3GPP TSG Working G Beijing, China	roup 1#10 7	「SGR1#10(00)0033
January 18-21, 2000		
Agenda:	AH 14	
Source:	GBT	
Subject: additions to 25.211.	CR023: CPCH-related editorial changes, t	echnical changes and
Document for	Approval	

This CR is partially includes most of the changes that GBT proposed in the WG1#9 meeting. These changes were approved pending changing the format of the document. However, GBT has added new items to this CR that have been discussed on the reflector. Specifically several tables have been added to provide the DPDCH and DPCCH fields for the CPCH message part. Also the editorial change of CD-AICH to CD-ICH necessitates introduction of new physical channel which is also proposed in this CR.

TSG Working Beijing, China	Group 1 # 10 a – Jan 18-21, 2000	Document R1-000033 e.g. for 3GPP use the format TP-99x0 or for SMG, use the format P-99-x0
		ease see embedded help file at the bottom of this ge for instructions on how to fill in this form correctly
	25.211 CR 023	Current Version: 3.0.1
GSM (AA.BB) or 3G	a (AA.BBB) specification number ↑	ber as allocated by MCC support team
For submission	to: WG1 for approval X neeting # here ↑ for information	strategic (for SMG non-strategic use only)
Form	m: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is a	available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.do
Proposed changed (at least one should be n	ge affects: (U)SIM ME UTRA	AN / Radio X Core Network
Source:	GBT	Date: Jan 13, 2000
<u>Subject:</u>	CPCH-related editoprial changes, technical 25.211.	changes and additions to
Work item:		
Category:FA(only one categoryshall be markedCwith an X)	Correction Corresponds to a correction in an earlier release Addition of feature Functional modification of feature Editorial modification	XRelease:Phase 2Release 96Release 96Release 97Release 97Release 98Release 98XRelease 99Release 00Release 00
<u>Reason for</u> <u>change:</u>	 Addition of tables for CPCH message field Introduction of CD-ICH as a new physical channel Other misc editorial changes and clarifications 	
Clauses affected	<u>d:</u> <u>3.3, 5.2.2.2.1, 5.2.2.2.4, 5.2.2.2.5, 5.3.2.3, 5.3</u>	3.3.6, 5.3.3.7, 6, 7.4
Other specs affected:	Other 3G core specifications \rightarrow List of CRsOther GSM core specifications \rightarrow List of CRsMS test specifications \rightarrow List of CRsBSS test specifications \rightarrow List of CRsO&M specifications \rightarrow List of CRs	5: 5: 5: 5:
<u>Other</u> comments:		
help.doc		

<----- double-click here for help and instructions on how to create a CR.

1 Scope

- 2 References
- 3 Definitions, symbols and abbreviations
- 3.1 Definitions
- 3.2 Symbols

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AI	Acquisition Indicator
AICH	Acquisition Indicator Channel
AP	Access Preamble
BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CD	Collision Detection
CD-ICH	Collision Detection Indicator Channel
CPCH	Common Packet Channel
CPICH	Common Pilot Channel
DCH	Dedicated Channel
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPDCH	Dedicated Physical Data Channel
DSCH	Downlink Shared Channel
DSMA-CD	Digital Sense Multiple Access – Collision Detection
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FBI	Feedback Information
MUI	Mobile User Identifier
PCH	Paging Channel
P-CCPCH	Primary Common Control Physical Channel
PCPCH	Physical Common Packet Channel
PDSCH	Physical Downlink Shared Channel
PI	Page Indicator
PICH	Page Indicator Channel
PRACH	Physical Random Access Channel
PSC	Primary Synchronisation Code
RACH	Random Access Channel
RNC	Radio Network Controller
S-CCPCH	Secondary Common Control Physical Channel
SCH	Synchronisation Channel
SF	Spreading Factor
SFN	System Frame Number

SSC	Secondary Synchronisation Code
STTD	Space Time Transmit Diversity
TFCI	Transport Format Combination Indicator
TSTD	Time Switched Transmit Diversity
TPC	Transmit Power Control
UE	User Equipment
UTRAN	UMTS Terrestrial Radio Access Network

4 Transport channels

5 Physical channels

Physical channels typically consist of a layered structure of radio frames and time slots, although this is not true for all physical channels. Depending on the symbol rate of the physical channel, the configuration of radio frames or time slots varies.

Radio frame: A Radio frame is a processing unit which consists of 15 time slots.

Time slot: A Time slot is a unit which consists of fields containing bits. The number of bits per time slot depends on the physical channel.

5.1 The physical resource

The basic physical resource is the code/frequency plane. In addition, on the uplink, different information streams may be transmitted on the I and Q branch. Consequently, a physical channel corresponds to a specific carrier frequency, code, and, on the uplink, relative phase (0 or $\pi/2$).

5.2 Uplink physical channels

5.2.1 Dedicated uplink physical channels

There are two types of uplink dedicated physical channels, the uplink Dedicated Physical Data Channel (uplink DPDCH) and the uplink Dedicated Physical Control Channel (uplink DPCCH).

