help.doc

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

	C		REQI	JEST	Please s page for	ee embedd instructions	led help fi s on how t	le at the bottom of to fill in this form c	this orrectly.	
		25.212	CR	044		Current	Versic	on: <mark>3.1.0</mark>		
GSM (AA.BB) or 3G (GSM (AA.BB) or 3G (AA.BBB) specification number 1 1 CR number as allocated by MCC support team									
For submission to	to: RAN #7 neeting # here ↑	for approval X for information non-				stratec -stratec	gic (for use	SMG only)		
Proposed change (at least one should be m	e affects: parked with an X)	(U)SIM	ME	X	UTRAN /	Radio	X	Core Netwo	rk	
<u>Source:</u>	NTT DoCoM	o and Nortel Net	works			<u>I</u>	Date:	21-Jan-200	0	
Subject:	Modification	of Turbo code in	ternal in	terleaver	-					
Work item:										
Category:FA(only one categoryshall be markedCwith an X)D	Correction Corresponds Addition of fe Functional m Editorial mod	s to a correction i eature nodification of fea dification	in an ea ature	rlier relea	ase X	Rele	ase:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	x	
<u>Reason for</u> <u>change:</u>	Addition of T	urbo code intern	al interle	eaver for	smaller b	olock siz	e from	40-bit to 319)-bit	
Clauses affected	<u>4.2.3.2.</u>	3 of 25.212								
Other specs	Other 3G core Other GSM co specificatio MS test specif BSS test spec O&M specifica	specifications re ons ications ifications titions		$\begin{array}{l} \rightarrow \text{ List of} \\ \rightarrow \text{ List of} \end{array}$	CRs: CRs: CRs: CRs: CRs: CRs:					
Other comments:										
Clauses affected Other specs (affected: (M E (Other comments:	I: 4.2.3.2.3 Other 3G core Other GSM co specification MS test specifi BSS test spec O&M specifica	3 of 25.212 specifications re ons ications ifications itions		→ List of → List of → List of → List of → List of	CRs: CRs: CRs: CRs: CRs: CRs:					

<----- double-click here for help and instructions on how to create a CR.

Figure 4: Structure of the 8 state PCCC encoder (dotted lines effective for trellis termination only)

The initial value of the shift registers of the PCCC encoder shall be all zeros.

The output of the PCCC encoder is punctured to produce coded bits corresponding to the desired code rate. For rate 1/3, none of the systematic or parity bits are punctured, and the output sequence is X(0), Y(0), Y'(0), X(1), Y(1), Y'(1), etc.

4.2.3.2.2 Trellis termination for Turbo coding

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are added after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be

X(t) Y(t) X(t+1) Y(t+1) X(t+2) Y(t+2) X'(t) Y'(t) X'(t+1) Y'(t+1) X'(t+2) Y'(t+2).

4.2.3.2.3 Turbo code internal interleaver

Figure 5 depicts the overall 8 state PCCC Turbo coding scheme including Turbo code internal interleaver. The Turbo code internal interleaver consists of mother interleaver generation and pruning. For arbitrary given block length K, one mother interleaver is selected from the 134-163 mother interleavers set. The generation scheme of mother interleaver is described in section 4.2.3.2.3.1. After the mother interleaver generation, *l*-bits are pruned in order to adjust the mother interleaver to the block length K. Tail bits T_1 and T_2 are added for constituent encoders RSC1 and RSC2, respectively. The definition of *l* is shown in section 4.2.3.2.3.2.

Figure 5: Overall 8 State PCCC Turbo Coding

3G TS25.222 version 3.1.0

4.2.3.2.3.1 Mother interleaver generation

The interleaving consists of three stages. In first stage, the input sequence is written into the rectangular matrix row by row. The second stage is intra-row permutation. The third stage is inter-row permutation. The three-stage permutations are described as follows, the input block length is assumed to be K (32040 to 5114 bits).

First Stage:

(1) Determine the number of rows R such that

R = 5 (K = 40 to 159 bits)

R = 10 (K = 160 to 200 and 481 to 530 bits; Case-1)

R = 20 (K = any other block lengths except 481 to 530 bits; Case 2)

(2) Determine the number of columns C such that

<u>if K = 481 to 530 then</u> Case-1; C = p = 53

else Case-2;

(i) find minimum prime p such that,

$$0 = <(p+1)-K/R,$$

(ii) if
$$(0 = \langle p - K/R)$$
 then go to (iii),

else C = p+1.

