarrow List of CRs:	
	\rightarrow List of CRs:	

Other
 comments:
 help.doc

<--------- double-click here for help and instructions on how to create a CR.

Figure 4: Structure of the 8 state PCCC encoder (dotted lines effective for trellis termination only)
The initial value of the shift registers of the PCCC encoder shall be all zeros.
The output of the PCCC encoder is punctured to produce coded bits corresponding to the desired code rate. For rate $1 / 3$, none of the systematic or parity bits are punctured, and the output sequence is $\mathrm{X}(0), \mathrm{Y}(0), \mathrm{Y}^{\prime}(0), \mathrm{X}(1), \mathrm{Y}(1), \mathrm{Y}^{\prime}(1)$, etc.

4.2.3.2.2 Trellis termination for Turbo coding

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are added after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be

$$
X(t) Y(t) X(t+1) Y(t+1) X(t+2) Y(t+2) X^{\prime}(t) Y^{\prime}(t) X^{\prime}(t+1) Y^{\prime}(t+1) X^{\prime}(t+2) Y^{\prime}(t+2)
$$

4.2.3.2.3 Turbo code internal interleaver

Figure 5 depicts the overall 8 state PCCC Turbo coding scheme including Turbo code internal interleaver. The Turbo code internal interleaver consists of mother interleaver generation and pruning. For arbitrary given block length K, one mother interleaver is selected from the 134163 mother interleavers set. The generation scheme of mother interleaver is described in section 4.2.3.2.3.1. After the mother interleaver generation, l-bits are pruned in order to adjust the mother interleaver to the block length K . Tail bits T_{1} and T_{2} are added for constituent encoders RSC1 and RSC2, respectively. The definition of l is shown in section 4.2.3.2.3.2.

Figure 5: Overall 8 State PCCC Turbo Coding

4.2.3.2.3.1 Mother interleaver generation

The interleaving consists of three stages. In first stage, the input sequence is written into the rectangular matrix row by row. The second stage is intra-row permutation. The third stage is inter-row permutation. The three-stage permutations are described as follows, the input block length is assumed to be K (32040 to 5114 bits).

First Stage:

(1) Determine the number of rows R such that
$\underline{\mathrm{R}}=5$ ($\mathrm{K}=40$ to 159 bits)
$\mathrm{R}=10(\mathrm{~K}=\underline{160 \text { to } 200 \text { and } 481 \text { to } 530 \text { bits; Case- }-1) ~}$
$\mathrm{R}=20(\mathrm{~K}=$ any other block lengths-except 481 to 530 bits; Case- 2)
(2) Determine the number of columns C such that
if $\mathrm{K}=481$ to 530 then Case $1 ; \mathrm{C}=p=53$
else Case-2;
(i) find minimum prime p such that,

$$
0=<(p+1)-K / R,
$$

(ii) if $(0=<p-K / R)$ then go to (iii),

$$
\text { else } C=p+1
$$

(iii) if $(0=<p-1-\mathrm{K} / \mathrm{R})$ then $\mathrm{C}=p-1$,
else $\mathrm{C}=p$.
(3) The input sequence of the interleaver is written into the $\mathrm{R} \times \mathrm{C}$ rectangular matrix row by row starting from row 0 .

Second Stage:

A. If $\mathrm{C}=p$
(A-1) Select a primitive root g_{0} from table 2.
(A-2) Construct the base sequence $c(i)$ for intra-row permutation as:
$c(i)=\left[g_{0} \times c(i-1)\right] \bmod p, i=1,2, \ldots,(p-2) ., c(0)=1$.
(A-3) Select the minimum prime integer set $\left\{q_{j}\right\}(j=1,2, \ldots, \mathrm{R}-1)$ such that
g.c.d $\left\{q_{j}, p-1\right\}=1$
$q_{j}>6$
$q_{j}>q_{(j-1)}$
where g.c.d. is greatest common divider. And $q_{0}=1$.
(A-4) The set $\left\{q_{j}\right\}$ is permuted to make a new set $\left\{p_{j}\right\}$ such that
$p_{\mathrm{P}(j)}=q_{j}, j=0,1, \ldots, \mathrm{R}-1$,
where $\mathrm{P}(j)$ is the inter-row permutation pattern defined in the third stage.
(A-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:
$c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) .$, and $c_{j}(p-1)=0$,
where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.
B. If $\mathrm{C}=p+1$
(B-1) Same as case A-1.
(B-2) Same as case A-2.
(B-3) Same as case A-3.
(B-4) Same as case A-4.
(B-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., c_{j}(p-1)=0, \text { and } c_{j}(p)=p
$$