The DPDCH and the DPCCH are I/Q code multiplexed within each radio frame (see [4]).

The uplink DPDCH is used to carry dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH). There may be zero, one, or several uplink DPDCHs on each Layer 1 connection.

The uplink DPCCH is used to carry control information generated at Layer 1. The Layer 1 control information consists of known pilot bits to support channel estimation for coherent detection, transmit power-control (TPC) commands, feedback information (FBI), and an optional transport-format combination indicator (TFCI). The transport-format combination indicator informs the receiver about the instantaneous parameters of the different transport channels multiplexed on the uplink DPDCH, and corresponds to the data transmitted in the same frame. It is the UTRAN that determines if a TFCI should be transmitted, hence making it mandatory for all UEs to support the use of TFCI in the uplink. There is one and only one uplink DPCCH on each Layer 1 connection.

Figure 1 shows the frame structure of the uplink dedicated physical channels. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period

Figure 1: Frame structure for uplink DPDCH/DPCCH

The parameter k in figure 1 determines the number of bits per uplink DPDCH/DPCCH slot. It is related to the spreading factor SF of the physical channel as $SF = 256/2^k$. The DPDCH spreading factor may thus range from 256 down to 4. Note that an uplink DPDCH and uplink DPCCH on the same Layer 1 connection generally are of different rates, i.e. have different spreading factors and different values of k.

The exact number of bits of the different uplink DPCCH fields (N_{pilot} , N_{TFCI} , N_{FBI} , and N_{TPC}) is determined in table 2. The field order and total number of bits/slot are fixed, though the number of bits per field may vary during a connection.

The values for the number of bits per field are given in table 1 and table 2. The channel bit and symbol rates given in table 1 are the rates immediately before spreading. The pilot patterns are given in table 3 and table 4, the TPC bit pattern is given in table 5.

The N_{FBI} bits are used to support techniques requiring feedback between the UE and the UTRAN Access Point (=cell transceiver), including closed loop mode transmit diversity and site selection diversity (SSDT). The exact details of the FBI field are shown in figure 2 and described below.

Figure 2: Details of FBI field

The S field is used for SSDT signalling, while the D field is used for Closed Loop Mode Transmit Diversity Signalling. The S field can be of length 0, 1 or 2. The D field can be of length 0 or 1. The total FBI field size N_{FBI} is according to table 2 (DPCCH fields). Simultaneous use of SSDT power control and Closed Loop Mode Transmit Diversity requires that the S field is of length 1. The use of these FBI fields is described in [5].

Slot Format #i	Channel Bit Rate	Channel Symbol	SF	Bits/	Bits/	N _{data}
	(kbps)	Rate (ksps)		Frame	Slot	
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80
4	240	240	16	2400	160	160
5	480	480	8	4800	320	320
6	960	960	4	9600	640	640

Table 1: DPDCH fields

There are two types of Uplink Dedicated Physical Channels; those that include TFCI(e.g. for several simultaneous services) and those that do not include TFCI(e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 2. In compressed mode, DPCCH slot formats with TFCI fields are changed. There are two possible compressed slot formats for each normal slot format. They are labelled A and B and the selection between them is dependent on the number of slots that are transmitted in each frame in compressed mode. The channel bit and symbol rates given in table 2 are the rates immediately before spreading.

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{pilot}	N _{TPC}	N _{TFCI}	N _{FBI}	Transmitted slots per radio frame
0	15	15	256	150	10	6	2	2	0	15
0A	15	15	256	150	10	5	2	3	0	10-14
0B	15	15	256	150	10	4	2	4	0	8-9
1	15	15	256	150	10	8	2	0	0	8-15
2	15	15	256	150	10	5	2	2	1	15
2A	15	15	256	150	10	4	2	3	1	10-14
2B	15	15	256	150	10	3	2	4	1	8-9
3	15	15	256	150	10	7	2	0	1	8-15
4	15	15	256	150	10	6	2	0	2	8-15
5	15	15	256	150	10	5	1	2	2	15
5A	15	15	256	150	10	4	1	3	2	10-14
5B	15	15	256	150	10	3	1	4	2	8-9

Table 2: DPCCH fields

The pilot bit pattern is described in table 3 and table 4. The shadowed part can be used as frame synchronization words. (The value of the pilot bit other than the frame synchronization word shall be "1".)

Table 3: Pilot bit patterns for uplink DPCCH with $N_{pilot} = 3, 4, 5$ and 6

	N	pilot =	3		N _{pilo}	t = 4			Ν	pilot =	5				N _{pilo}	t = 6		
Bit #	0	1	2	0	1	2	3	0	1	2	3	4	0	1	2	3	4	5
Slot #0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0
1	0	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	1	0
2	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1
3	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
4	1	0	1	1	1	0	1	1	0	1	0	1	1	1	0	1	0	1
5	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0
6	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	0
7	1	0	1	1	1	0	1	1	0	1	0	0	1	1	0	1	0	0
8	0	1	1	1	0	1	1	0	1	1	1	0	1	0	1	1	1	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1
11	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0	1	1	1
12	1	0	1	1	1	0	1	1	0	1	0	0	1	1	0	1	0	0
13	0	0	1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	1
14	0	0	1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	1