(iii) if (0 = < p-1-K/R) then C = p-1,

else C = p.

(3) The input sequence of the interleaver is written into the $R \times C$ rectangular matrix row by row starting from row 0.

Second Stage:

A. If C = p

(A-1) Select a primitive root g_0 from table 2.

(A-2) Construct the base sequence c(i) for intra-row permutation as:

 $c(i) = [g_0 \times c(i-1)] \mod p$, i = 1, 2, ..., (p-2), c(0) = 1.

(A-3) Select the minimum prime integer set $\{q_j\}$ (j=1, 2, ..., R-1) such that

g.c.d{ q_j , p-1} =1

 $q_j > 6$

 $q_j > q_{(j-1)}$

where g.c.d. is greatest common divider. And $q_0 = 1$.

(A-4) The set $\{q_j\}$ is permuted to make a new set $\{p_j\}$ such that

 $p_{P(j)} = q_j, \ j = 0, 1, \ \dots, R-1,$

where P(j) is the inter-row permutation pattern defined in the third stage.

(A-5) Perform the *j*-th (j = 0, 1, 2, ..., R-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)), \quad i = 0, 1, 2, \dots, (p-2), \text{ and } c_i(p-1) = 0,$

where $c_i(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

<u>B. If C = p+1</u>

- (B-1) Same as case A-1.
- (B-2) Same as case A-2.
- (B-3) Same as case A-3.
- (B-4) Same as case A-4.
- (B-5) Perform the *j*-th (j = 0, 1, 2, ..., R-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)), \quad i = 0, 1, 2, \dots, (p-2), c_i(p-1) = 0, \text{ and } c_i(p) = p,$

(B-6) If $(K = C \times R)$ then exchange $c_{R-1}(p)$ with $c_{R-1}(0)$.

where $c_j(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

<u>C. If C = p-1</u>

- (C-1) Same as case A-1.
- (C-2) Same as case A-2.
- (C-3) Same as case A-3.
- (C-4) Same as case A-4.
- (C-5) Perform the *j*-th (j = 0, 1, 2, ..., R-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)) - 1, \quad i = 0, 1, 2, \dots, (p-2),$

where $c_j(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

Third Stage:

(1) Perform the inter-row permutation based on the following P(*j*) (*j*=0,1, ..., R-1) patterns, where P(*j*) is the original row position of the *j*-th permuted row.

 P_A : {19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11} for R = 20

 $P_B: \{19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10\} \text{ for } R=20$

 P_{C} : {9, 8, 7, 6, 5, 4, 3, 2, 1, 0} for R = 10

<u>P_D: {4, 3, 2, 1, 0} for R = 5</u>

The usage of these patterns is as follows:

Block length K: P(j)

40 to 159-bit: P_D

160 to 200-bit: P_C

201320 to 480-bit: PA

481 to 530-bit: P_C

531 to 2280-bit: P_A

- 2281 to 2480-bit: P_B
- 2481 to 3160-bit: P_A
- 3161 to 3210-bit: P_B
- 3211 to 5114-bit: PA
- (2) The output of the mother interleaver is the sequence read out column by column from the permuted $R \times C$ matrix starting from column 0.