(B-6) If $(\mathrm{K}=\mathrm{C} \times \mathrm{R})$ then exchange $\mathrm{c}_{\mathrm{R}-1}(p)$ with $\mathrm{c}_{\mathrm{R}-1}(0)$.
where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.

C. If $\mathrm{C}=p-1$

(C-1) Same as case A-1.
(C-2) Same as case A-2.
(C-3) Same as case A-3.
(C-4) Same as case A-4.
(C-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:
$c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right)-1, \quad i=0,1,2, \ldots,(p-2)$,
where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.

Third Stage:

(1) Perform the inter-row permutation based on the following $\mathrm{P}(j)(j=0,1, \ldots, \mathrm{R}-1)$ patterns, where $\mathrm{P}(j)$ is the original row position of the j-th permuted row.
$\mathrm{P}_{\mathrm{A}}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$ for $\mathrm{R}=20$
$\mathrm{P}_{\mathrm{B}}:\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\}$ for $\mathrm{R}=20$
$\mathrm{P}_{\mathrm{C}}:\{9,8,7,6,5,4,3,2,1,0\}$ for $\mathrm{R}=10$
$\underline{\mathrm{P}}_{\underline{\mathrm{D}}}:\{4,3,2,1,0\}$ for $\mathrm{R}=5$
The usage of these patterns is as follows:
Block length $\mathrm{K}: ~ \mathrm{P}(j)$
40 to 159-bit: $\quad \mathrm{P}_{\mathrm{D}}$
160 to 200-bit: $\quad \mathrm{P}_{\mathrm{C}}$
$\underline{201320}$ to 480-bit: $\quad P_{A}$
481 to 530-bit: $\quad P_{C}$
531 to 2280-bit: P_{A}
2281 to 2480-bit: P_{B}
2481 to 3160 -bit: P_{A}
3161 to 3210 -bit: P_{B}
3211 to 5114-bit: P_{A}
(2) The output of the mother interleaver is the sequence read out column by column from the permuted $\mathrm{R} \times \mathrm{C}$ matrix starting from column 0 .

Table 2: Table of prime p and associated primitive root $\underline{g}_{\underline{o}}$

\underline{p}	$\underline{g_{0}}$	\underline{p}	$\underline{9}$	\underline{p}	go	\underline{p}	$\underline{9}$	\underline{p}	$\underline{9}$
7	3	47	5	101	2	157	5	223	3
$\underline{11}$	$\underline{2}$	$\underline{53}$	$\underline{2}$	$\underline{103}$	$\underline{5}$	163	$\underline{2}$	$\underline{227}$	$\underline{2}$
13	2	59	2	107	2	167	5	229	6
17	$\underline{3}$	61	$\underline{2}$	109	$\underline{6}$	173	$\underline{2}$	233	$\underline{3}$
19	$\underline{2}$	67	$\underline{2}$	113	$\underline{3}$	179	$\underline{2}$	$\underline{239}$	$\underline{7}$
$\underline{23}$	$\underline{5}$	71	7	127	$\underline{3}$	181	$\underline{2}$	241	$\underline{7}$
$\underline{29}$	$\underline{2}$	73	$\underline{5}$	131	$\underline{2}$	191	19	251	$\underline{6}$
31	$\underline{3}$	$\underline{79}$	$\underline{3}$	137	$\underline{3}$	193	$\underline{5}$	$\underline{257}$	$\underline{3}$
$\underline{37}$	$\underline{2}$	$\underline{83}$	$\underline{2}$	139	$\underline{2}$	197	$\underline{2}$		
41	6	89	3	149	2	199	3		
$\underline{43}$	$\underline{3}$	$\underline{97}$	$\underline{5}$	151	$\underline{6}$	$\underline{211}$	$\underline{2}$		