7

			N	l _{pilot} =	7			N _{pilot} = 8							
Bit #	0	1	2	3	4	5	6	0	1	2	3	4	5	6	7
Slot #0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0
1	1	0	0	1	1	0	1	1	0	1	0	1	1	1	0
2	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1
3	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
4	1	1	0	1	0	1	1	1	1	1	0	1	0	1	1
5	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0
6	1	1	1	1	0	0	1	1	1	1	1	1	0	1	0
7	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
8	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1
11	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
13	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1
14	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1

Table 4: Pilot bit patterns for uplink DPCCH with $N_{pilot} = 7$ and 8

The relationship between the TPC bit pattern and transmitter power control command is presented in table 5.

Table 5: TPC Bit Pattern

TPC Bit	Pattern	Transmitter power
N _{TPC} = 1	N _{TPC} = 2	control command
1	11	1
0	00	0

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain combination of bit rates of the DCHs currently in use. This correspondence is (re-)negotiated at each DCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

Multi-code operation is possible for the uplink dedicated physical channels. When multi-code transmission is used, several parallel DPDCH are transmitted using different channelization codes, see [4]. However, there is only one DPCCH per connection.

5.2.2 Common uplink physical channels

5.2.2.1 Physical Random Access Channel (PRACH)

The Physical Random Access Channel (PRACH) is used to carry the RACH.

5.2.2.1.1 RACH transmission

The random-access transmission is based on a Slotted ALOHA approach with fast acquisition indication. The UE can start the transmission at a number of well-defined time-offsets, denoted *access slots*. There are 15 access slots per two frames and they are spaced 5120 chips apart. Timing information on the access slots and the acquisition indication is given in section 7.3. Figure 3 shows the access slot numbers and their spacing to each other. Information on what access slots are available in the current cell is given by higher layers.

The structure of the random-access transmission is shown in figure 4. The random-access transmission consists of one or several *preambles* of length 4096 chips and a *message* of length 10 or 20 ms. The UE indicates the length of the message part to the network by using specific signatures and/or access slots. The assignment, which signatures and/or access slots are used for which message length, is performed by higher layers.

Figure 4: Structure of the random-access transmission

5.2.2.1.2 RACH preamble part

The preamble part of the random-access burst consists of 256 repetitions of a signature. There are a total of 16 different signatures, based on the Hadamard code set of length 16 (see [4] for more details).

5.2.2.1.3 RACH message part

Figure 5 shows the structure of the Random-access message part radio frame. The 10 ms message part radio frame is split into 15 slots, each of length $T_{slot} = 2560$ chips. Each slot consists of two parts, a data part that carries Layer 2 information and a control part that carries Layer 1 control information. The data and control parts are transmitted in parallel. A 20 ms long message part consists of two consecutive message part radio frames.

The data part consists of $10*2^k$ bits, where k=0,1,2,3. This corresponds to a spreading factor of 256, 128, 64, and 32 respectively for the message data part.

The control part consists of 8 known pilot bits to support channel estimation for coherent detection and 2 TFCI bits. This corresponds to a spreading factor of 256 for the message control part. The pilot bit pattern is described in table 8. The total number of TFCI bits in the random-access message is 15*2 = 30. The TFCI value corresponds to a certain transport format of the current Random-access message.

Message part radio frame $T_{RACH} = 10 \text{ ms}$

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{data}
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80

Table 6: Random-access message data fields

Table 7: I	Random-access	message	control	fields
------------	---------------	---------	---------	--------

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{pilot}	NTFCI
0	15	15	256	150	10	8	2

Table 8: Pilot bit	patterns for	RACH	message	part with N	$I_{\text{pilot}} = 8$
--------------------	--------------	------	---------	-------------	------------------------

				N _{pilo}	t = 8			
Bit #	0	1	2	3	4	5	6	7
Slot #0	1	1	1	1	1	1	1	0
1	1	0	1	0	1	1	1	0
2	1	0	1	1	1	0	1	1
3	1	0	1	0	1	0	1	0
4	1	1	1	0	1	0	1	1
5	1	1	1	1	1	1	1	0
6	1	1	1	1	1	0	1	0
7	1	1	1	0	1	0	1	0
8	1	0	1	1	1	1	1	0
9	1	1	1	1	1	1	1	1
10	1	0	1	1	1	0	1	1
11	1	1	1	0	1	1	1	1
12	1	1	1	0	1	0	1	0
13	1	0	1	0	1	1	1	1
14	1	0	1	0	1	1	1	1

5.2.2.2 Physical Common Packet Channel (PCPCH)

The Physical Common Packet Channel (PCPCH) is used to carry the CPCH.