p	<u>g</u> _	p	<u>g</u> _	p	<u>g</u> _	p	<u>g</u> _	p	<u>g</u> _
<u>7</u>	<u>3</u>	<u>47</u>	<u>5</u>	<u>101</u>	<u>2</u>	<u>157</u>	<u>5</u>	<u>223</u>	<u>3</u>
<u>11</u>	<u>2</u>	<u>53</u>	<u>2</u>	<u>103</u>	<u>5</u>	<u>163</u>	2	<u>227</u>	<u>2</u>
<u>13</u>	<u>2</u>	<u>59</u>	<u>2</u>	<u>107</u>	<u>2</u>	<u>167</u>	<u>5</u>	<u>229</u>	<u>6</u>
<u>17</u>	3	<u>61</u>	<u>2</u>	<u>109</u>	<u>6</u>	<u>173</u>	2	<u>233</u>	3
<u>19</u>	<u>2</u>	<u>67</u>	<u>2</u>	<u>113</u>	<u>3</u>	<u>179</u>	<u>2</u>	<u>239</u>	<u>7</u>
<u>23</u>	<u>5</u>	<u>71</u>	<u>7</u>	<u>127</u>	3	<u>181</u>	2	<u>241</u>	7
<u>29</u>	<u>2</u>	<u>73</u>	<u>5</u>	<u>131</u>	<u>2</u>	<u>191</u>	<u>19</u>	<u>251</u>	<u>6</u>
<u>31</u>	<u>3</u>	<u>79</u>	<u>3</u>	<u>137</u>	<u>3</u>	<u>193</u>	<u>5</u>	<u>257</u>	3
<u>37</u>	2	<u>83</u>	2	<u>139</u>	2	<u>197</u>	2		
<u>41</u>	<u>6</u>	<u>89</u>	<u>3</u>	<u>149</u>	<u>2</u>	<u>199</u>	3		
<u>43</u>	3	97	<u>5</u>	<u>151</u>	<u>6</u>	211	2		

Table 2: Table of prime p and associated primitive root \underline{g}_{0}

P	g ₀	Ð	g ₀	Ð	₽₀	P	<mark>€</mark> ₀	P	€
17	3	59	2	103	5	157	5	211	2
19	2	61	2	107	2	163	2	223	3
23	5	67	2	109	6	167	5	227	2
29	2	71	7	113	3	173	2	229	6
31	3	73	5	127	3	179	2	233	3
37	2	79	ф	131	2	181	2	239	7
41	6	83	2	137	3	191	19	2 41	7
43	3	89	З З	139	2	193	5	251	6
47	5	97	5	149	2	197	2	257	3
53	2	101	2	151	6	199	3		

4.2.3.2.3.2 Definition of number of pruning bits

The output of the mother interleaver is pruned by deleting the l-bits in order to adjust the mother interleaver to the block length K, where the deleted bits are non-existent bits in the input sequence. The pruning bits number l is defined as:

 $l = \mathbf{R} \times \mathbf{C} - \mathbf{K},$

where R is the row number and C is the column number defined in section 4.2.3.2.3.1.

3GPP RAN WG1 Meeting #10 Beijin, China, 18-21 Jan 2000

help.doc

Document	R1-00-0160
9.0	for 3GPP use the format TP-00vvv

or for SMG, use the format P-99xxx or for SMG, use the format P-99-xxx

				IFOT	Please s	ee embedded help	file at the bottom (of this
		CHANGE I	KEQU	JESI	page for	instructions on how	to fill in this form	correctly.
		25.222	CR	021		Current Versi	on: <u>3.1.0</u>	
GSM (AA.BB) or 3G	(AA.BBB) specifica	ation number ↑						
For submission to:RAN #7for approvalXstrategic(for SMGlist expected approval meeting # here ↑for informationImage: Comparison of the strategic(for SMG								r SMG e only)
For	rm: CR cover sheet, ve	ersion 2 for 3GPP and SMG	The latest	version of this	s form is availat	ole from: ftp://ftp.3gpp.o	org/Information/CR-F	orm-v2.doc
Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network (at least one should be marked with an X) (U)SIM ME X UTRAN / Radio X Core Network								ork 📃
Source:	NTT DoCol	Mo and Nortel Net	works			Date:	21-Jan-20	00
Subject:	Modification	<mark>n of Turbo code in</mark>	ternal in	terleaver	ſ			
Work item:								
Category:F(only one categoryBshall be markedCwith an X)DReason for	F Correction A Corresponds to a correction in an earlier release B Addition of feature C Functional modification of feature D Editorial modification							9-bit
change:								0.011
Clauses affected	<u>d:</u> 4.2.3.2	2.3 of TS 25.222						
Other specs affected:	Other 3G cor Other GSM c specificat MS test spec BSS test spe O&M specific	e specifications ore ions ifications cifications cations		$\begin{array}{l} \rightarrow \text{ List of} \\ \rightarrow \text{ List of} \end{array}$	CRs: CRs: CRs: CRs: CRs:			
<u>Other</u> comments:								

<----- double-click here for help and instructions on how to create a CR.