ρ	g_{\ominus}								
17	z	59	z	103	5	157	5	214	z
19	z	64	z	107	z	163	z	223	3
23	5	67	z	109	6	167	5	227	2
29	z	71	7	113	3	173	z	229	6
31	3	73	5	127	3	179	z	233	3
37	z	79	3	131	z	181	z	239	7
41	6	83	z	137	3	191	19	241	7
43	3	89	3	139	z	193	5	254	6
47	5	97	5	149	z	197	z	257	3
53	z	101	z	154	6	199	3		

4.2.3.2.3.2 Definition of number of pruning bits

The output of the mother interleaver is pruned by deleting the l-bits in order to adjust the mother interleaver to the block length K , where the deleted bits are non-existent bits in the input sequence. The pruning bits number l is defined as:

$$
l=\mathrm{R} \times \mathrm{C}-\mathrm{K},
$$

where R is the row number and C is the column number defined in section 4.2.3.2.3.1.

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

25.222 CR 021

Current Version: 3.1.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow CR number as allocated by MCC support team

For submission to: RAN \#7
list expected approval meeting \# here

strategic
non-strategic \square (for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \qquad X UTRAN / Radio \qquad Core Network \qquad
(at least one should be marked with an X
Source: NTT DoCoMo and Nortel Networks
Date: 21-Jan-2000
Subject: Modification of Turbo code internal interleaver

Work item:

Reason for
$\underline{\text { change: }} \quad$ Addition of Turbo code internal interleaver for smaller block size from 40-bit to 319-bit

Clauses affected: $\quad 4.2 .3 .2 .3$ of TS 25.222

Other specs	$\begin{array}{l}\text { Other 3G core specifications } \\ \text { Other GSM core } \\ \text { specifications } \\ \text { affected: }\end{array}$	\square	\rightarrow List of CRs:
	\rightarrow List of CRs:		
	$\begin{array}{ll}\text { MS test specifications } \\ \text { BSS test specifications } \\ \text { O\&M specifications }\end{array}$		\rightarrow List of CRs:
		\rightarrow List of CRs:	
	\rightarrow List of CRs:		

Other

comments:

Figure 4-3: Structure of the 8-state PCCC encoder (dotted lines effective for trellis termination only)
The initial value of the shift registers of the PCCC encoder shall be all zeros.
The output of the PCCC encoder is punctured to produce coded bits corresponding to the desired code rate. For rate $1 / 3$, none of the systematic or parity bits are punctured, and the output sequence is $\mathrm{X}(0), \mathrm{Y}(0), \mathrm{Y}^{\prime}(0), \mathrm{X}(1), \mathrm{Y}(1), \mathrm{Y}^{\prime}(1)$, etc.

4.2.3.2.2 Trellis termination in turbo code

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are added after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4-3 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4-3 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be

$$
X(t) Y(t) X(t+1) Y(t+1) X(t+2) Y(t+2) X^{\prime}(t) Y^{\prime}(t) X^{\prime}(t+1) Y^{\prime}(t+1) X^{\prime}(t+2) Y^{\prime}(t+2) .
$$

4.2.3.2.3 Turbo code internal interleaver

Figure 4-4 depicts the overall 8-State PCCC Turbo coding scheme including Turbo code internal interleaver. The Turbo code internal interleaver consists of mother interleaver generation and pruning. For arbitrary given block length | K, one mother interleaver is selected from the $134 \underline{163}$ mother interleavers set. The generation scheme of mother interleaver is described in section 4.2.3.2.3.1. After the mother interleaver generation, l-bits are pruned in order to adjust the mother interleaver to the block length K . Tail bits T_{1} and T_{2} are added for constituent encoders RSC1 and RSC2, respectively. The definition of l is shown in section 4.2.3.2.3.2..