5.2.2.2.1 CPCH transmission

The CPCH transmission is based on DSMA-CD approach with fast acquisition indication. The UE can start transmission at a number of well-defined time-offsets, relative to the frame boundary of the received BCH of the current cell. The access slot timing and structure is identical to RACH in section 5.2.2.1.1. The structure of the CPCH random access transmission is shown in figure 6. The CPCH random access transmission consists of one or several Access Preambles [A-P] of length 4096 chips, one Collision Detection Preamble (CD-P) of length 4096 chips, a DPCCH Power Control Preamble (PC-P) which is either 0 slots or 8 slots in length, and a message of variable length Nx10 ms.

Figure 6: Structure of the CPCH random access transmission

5.2.2.2.2 CPCH access preamble part

Similar to 5.2.2.1.2 (RACH preamble part). The RACH preamble signature sequences are used. The number of sequences used could be less than the ones used in the RACH preamble. The scrambling code could either be chosen to be a different code segment of the Gold code used to form the scrambling code of the RACH preambles (see [4] for more details) or could be the same scrambling code in case the signature set is shared.

5.2.2.2.3 CPCH collision detection preamble part

Similar to 5.2.2.1.2 (RACH preamble part). The RACH preamble signature sequences are used. The scrambling code is chosen to be a different code segment of the Gold code used to form the scrambling code for the RACH and CPCH preambles (see [4] for more details).

5.2.2.2.4 CPCH power control preamble part

The power control preamble segment is a DPCCH Power Control Preamble (PC-P). The following table 9 is identical to Rows 2 and 4 of table 2 in section 5.2.1. Table 9 defines the DPCCH fields which only include Pilot, FBI and TPC bits. The Power Control Preamble length is a parameter which shall take the values 0 or 8 slots, as set by the higher layers.

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{pilot}	N _{TFCI}	N _{FBI}	N _{TPC}
0	15	15	256	150	10	8	0	0	2
1	15	15	256	150	10	7	0	1	2

Table 9: DPCCH fields for CPCH power control preamble segment

5.2.2.2.5 CPCH message part

Figure 1 in section 5.2.1 shows the structure of the CPCH message part. Each message consists of up to N_Max_frames 10 ms frames. N_Max_frames is a higher layer parameter. Each 10 ms frame is split into 15 slots, each of length $T_{slot} = 2560$ chips. Each slot consists of two parts, a data part that carries higher layer information and a control part that carries Layer 1 control information. The data and control parts are transmitted in parallel.

The data part consists of $10*2^k$ bits, where k = 0, 1, 2, 3, 4, 5, 6, corresponding to spreading factors of 256, 128, 64,

32, 16, 8, 4 respectively. Note that various rates might be mapped to different signature sequences.

The spreading factor for the UL-DPCCH (message control part) is 256. The entries in <u>the following</u> table <u>4xxx</u> corresponding to spreading factors of 256 and below and table 2 [both in section 5.2.1] apply to the DPDCH <u>fields of</u> and <u>DPCCH fields respectively for</u>_the CPCH message part.

Table xxx: DPDCH fields of the CPCH message part

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	<u>SF</u>	<u>Bits/</u> Frame	<u>Bits/</u> <u>Slot</u>	<u>N_{data}</u>
<u>0</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>10</u>
<u>1</u>	<u>30</u>	<u>30</u>	<u>128</u>	<u>300</u>	<u>20</u>	<u>20</u>
<u>2</u>	<u>60</u>	<u>60</u>	<u>64</u>	<u>600</u>	<u>40</u>	<u>40</u>
<u>3</u>	<u>120</u>	<u>120</u>	<u>32</u>	<u>1200</u>	<u>80</u>	<u>80</u>
4	<u>240</u>	<u>240</u>	<u>16</u>	2400	<u>160</u>	<u>160</u>
<u>5</u>	<u>480</u>	<u>480</u>	<u>8</u>	<u>4800</u>	<u>320</u>	<u>320</u>
<u>6</u>	<u>960</u>	<u>960</u>	<u>4</u>	<u>9600</u>	<u>640</u>	<u>640</u>

The following table xxx corresponds to the DPCCH field of the CPCH message part.

Table xxx: DPCCH fields of the CPCH message part

<u>Slot</u> Format <u>#i</u>	<u>Channel Bit</u> Rate (kbps)	<u>Channel</u> Symbol Rate <u>(ksps)</u>	<u>SF</u>	<u>Bits/</u> Frame	<u>Bits/</u> <u>Slot</u>	<u>N_{pilot}</u>	<u>N_{TPC}</u>	<u>N_{tfci}</u>	<u>N_{fbi}</u>
<u>0</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>6</u>	<u>2</u>	<u>2</u>	<u>0</u>
<u>1</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>8</u>	2	<u>0</u>	<u>0</u>
<u>2</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>5</u>	2	2	<u>1</u>
<u>3</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>7</u>	2	<u>0</u>	<u>1</u>
4	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>6</u>	2	<u>0</u>	2
<u>5</u>	<u>15</u>	<u>15</u>	<u>256</u>	<u>150</u>	<u>10</u>	<u>5</u>	<u>1</u>	2	2

<u>Figure xxx</u> shows the frame structure of the uplink common packet physical channel. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period.

Figure xxx: Frame structure for uplink DPDCH/DPCCH Associated with CPCH

The spreading factor may vary in time (per frame). However, the SF can never be lower than the initially UTRANgranted Spreading Factor.