Figure 4-3: Structure of the 8-state PCCC encoder (dotted lines effective for trellis termination only)

The initial value of the shift registers of the PCCC encoder shall be all zeros.

The output of the PCCC encoder is punctured to produce coded bits corresponding to the desired code rate. For rate 1/3, none of the systematic or parity bits are punctured, and the output sequence is X(0), Y(0), Y'(0), X(1), Y(1), Y'(1), etc.

4.2.3.2.2 Trellis termination in turbo code

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are added after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4-3 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4-3 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be

X(t) Y(t) X(t+1) Y(t+1) X(t+2) Y(t+2) X'(t) Y'(t) X'(t+1) Y'(t+1) X'(t+2) Y'(t+2).

4.2.3.2.3 Turbo code internal interleaver

Figure 4-4 depicts the overall 8-State PCCC Turbo coding scheme including Turbo code internal interleaver. The Turbo code internal interleaver consists of mother interleaver generation and pruning. For arbitrary given block length K, one mother interleaver is selected from the $\frac{134}{163}$ mother interleavers set. The generation scheme of mother interleaver is described in section 4.2.3.2.3.1. After the mother interleaver generation, *l*-bits are pruned in order to adjust the mother interleaver to the block length K. Tail bits T₁ and T₂ are added for constituent encoders RSC1 and RSC2, respectively. The definition of *l* is shown in section 4.2.3.2.3.2.

4.2.3.2.3.1 Mother interleaver generation

The interleaving consists of three stages. In first stage, the input sequence is written into the rectangular matrix row by row. The second stage is intra-row permutation. The third stage is inter-row permutation. The three-stage permutations are described as follows, the input block length is assumed to be K (320-40 to 5114 bits).

First Stage:

(1) Determine the number of rows R such that

R = 10 (K = <u>160 to 200 bits and 481 to 530 bits; Case-1</u>)

- R = 20 (K = any other block lengths except 481 to 530 bits; Case-2)
- (2) Determine the number of columns C such that

<u>if K = 481 to 530 then Case 1;</u> C = p = 53

elseCase-2;

(i) find minimum prime p such that,

$$0 = <(p+1) - K/R$$

(ii) if $(0 = \langle p - K/R)$ then go to (iii)

else C = p + 1.

(iii) if (0 = then <math>C = p - 1.

else C = p.

(3) The input sequence of the interleaver is written into the $R \times C$ rectangular matrix row by row starting from row 0.

Second Stage:

A. If C = p

- (A-1) Select a primitive root g_0 from table 4.2.2-2.
- (A-2) Construct the base sequence c(i) for intra-row permutation as:

 $c(i) = [g_0 \times c(i-1)] \mod p \;,\; i = 1, 2, \dots (p-2)., c(0) = 1.$

- (A-3) Select the minimum prime integer set $\{q_j\}$ (j = 1, 2, ..., R-1) such that
 - $g.c.d\{q_i, p-1\} = 1$
 - $q_i > 6$

```
q_j > q_{(j-1)}
```

where g.c.d. is greatest common divider. And $q_0 = 1$.

(A-4) The set $\{q_i\}$ is permuted to make a new set $\{p_i\}$ such that

 $p_{P(j)} = q_j, \ j = 0, 1, \ \dots R-1,$

where P(j) is the inter-row permutation pattern defined in the third stage.

(A-5) Perform the *j*-th (j = 0, 1, 2, ..., C-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)), \quad i = 0, 1, 2, \dots, (p-2), \text{ and } c_i(p-1) = 0,$

where $c_j(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

If C = p+1

- (B-1) Same as case A-1.
- (B-2) Same as case A-2.
- (B-3) Same as case A-3.
- (B-4) Same as case A-4.
- (B-5) Perform the *j*-th (j = 0, 1, 2, ..., R-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)), \quad i = 0, 1, 2, \dots, (p-2), c_i(p-1) = 0, \text{ and } c_i(p) = p,$

where $c_i(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

(B-6) If (K = C × R) then exhange $c_{R-l}(p)$ with $c_{R-l}(0)$.

