

Some Clarification about CPCH Chann el Assignment

Tdoc R1-00-0141

2000. Jan. 20 Beijing, China

Samsung Electronics Co. Ltd

1. Introduction

- 2. Performance Analysis
- 3. UE complexity
- 4. Impact of CA-AICH error
- 5. Conclusion

Introduction (1)

Simulation Parameters

(1) CPCH data rate construction and CPCH capacity

Number of CPCH channel (Nc) = 9

Channel Bit Rate	60	120	240	480	960
Case 1	4	2	1	1	1
Case 2	4	3	0	1	1

Total Capacity

Case 1 : 2.16 Mbps

Case 2 : 2.04 Mbps

(2) UE's data rate distribution

Channel Bit Rate	60	120	240	480	969
Case 1	4/9	2/9	1/9	1/9	1/9
Case 2	4/9	3/9	0	1/9	1/9

Simulation Parameters

- (3) Message Length : 3 ~ 10 frame (uniform distribution)
- (4) Access slot time : 1.33 ms
- (5) power control preamble : 4 * 1.33 ms
- (6) 1 frame: 10 ms
- (7) AP and CD transmission
 - AP transmission and response has no error. (error free).
 - Transmission and response: 4 Access slots
 - CD preamble transmission and response has no error. (error free).
 - Transmission and response: 4 Access slots
 - AP_AICH, CD_AICH, and CD/CA_AICH are error-free.
- (8) Data distribution: Poisson
- (9) Starting Transmission at Access Slot
- (10) $N_max = 10$

Simulation Parameters

(10) $N_max = 10$

(11) Backoff

Backoff 1 : Backoff after monitoring

CA: Requested data rate is larger than broadcasting maximum rate

CM: Channels are busy at Requested data rate

Geometric distribution

• Backoff 2 :

Receiving NAK after receiving

Backoff 3 : Collision

Collision NAK

New Simulation Results(1)

8

New Simulation Results(2)

9

Structure of CD/CA-AICH detector

UE H/W complexity

- Signatures of CA-AICH and CD-AICH
 - Same as that of RACH AP-AICH
 - Mapping with CD/CA-AICH

○ 8 CD signature with binary modulation = 16 CD-AICH

○ 8 CA signature with binary modulation = 16 CA-AICH

- In UCSM (UE Channel Selection Method)
 - Detect Only CD-AICH
 - One correlator : 4096 (=256*16) complex additions
- In VCAM (Versatile Channel Assignment Method)
 - CD and CA can be detected at the same time
 - Total complexity = 4160 (= $256*16+16*log_216$) complex additions
- Additional complexity is negligible

P(CA error, CD correct)

Simulation condition

– 3km/h 1-path/2-path, and AWGN

Downlink operating range

 Downlink transmission power in connection – 25.101

Physical Channel	Power
СРІСН	$CPICH_Ec/Ior = -10 \text{ dB}$
РССРСН	$PCCPCH_Ec/Ior = -12 dB$
SCH	$PCCPCH_Ec/Ior = -12 dB$
PICH	$PICH_Ec/Ior = -15 \text{ dB}$
DPCH	The power needed to meet the BER/BLER target
OCNS	Necessary power so that total transmit power spectral density of BS (Ior) adds to one

• Relation between Eb/lo and Ec/lor $\frac{E_b}{I_o} = PG \times \frac{E_c}{I_{or}} \times \frac{\hat{I}_{or}}{I_o} \times \frac{1}{2}$

Discussion (1)

- Collision in RACH
 - UTRAN sends 'NAK' to UE but detected as 'ACK'
- Collision in UE Selection of CPCH
 - UTRAN sends 'NAK' to UE but detected as 'ACK'
 - More than one UE can send the same CD preamble, and bot h UEs get CD-AICH
- Collision in VCAM of CPCH
 - CA-AICH error

Discussion (2)

- If collision occurs in VCAM, easily monitored
 - UTRAN can detect collision by using of CPCH physical channel BE
 R, DPDCH BER, Transport Channel Block rate and so on.
 - UE can detect and stop transmission based on the downlink DPCC
 H associated with CPCH
 - frame synchronization
 - CRC error
- Escape procedure
 - If UTRAN detects collision
 - OPower down command through downlink DPCCH
 - If UE detects collision
 - O Stop CPCH transmission

Monitoring Abnormal Situation

Abnormal situation

- Abnormal situation can occur
 - when 3km/h two path channel, no TX diversity
 - P(CA error, CD correct) = 0.01@10dB
 - Other UE is occupying the same channel = 1/16
 - Missing DL frame synchronization error = 1/15
- When Tx diversity is applied, 2~4dB gain is obtained and can reduce CA-AICH error

Conclusion

Performance issue

- Considerable performance gain over UE channel selection m ethod I throughput and access delay
- UE complexity issue
 - Only minor increase in complexity
- Abnormal situation
 - Only occurs when
 - O CA-AICH is error while CD-AICH is correct
 - Other UE is occupying the same channel
 - Can be monitored by UE or UTRAN
 - O Physical state (BER, BLER,...) measurement
 - frame synchronization
 - O CRC error