12

5.3 Downlink physical channels

5.3.1 Downlink Transmit Diversity

5.3.2 Dedicated downlink physical channels

There is only one type of downlink dedicated physical channel, the Downlink Dedicated Physical Channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH), is transmitted in time-multiplex with control information generated at Layer 1 (known pilot bits, TPC commands, and an optional TFCI). The downlink DPCH can thus be seen as a time multiplex of a downlink DPDCH and a downlink DPCCH, compare section 5.2.1. It is the UTRAN that determines if a TFCI should be transmitted, hence making it is mandatory for all UEs to support the use of TFCI in the downlink. In case of USTS, the TPC bits in slot #14 in frames with CFN mod 2 = 0 are replaced by Time Alignment Bits (TABs) as described in section 9.3 of TS 25.214.

Figure 8 shows the frame structure of the downlink DPCH. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period.

One radio frame, $T_f = 10 \text{ ms}$

Figure 8: Frame structure for downlink DPCH

The parameter k in figure 8 determines the total number of bits per downlink DPCH slot. It is related to the spreading factor SF of the physical channel as $SF = 512/2^k$. The spreading factor may thus range from 512 down to 4.

The exact number of bits of the different downlink DPCH fields (N_{pilot} , N_{TPC} , N_{TFCI} , N_{data1} and N_{data2}) is determined in table 11. The overhead due to the DPCCH transmission has to be negotiated at the connection set-up and can be renegotiated during the communication, in order to match particular propagation conditions.

There are basically two types of downlink Dedicated Physical Channels; those that include TFCI (e.g. for several simultaneous services) and those that do not include TFCI(e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 11. In compressed mode, a different slot format is used compared to normal mode. There are two possible compressed slot formats that are labelled A and B. Format B is used for compressed mode by spreading factor reduction and format A is used for all other transmission time reduction methods. The channel bit and symbol rates given in table 11 are the rates immediately before spreading.

Table 11: DPDCH and DPCCH fields

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate	SF	Bits/ Slot	DPI Bits	DCH /Slot	C B)PCCH its/Slo	l t	Transmitted slots per radio frame
	(1000)	(ksps)			N _{Data1}	N _{Data2}	N _{TPC}	NTFCI	N _{Pilot}	N _{Tr}
0	15	7.5	512	10	0	4	2	0	4	15
0A	15	7.5	512	10	0	4	2	0	4	8-14
0B	30	15	256	20	0	8	4	0	8	8-14
1	15	7.5	512	10	0	2	2	2	4	15
1B	30	15	256	20	0	4	4	4	8	8-14
2	30	15	256	20	2	14	2	0	2	15
2A	30	15	256	20	2	14	2	0	2	8-14
2B	60	30	128	40	4	28	4	0	4	8-14
3	30	15	256	20	2	12	2	2	2	15
ЗA	30	15	256	20	2	10	2	4	2	8-14
3B	60	30	128	40	4	24	4	4	4	8-14
4	30	15	256	20	2	12	2	0	4	15
4A	30	15	256	20	2	12	2	0	4	8-14
4B	60	30	128	40	4	24	4	0	8	8-14
5	30	15	256	20	2	10	2	2	4	15
5A	30	15	256	20	2	8	2	4	4	8-14
5B	60	30	128	40	4	20	4	4	8	8-14
6	30	15	256	20	2	8	2	0	8	15
6A	30	15	256	20	2	8	2	0	8	8-14
6B	60	30	128	40	4	16	4	0	16	8-14
7	30	15	256	20	2	6	2	2	8	15
7A	30	15	256	20	2	4	2	4	8	8-14
7B	60	30	128	40	4	12	4	4	16	8-14
8	60	30	128	40	6	28	2	0	4	15
8A	60	30	128	40	6	28	2	0	4	8-14
8B	120	60	64	80	12	56	4	0	8	8-14
9	60	30	128	40	6	26	2	2	4	15
9A	60	30	128	40	6	24	2	4	4	8-14
9B	120	60	64	40	12	52	4	4	8	8-14
10	60	30	128	40	6	24	2	0	8	15
10A	60	30	128	40	6	24	2	0	8	8-14
10B	120	60	64	80	12	48	4	0	16	8-14
11	60	30	128	40	6	22	2	2	8	15
11A	60	30	128	40	6	20	2	4	8	8-14
11B	120	60	64	80	12	44	4	4	16	8-14
12	120	60	64	80	12	48	4	8*	8	15
12A	120	60	64	80	12	40	4	16*	8	8-14
12B	240	120	32	160	24	96	8	16*	16	8-14
13	240	120	32	160	28	112	4	8*	8	15
13A	240	120	32	160	28	104	4	16*	8	8-14
13B	480	240	16	320	56	224	8	16*	16	8-14
14	480	240	16	320	56	232	8	8*	16	15
14A	480	240	16	320	56	224	8	16*	16	8-14
14B	960	480	8	640	112	464	16	16*	32	8-14
15	960	480	8	640	120	488	8	8*	16	15
15A	960	480	8	640	120	480	8	16*	16	8-14
15B	1920	960	4	1280	240	976	16	16*	32	8-14
16	1920	960	4	1280	248	1000	8	8*	16	15
16A	1920	960	4	1280	248	992	8	16*	16	8-14

* If TFCI bits are not used, then DTX shall be used in TFCI field.