If
$$C = p-1$$

- (C-1) Same as case A-1.
- (C-2) Same as case A-2.
- (C-3) Same as case A-3.
- (C-4) Same as case A-4.
- (C-5) Perform the *j*-th (j = 0, 1, 2, ..., R-1) intra-row permutation as:

 $c_i(i) = c([i \times p_i] \mod (p-1)) - 1, i = 0, 1, 2, \dots, (p-2).,$

where $c_i(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

Third Stage:

Perform the inter-row permutation based on the following P(j) (j = 0, 1, ..., R-1) patterns, where P(j) is the original row position of the *j*-th permuted row.

 P_A : {19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11} for R = 20

 P_B : {19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10} for R = 20

 P_{C} : {9, 8, 7, 6, 5, 4, 3, 2, 1, 0} for R = 10

<u>P_D: {4, 3, 2, 1, 0} for R = 5</u>

The usage of these patterns is as follows:

Block length K: P(j)

<u>40 to 159-bit: P_D</u>

<u>160 to 200-bit: P_C</u>

201320 to 480-bit: PA

- 481 to 530-bit: P_C
- 531 to 2280-bit: P_A
- 2281 to 2480-bit: P_B
- 2481 to 3160-bit: P_A
- 3161 to 3210-bit: P_B
- 3211 to 5114-bit: P_A

(2) The output of the mother interleaver is the sequence read out column by column from the permuted $R \times C$ matrix starting from column 0.

p	<u>g</u> _	<u>p</u>	<u>g</u> _	<u>p</u>	<u>g</u> _	<u>p</u>	<u>g</u> _	<u>p</u>	<u>g</u> _
<u>7</u>	<u>3</u>	<u>47</u>	<u>5</u>	<u>101</u>	<u>2</u>	<u>157</u>	<u>5</u>	<u>223</u>	3
<u>11</u>	<u>2</u>	<u>53</u>	2	<u>103</u>	<u>5</u>	<u>163</u>	2	<u>227</u>	2
<u>13</u>	2	<u>59</u>	2	<u>107</u>	2	<u>167</u>	5	229	6
<u>17</u>	<u>3</u>	<u>61</u>	2	<u>109</u>	<u>6</u>	<u>173</u>	2	<u>233</u>	3
<u>19</u>	<u>2</u>	<u>67</u>	2	<u>113</u>	<u>3</u>	<u>179</u>	2	<u>239</u>	7
<u>23</u>	<u>5</u>	<u>71</u>	<u>7</u>	<u>127</u>	<u>3</u>	<u>181</u>	2	<u>241</u>	7
<u>29</u>	<u>2</u>	<u>73</u>	5	<u>131</u>	<u>2</u>	<u>191</u>	<u>19</u>	<u>251</u>	6
<u>31</u>	<u>3</u>	<u>79</u>	3	<u>137</u>	<u>3</u>	<u>193</u>	5	<u>257</u>	3
<u>37</u>	<u>2</u>	<u>83</u>	2	<u>139</u>	<u>2</u>	<u>197</u>	2		
<u>41</u>	<u>6</u>	<u>89</u>	3	<u>149</u>	<u>2</u>	<u>199</u>	3		
43	3	97	5	151	6	211	2		

Table 4.2.3-2: Table of prime *p* and associated primitive root <u>*g*</u>

þ	₽₀	₽	₽₀	Ð	g₀	₽	G ₀	Ð	g ₀
17	3	59	2	103	5	157	5	211	2
19	2	61	2	107	2	163	2	223	3
23	5	67	2	109	6	167	5	227	2
29	2	71	7	113	3	173	2	229	6
31	3	73	5	127	3	179	2	233	3
37	2	79	3	131	2	181	2	239	7
41	6	83	2	137	३	191	19	241	7
43	3	89	3	139	2	193	5	251	6
47	5	97	5	149	2	197	2	257	3
53	2	101	2	151	6	199	3		

4.2.3.2.3.2 Definition of the number of pruning bits

The output of the mother interleaver is pruned by deleting the l-bits in order to adjust the mother interleaver to the block length K, where the deleted bits are non-existent bits in the input sequence. The pruning bits number l is defined as:

 $l = R \times C - K$,

where R is the row number and C is the column number defined in section 4.2.3.2.3.1.