Figure 4-4: Overall 8 State PCCC Turbo Coding

4.2.3.2.3.1

Mother interleaver generation
The interleaving consists of three stages. In first stage, the input sequence is written into the rectangular matrix row by row. The second stage is intra-row permutation. The third stage is inter-row permutation. The three-stage permutations are described as follows, the input block length is assumed to be K ($320 \underline{40}$ to 5114 bits).

First Stage:

(1) Determine the number of rows R such that
$\underline{\mathrm{R}=5(\mathrm{~K}=40 \text { to } 159 \text { bits })}$
$\mathrm{R}=10(\mathrm{~K}=\underline{160 \text { to } 200 \text { bits and } 481 \text { to } 530 \text { bits; Case- }-1) ~}$
$\mathrm{R}=20(\mathrm{~K}=$ any other block lengths-except 481 to 530 bits; Case 2)
(2) Determine the number of columns C such that
if $\mathrm{K}=481$ to 530 thenCase $-1 ; \mathrm{C}=p=53$
elseCase-2;
(i) find minimum prime p such that,

$$
0=<(p+1)-\mathrm{K} / \mathrm{R}
$$

(ii) if $\quad(0=<p-K / R)$ then go to (iii)
else $\mathrm{C}=p+1$.
(iii) if $(0=<p-1-\mathrm{K} / \mathrm{R})$ then $\mathrm{C}=\mathrm{p}-1$. else $\mathrm{C}=p$.
(3) The input sequence of the interleaver is written into the $\mathrm{R} \times \mathrm{C}$ rectangular matrix row by row starting from row 0 .

Second Stage:

A. If $\mathrm{C}=p$
(A-1) Select a primitive root g_{0} from table 4.2.2-2.
(A-2) Construct the base sequence $c(i)$ for intra-row permutation as:

$$
c(i)=\left[g_{0} \times c(i-1)\right] \bmod p, i=1,2, \ldots(p-2) ., c(0)=1
$$

(A-3) Select the minimum prime integer set $\left\{q_{j}\right\}(j=1,2, \ldots, \mathrm{R}-1)$ such that

$$
\begin{aligned}
& \text { g.c.d }\left\{q_{j}, p-1\right\}=1 \\
& q_{j}>6 \\
& q_{j}>q_{(j-1)}
\end{aligned}
$$

where g.c.d. is greatest common divider. And $q_{0}=1$.
(A-4) The set $\left\{q_{j}\right\}$ is permuted to make a new set $\left\{p_{j}\right\}$ such that

$$
p_{\mathrm{P}(j)}=q_{j}, j=0,1, \ldots . \mathrm{R}-1
$$

where $\mathrm{P}(j)$ is the inter-row permutation pattern defined in the third stage.
(A-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{C}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., \text { and } c_{j}(p-1)=0
$$

where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.

If $\mathrm{C}=p+1$

(B-1) Same as case A-1.
(B-2) Same as case A-2.
(B-3) Same as case A-3.
(B-4) Same as case A-4.
(B-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., c_{j}(p-1)=0, \text { and } c_{j}(p)=p
$$

where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.
(B-6) If $(\mathrm{K}=\mathrm{C} \times \mathrm{R})$ then exhange $c_{R-l}(p)$ with $c_{R-l}(0)$.

If $\mathrm{C}=\mathrm{p}-1$

(C-1) Same as case A-1.
(C-2) Same as case A-2.
(C-3) Same as case A-3.
(C-4) Same as case A-4.
(C-5) Perform the j-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as: $c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right)-1, i=0,1,2, \ldots,(p-2) .$,
where $c_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.