Note 1: Compressed mode is only supported through spreading factor reduction for SF=512 with TFCI. Note 2: Compressed mode by spreading factor reduction is not supported for SF=4.

The pilot symbol pattern is described in table 12. The shadowed part can be used as frame synchronization words. (The symbol pattern of the pilot symbols other than the frame synchronization word shall be "11".) In table 12, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

In downlink compressed mode through spreading factor reduction, the number of bits in the TPC and Pilot fields are doubled. Symbol repetition is used to fill up the fields. Denote the bits in one of these fields in normal mode by x_1 , x_2 , x_3 , ..., x_X . In compressed mode the following bit sequence is sent in corresponding field: x_1 , x_2 , x_1 , x_2 , x_3 , x_4 , x_3 , x_4 ,..., x_X .

	Npilot = 2	Npilo	ot = 4		Npilo	ot = 8		Npilot = 16							
Symbol #	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	11	11	11	11	11	10	11	11	11	10	11	11	11	10
1	00	11	00	11	00	11	10	11	00	11	10	11	11	11	00
2	01	11	01	11	01	11	01	11	01	11	01	11	10	11	00
3	00	11	00	11	00	11	00	11	00	11	00	11	01	11	10
4	10	11	10	11	10	11	01	11	10	11	01	11	11	11	11
5	11	11	11	11	11	11	10	11	11	11	10	11	01	11	01
6	11	11	11	11	11	11	00	11	11	11	00	11	10	11	11
7	10	11	10	11	10	11	00	11	10	11	00	11	10	11	00
8	01	11	01	11	01	11	10	11	01	11	10	11	00	11	11
9	11	11	11	11	11	11	11	11	11	11	11	11	00	11	11
10	01	11	01	11	01	11	01	11	01	11	01	11	11	11	10
11	10	11	10	11	10	11	11	11	10	11	11	11	00	11	10
12	10	11	10	11	10	11	00	11	10	11	00	11	01	11	01
13	00	11	00	11	00	11	11	11	00	11	11	11	00	11	00
14	00	11	00	11	00	11	11	11	00	11	11	11	10	11	01

Table 12: Pilot Symbol Pattern

The relationship between the TPC symbol and the transmitter power control command is presented in table 13.

Table 13: TPC Bit Pattern

	TPC Bit Pattern								
N _{TPC} = 2	$N_{TPC} = 4$	N _{TPC} = 8	control command						
11	1111	11111111	1						
00	0000	0000000	0						

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain combination of bit rates of the DCHs currently in use. This correspondence is (re-)negotiated at each DCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

16

When the total bit rate to be transmitted on one downlink CCTrCH exceeds the maximum bit rate for a downlink physical channel, multicode transmission is employed, i.e. several parallel downlink DPCHs are transmitted for one CCTrCH using the same spreading factor. In this case, the Layer 1 control information is put on only the first downlink DPCH. The additional downlink DPCHs belonging to the CCTrCH do not transmit any data during the corresponding time period, see figure 9.

In the case of several CCTrCHs of dedicated type for one UE different spreading factors can be used for each CCTrCH and only one DPCCH would be transmitted for them in the downlink.

5.3.2.1 STTD for DPCH

The pilot bit pattern for the DPCH channel transmitted on the diversity antenna is given in table 14. The shadowed part indicates pilot bits that are STTD encoded from the corresponding (shadowed) bits in Table 12. For the SF=256 DPCH, if there are only two dedicated pilot bits ($N_{pilot} = 2$ in Tables 12 and 14), they are STTD encoded together with the last two bits (data or DTX) of the second data field (data2) of the slot. STTD encoding for the DPDCH, TPC, and TFCI fields is done as described in section 5.3.1.1.1. For the SF=512 DPCH , the first two bits in each slot, i.e. TPC bits, are not STTD encoded and the same bits are transmitted with equal power from the two antennas. The following four bits are STTD encoded.

3GPP

Figure 10: STTD encoding for SF = 512 DPCH

	Npilot = 2	Npilo	ot = 4		Npilot = 8 Npilot = 16										
Symbol #	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	01	01	10	11	00	00	10	11	00	00	10	11	00	00	10
1	10	10	10	11	00	00	01	11	00	00	01	11	10	00	10
2	11	11	10	11	11	00	00	11	11	00	00	11	10	00	11
3	10	10	10	11	10	00	01	11	10	00	01	11	00	00	00
4	00	00	10	11	11	00	11	11	11	00	11	11	01	00	10
5	01	01	10	11	00	00	10	11	00	00	10	11	11	00	00
6	01	01	10	11	10	00	10	11	10	00	10	11	01	00	11
7	00	00	10	11	10	00	11	11	10	00	11	11	10	00	11
8	11	11	10	11	00	00	00	11	00	00	00	11	01	00	01
9	01	01	10	11	01	00	10	11	01	00	10	11	01	00	01
10	11	11	10	11	11	00	00	11	11	00	00	11	00	00	10
11	00	00	10	11	01	00	11	11	01	00	11	11	00	00	01
12	00	00	10	11	10	00	11	11	10	00	11	11	11	00	00
13	10	10	10	11	01	00	01	11	01	00	01	11	10	00	01
14	10	10	10	11	01	00	01	11	01	00	01	11	11	00	11

