

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \mathbf{X} ME \mathbf{X} UTRAN/Radio \square Core Network \square
(at least one should be marked with an X)

Source:
Siemens
Subject: \quad TFCI coding specification in TDD

Work item:

Category:	F	Correction	X	Release:	Phase 2	
	A	Corresponds to a correction in an earlier release			Release 96	
(only one category	B	Addition of feature			Release 97	
shall be marked	C	Functional modification of feature			Release 98	
with an X)	D	Editorial modification			Release 99	X
					Release 00	

Reason for To align the TFCI specification with corrections applied to FDD (see R1-00-0091). change:

Clauses affected: $\quad 4.3 .1 .1,4.3 .1 .2 .1,4.1 .3 .2 .2$
Other specs Other 3G core specifications
affected:

Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

Other
 comments:

<--------- double-click here for help and instructions on how to create a CR.

Table 4.3.1-1: Basis sequences for $(\mathbf{3 2 , 1 0})$ TFCI code

\mathbf{I}	$\mathrm{M}_{\mathrm{i}, 0}$	$\mathrm{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathrm{i}, 2}$	$\mathrm{M}_{\mathrm{i}, 3}$	$\mathrm{M}_{\mathrm{i}, 4}$	$\mathrm{M}_{\mathrm{i}, 5}$	$\mathrm{M}_{\mathrm{i}, 6}$	$\mathrm{M}_{\mathrm{i}, 7}$	$\mathrm{M}_{\mathrm{i}, 8}$	$\mathrm{M}_{\mathrm{i}, 9}$
0	1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	1	0	0	0
2	1	1	1	0	0	0	0	0	0	1
3	1	0	0	1	0	0	1	0	1	1
4	1	1	0	1	0	0	0	0	0	1
5	1	0	1	1	0	0	0	0	1	0
6	1	1	1	1	0	0	0	1	0	0
7	1	0	0	0	1	0	0	1	1	0
8	1	1	0	0	1	0	1	1	1	0
9	1	0	1	0	1	0	1	0	1	1
10	1	1	1	0	1	0	0	0	1	1
11	1	0	0	1	1	0	0	1	1	0
12	1	1	0	1	1	0	0	1	0	1
13	1	0	1	1	1	0	1	0	0	1
14	1	1	1	1	1	0	1	1	1	1
15	1	1	0	0	0	1	1	1	0	0
16	1	0	1	0	0	1	1	1	0	1
17	1	1	1	0	0	1	1	0	1	0
18	1	0	0	1	0	1	0	1	1	1
19	1	1	0	1	0	1	0	1	0	1
20	1	0	1	1	0	1	0	0	1	1
21	1	1	1	1	0	1	0	1	1	1
22	1	0	0	0	1	1	0	1	0	0
23	1	1	0	0	1	1	1	1	0	1
24	1	0	1	0	1	1	1	0	1	0
25	1	1	1	0	1	1	1	0	0	1
26	1	0	0	1	1	1	0	0	1	0
27	1	1	0	1	1	1	1	1	0	0
28	1	0	1	1	1	1	1	1	1	0
29	1	1	1	1	1	1	1	1	1	1
30	1	0	0	0	0	0	0	0	0	0
31	1	0	0	0	0	1	1	0	0	0

Let's define the TFCI information bits as $\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4, \mathrm{a} 5, \mathrm{a} 6, \mathrm{a} 7, \mathrm{a} 8, \mathrm{a} 9$ (a 0 is LSB and a 9 is MSB). The TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated DPCH radio frame.

The output code word bits b_{i} are given by:
$b_{i}=\sum_{n=0}^{9}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 31 . \mathrm{N}_{\mathrm{TFCI}}=32$.

4.3.1.2 Coding of short TFCI lengths

4.3.1.2.1 Coding very short TFCIs by repetition

If the number of TFCI bits is 1 or 2 , then repetition will be used for coding. In this case each bit is repeated to a total of 4 times giving 4-bit transmission $\left(\mathrm{N}_{\mathrm{TFCI}}=4\right)$ for a single TFCI bit and 8-bit transmission ($\mathrm{N}_{\mathrm{TFCI}}=8$) for 2 TFCI bits. Let's define the TFCI information bit(s) as b0 (or b0 and b1). The TFCI information bit(s) shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated DPCH radio frame. In the case of two TFCI bits denoted b_{0} and b_{1} the TFCI word shall be $\left\{b_{0}, b_{1}, b_{0}, b_{1}, b_{0}\right.$, $\left.b_{1,} b_{0,} b_{1}\right\}$.

4.3.1.2.2 Coding short TFCls using bi-orthogonal codes

If the number of TFCI bits is in the range 3 to 5 the TFCI bits are encoded using a $(16,5)$ bi-orthogonal (or first order Reed-Muller) code. The coding procedure is as shown in figure 4-8.

Figure 4-8: Channel coding of short length TFCI bits
The code words of the $(16,5)$ bi-orthogonal code are linear combinations of 5 basis sequences as defined in table 4.3.12 below.

Table 4.3.1-2: Basis sequences for $(16,5)$ TFCl code

i	$\mathrm{M}_{\mathrm{i}, 0}$	$\mathrm{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathrm{i}, 2}$	$\mathrm{M}_{\mathrm{i}, 3}$	$\mathrm{M}_{\mathrm{i}, 4}$
0	1	1	0	0	0
1	1	0	1	0	0
2	1	1	1	0	0
3	1	0	0	1	0
4	1	1	0	1	0
5	1	0	1	1	0
6	1	1	1	1	0
7	1	0	0	0	1
8	1	1	0	0	1
9	1	0	1	0	1
10	1	1	1	0	1
11	1	0	0	1	1
12	1	1	0	1	1
13	1	0	1	1	1
14	1	1	1	1	1

15	1	0	0	0	0

Let's define the TFCI information bits as a0, a1, a2, a3, a4 (a 0 is LSB and a 4 is MSB). The TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated DPCH radio frame.

The output code word bits b_{j} are given by:
$b_{i}=\sum_{n=0}^{4}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 15 . \mathrm{N}_{\mathrm{TFCI}}=16$.