Third Stage:

Perform the inter-row permutation based on the following $\mathrm{P}(j)(j=0,1, \ldots, \mathrm{R}-1)$ patterns, where $\mathrm{P}(j)$ is the original row position of the j-th permuted row.
$P_{A}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$ for $\mathrm{R}=20$
$\mathrm{P}_{\mathrm{B}}:\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\}$ for $\mathrm{R}=20$
$P_{C}:\{9,8,7,6,5,4,3,2,1,0\}$ for $R=10$
$\underline{P}_{\underline{D}}:\{4,3,2,1,0\}$ for $R=5$
The usage of these patterns is as follows:
Block length K : $\mathrm{P}(j)$
40 to 159-bit: $\quad \mathrm{P}_{\underline{\mathrm{D}}}$
160 to 200-bit: P_{C}
$\underline{201320}$ to 480-bit: $\quad P_{A}$
481 to 530-bit: $\quad \mathrm{P}_{\mathrm{C}}$
531 to 2280-bit: P_{A}
2281 to 2480-bit: $\quad P_{B}$
2481 to 3160-bit: $\quad \mathrm{P}_{\mathrm{A}}$
3161 to 3210 -bit: $\quad P_{B}$
3211 to 5114-bit: $\quad \mathrm{P}_{\mathrm{A}}$
(2) The output of the mother interleaver is the sequence read out column by column from the permuted $\mathrm{R} \times \mathrm{C}$ matrix starting from column 0 .

Table 4.2.3-2: Table of prime p and associated primitive root g_{0}

\underline{p}	$\underline{9}$	\underline{p}	g_{0}	\underline{p}	$\underline{g_{0}}$	\underline{p}	go	\underline{p}	g_{0}
$\underline{7}$	$\underline{3}$	47	$\underline{5}$	101	2	157	$\underline{5}$	$\underline{223}$	$\underline{3}$
11	2	53	$\underline{2}$	103	5	163	$\underline{2}$	227	2
13	$\underline{2}$	59	$\underline{2}$	107	2	167	5	229	6
17	$\underline{3}$	61	$\underline{2}$	109	$\underline{6}$	$\underline{173}$	$\underline{2}$	$\underline{233}$	$\underline{3}$
$\underline{19}$	$\underline{\underline{2}}$	$\underline{67}$	$\underline{2}$	$\underline{113}$	$\underline{3}$	$\underline{179}$	$\underline{2}$	$\underline{239}$	7
$\underline{23}$	$\underline{5}$	$\underline{71}$	$\underline{7}$	$\underline{127}$	$\underline{3}$	$\underline{181}$	$\underline{2}$	$\underline{241}$	$\underline{7}$
$\underline{\underline{29}}$	$\underline{2}$	73	$\underline{5}$	131	$\underline{2}$	191	19	$\underline{251}$	$\underline{6}$
$\underline{31}$	$\underline{3}$	$\underline{79}$	$\underline{3}$	$\underline{137}$	$\underline{3}$	$\underline{193}$	$\underline{5}$	$\underline{\underline{557}}$	$\underline{3}$
37	$\underline{2}$	83	$\underline{2}$	139	$\underline{2}$	197	$\underline{2}$		
41	6	89	3	149	2	199	$\underline{3}$		
43	$\underline{3}$	97	5	151	$\underline{6}$	$\underline{211}$	$\underline{2}$		

p	go	P	go	p	go	P	G_{0}	p	go
17	3	59	2	103	5	157	5	211	z
19	2	61	2	107	2	163	2	223	3
23	5	67	z	109	6	167	5	227	z
29	z	74	7	113	3	173	z	229	6
37	3	73	5	127	3	179	z	233	3
37	z	79	3	131	z	181	z	239	7
41	6	83	2	137	3	191	19	247	7
43	3	89	3	139	2	193	5	254	6
47	5	97	5	149	z	197	z	257	3
53	z	104	z	154	6	199	3		

4.2.3.2.3.2 Definition of the number of pruning bits

The output of the mother interleaver is pruned by deleting the l-bits in order to adjust the mother interleaver to the block length K , where the deleted bits are non-existent bits in the input sequence. The pruning bits number l is defined as:

$$
1=\mathrm{R} \times \mathrm{C}-\mathrm{K},
$$

where R is the row number and C is the column number defined in section 4.2.3.2.3.1.