Table 14: Pilot pattern of the DPCH channel for the diversity antenna using STTD

5.3.2.2 Dedicated channel pilots with closed loop mode transmit diversity

In closed loop mode 1 orthogonal pilot patterns are used between the transmit antennas. Pilot patterns defined in the table 12 will be used on the non-diversity antenna and pilot patterns defined in the table 14 on the diversity antenna. This is illustrated in the figure 11 a which indicates the difference in the pilot patterns with different shading.

In closed loop mode 2 same pilot pattern is used on both of the antennas (see figure 11 b). The pattern to be used is according to the table 12.

3GPP

(b)

Figure 11: Slot structures for downlink dedicated physical channel diversity transmission. Structure (a) is used in closed loop mode 1. Structure (b) is used in closed loop mode 2. Different shading of the pilots indicate orthogonality of the patterns

5.3.2.3 DL-DPCCH for CPCH

The spreading factor for the UL-DPCCH (message control part) is 256. The spreading factor for the DL-DPCCH (message control part) is 512. The following table 15 shows the DL-DPCCH fields (message control part) which are identical to the first row of table 11 in section 5.3.2.

Table 15: DPDCH and DPCCH fields for CPCH message transmission

Slot Format	Channel Bit	Channel Symbol	SF	Bits/Frame			Bits/ Slot	DPDCH Bits/Slot		DPCCH Bits/Slot		
#i	Rate (kbps)	Rate (ksps)		DPDCH	DPCCH	тот		NData1	NData2	NTFCI	NTPC	NPilot
0	15	7.5	512	60	90	150	10	<u>0</u> 2	<u>4</u> 2	0	2	4

5.3.3 Common downlink physical channels

- 5.3.3.1 Common Pilot Channel (CPICH)
- 5.3.3.1.1 Primary Common Pilot Channel

•

- 5.3.3.1.2 Secondary Common Pilot Channel
- 5.3.3.2 Primary Common Control Physical Channel (P-CCPCH)
- 5.3.3.2.1 Primary CCPCH structure with STTD encoding
- 5.3.3.3 Secondary Common Control Physical Channel (S-CCPCH)
- 5.3.3.3.1 Secondary CCPCH structure with STTD encoding
- 5.3.3.4 Synchronisation Channel (SCH)
- 5.3.3.4.1 SCH transmitted by TSTD
- 5.3.3.5 Physical Downlink Shared Channel (PDSCH)
- 5.3.3.6 Acquisition Indicator Channel (AICH)

The Acquisition Indicator channel (AICH) is a physical channel used to carry Acquisition Indicators (AI). Acquisition Indicator AI_s corresponds to signature s on the PRACH or PCPCH. Note that for PCPCH, the AICH either corresponds to an access preamble or a CD preamble. The AICH corresponding to the access preamble is an AP AICH and the AICH corresponding to the CD preamble is a CD AICH. The AP AICH and CD AICH use different channelization eodes, see further[4], Section 4.3.3.2.

Figure 20 illustrates the structure of the AICH. The AICH consists of a repeated sequence of 15 concecutive *access slots* (AS), each of length 40 bit intervals. Each access slot consists of two parts, an *Acquisition-Indicator* (AI) part consisting of 32 real-valued symbols $a_0, ..., a_{31}$ and an unused part part consisting of 8 real-valued symbols $a_{32}, ..., a_{39}$.

The phase reference for the AICH is the Primary CPICH.

The real-valued symbols a_0, a_1, \ldots, a_{31} in Figure 20 are given by

$$a_{j} = \sum_{s=0}^{15} AI_{s}b_{s,j}$$

where AI_s, taking the values +1, -1, and 0, is the acquisition indicator corresponding to signature s and the sequence $b_{s,0}, ..., b_{s,31}$ is given by Table 20.

The real-valued symbols a_{32} , a_{33} , ..., a_{39} in Figure 20 are undefined.

In case STTD-based open-loop transmit diversity is applied to AICH, STTD encoding according to section 5.3.1.1.1 is applied to each sequence $b_{s,0}$, $b_{s,1}$, ..., $b_{s,31}$ separately before the sequences are combined into AICH symbols a_0 , ..., a_{31} .

S	$b_{s,0}, b_{s,1}, b_{s,31}$
0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
2	1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
3	1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1
4	1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
5	1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -
6	1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
7	1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 1 -1 -
8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9	1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
10	1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
11	1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -
12	1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
13	1 1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 -
14	1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
15	1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 -

Table 20: AICH signature patterns

5.3.3.7 Collision Detection Indicator Channel (CD-ICH)

The Collision Detection Indicator channel (CD-ICH) is a physical channel used to carry Collision Detection Indicators (CD-I). Collision Detection Indicator CDI_s corresponds to signature s on the PCPCH. Everything in the previous section applies to this section as well. The only difference between CD-ICH and AICH is use of different channelization codes.

5.3.3.87 Page Indicator Channel (PICH)

6 Mapping of transport channels onto physical channels

Figure 22 summarises the mapping of transport channels onto physical channels.

DCH	 Dedicated Physical Data Channel (DPDCH)
Den	Dedicated Physical Control Channel (DPCCH)
RACH CPCH	 Physical Random Access Channel (PRACH)
	 _Physical Common Packet Channel (PCPCH)
	Common Pilot Channel (CPICH)
BCH	 Primary Common Control Physical Channel (P-CCPCH)
FACH	Secondary Common Control Physical Channel (S-CCPCH)
PCH	
	Synchronisation Channel (SCH)
DSCH	 Physical Downlink Shared Channel (PDSCH)
	Acquisition Indication Channel (AICH)
	Collision Detection Indicator Channel (CD-ICH)
	Page Indication Channel (PICH)

Figure 22: Transport-channel to physical-channel mapping

The DCHs are coded and multiplexed as described in [3], and the resulting data stream is mapped sequentially (first-in-first-mapped) directly to the physical channel(s). The mapping of BCH and FACH/PCH is equally straightforward, where the data stream after coding and interleaving is mapped sequentially to the Primary and Secondary CCPCH respectively. Also for the RACH, the coded and interleaved bits are sequentially mapped to the physical channel, in this case the message part of the random access burst on the PRACH.

7 Timing relationship between physical channels

7.1 General

7.2 PICH/S-CCPCH timing relation

7.3 PRACH/AICH timing relation

7.4 PCPCH/AICH timing relation

Transmission of random access bursts on the PCPCH is aligned with access slot times. The timing of the access slots is derived from the received Primary CCPCH timing The transmit timing of access slot n starts $n\times 20/15$ ms after the frame boundary of the received Primary CCPCH, where n = 0, 1, ..., 14. In addition, transmission of access preambles in PCPCH is limited to the allocated access slot subchannel group which is assigned by higher layer signalling to each CPCH set. Twelve access slot subchannels are defined and PCPCH may be allocated all subchannel slots or any subset of the twelve subchannel slots. The access slot subchannel identification is identical to that for the RACH and is described in table 6 of section 6.1 of [5].

Everything in the previous section [PRACH/AICH] applies to this section as well. The timing relationship between preambles, AICH, and the message is the same as PRACH/AICH. Note that the collision resolution preambles follow the access preambles in PCPCH/AICH. However, the timing relationships between CD-Preamble and CD-AICH is identical to RACH Preamble and AICH. The timing relationship between CD-AICH and the Power Control Preamble in CPCH is identical to AICH to message in RACH. The T_{cpch} timing parameter is identical to the PRACH/AICH transmission timing parameter. When T_{cpch} is set to zero or one, the following PCPCH/AICH timing values apply:

Note that a1 corresponds to AP-AICH and a2 corresponds to CD-AICH.

 τ_{p-p} = Time to next available access slot, between Access Preambles.

Minimum time = 15360 chips + 5120 chips X Tcpch

Maximum time = 5120 chips X 12 = 61440 chips

Actual time is time to next slot (which meets minimum time criterion) in allocated access slot subchannel group.

 $\tau_{p-a1} =$ Time between Access Preamble and AP-AICH has two alternative values: 7680 chips or 12800 chips, depending on T_{cpch}

 τ_{a1-cdp} = Time between receipt of AP-AICH and transmission of the CD Preamble has one value: 7680 chips.

 $\tau_{p-cdp} =$ Time between the last AP and CD Preamble. is either 3 or 4 access slots, depending on T_{cpch}

 τ_{cdp-a2} = Time between the CD Preamble and the CD-AICH has two alternative values: 7680 chips or 12800 chips, depending on T_{cpch}

 $\tau_{cdp-pcp}$ = Time between CD Preamble and the start of the Power Control Preamble is either 3 or 4 access slots, depending on T_{cpch}.

Figure 26 illustrates the PCPCH/AICH timing relationship when T_{cpch} is set to 0 and all access slot subchannels are

available for PCPCH.

23

Figure 26: Timing of PCPCH and AICH transmission as seen by the UE, with $T_{cpch}=0$

7.5 DPCH/PDSCH timing

The relative timing between a DPCH frame and the associated PDSCH frame is shown in figure 27.

Figure 27: Timing relation between DPCH frame and associated PDSCH frame

The start of a DPCH frame is denoted T_{DPCH} and the start of the associated PDSCH frame is denoted T_{PDSCH} . Any DPCH frame is associated to one PDSCH frame through the relation -35840 chips $< T_{DPCH} - T_{PDSCH} \le 2560$ chips, i.e. the associated PDSCH frame starts anywhere between 1 slot before or up to 14 slots behind the DPCH.