TSG-RAN Working Group 1 meeting No. 8

TSGR1- G50/99
October 12-15, New York, USA

Agenda Item:
Adhoc 4, Rate Matching
Source:
Siemens & LGIC

Title:
Rate matching parameters for repetition after 1st Interleaving
Document for:
Information and Discussion

1 Introduction

[1] and [2] contain a puncturing algorithm for shifting puncturing patterns for puncturing after first interleaving, which has been shown to be optimum both by theoretical reasoning and by extensive simulations. The same algorithm is intended to be used for repetition as well. However, while the puncturing rate cannot become too high (not higher than 100% in theory and not higher than some 20% may be 30% if a decent performance of the code is to be maintained) there is no obvious limit for the repetition rate.

As has been pointed out on the reflector, the algorithm for rate matching after 1st interleaving as written down in [1],[2] is not well defined for repetition rates above 100%, so at least a clarification will have to be inserted in any case. It was also pointed out, that the formula does not achieve its objective if q is smaller than 2 i.e. for repetition rates of more than 50%. The formula will not crash in this case, but q is calculated as 1 in this case which means no shift at all, i.e. no distribution of repeated bits.

This contribution shows that there is some room for optimisation in particular for higher repetition rate. This is achieved by some small modifications to the existing formulas. Furthermore we will show that a repetition rate of e.g. 75% is equivalent to a puncturing rate of 25% (the bits which are not repeated are "weaker", just like punctured bits, even if the effect is not so severe) and therefore propose to use the same shifting pattern for 75% repetition as for 25% puncturing.

It should be noted, that the basic puncturing algorithm to be used for a 10ms radio frame in uplink or for puncturing before first interleaving in downlink already distributes both punctured and repeated bits in an optimum way (as evenly as possible), this contribution therefore focuses on the case where repetition is performed after first interleaving, where there are additional side constraints, which make it impossible to achieve an absolutely even distribution of the repeated bits.

In the next chapter we will shortly recap the design principle of the optimised puncturing algorithm as originally proposed in [3], then we show how repetition differs from puncturing. In chapter 4 we cover the case of higher repetition rates and in chapter 5 we present the complete formula which covers all cases. We then propose to use this formula to cover the observed inconsistencies.

2 Principle of optimised puncturing algorithm

The goal of a good puncturing(repetition) algorithm is to spread punctured bits as evenly as possible. This was the driving principle for the algorithm in [3]. This can best be obtained by puncturing every nth bit (for non integer puncturing rates sometimes every nth and sometimes every n+1st bit). However for puncturing after interleaving, there is one constraint: We have to distribute punctured bits on all frames evenly. For example, assume 80 ms interleaving and a puncturing rate of 1:4 (a puncturing rate of 25% may be in excess of what will be allowed for puncturing, but as we focus on repetition anyhow we will take this as an example). By puncturing every 4th bit we would only puncture column 0 and 4, but not 1,2,3,5,6,7 which is of course impossible. To balance puncturing between columns, we have to change the puncturing interval sometimes (here three times) to avoid hitting always the same columns. This is shown in Fig. 1. Bold horizontal arrows show puncturing distance of 4 and the thick hollow arrows shows puncturing distance 3 to avoid hitting the first column twice. After having punctured every column once, the pattern is shifted by 4 rows to determine the next bits to be punctured (vertical arrows). This is equivalent to puncture every 4th bit in each column and shifting puncturing patterns in different columns relative to each other. The actual puncturing is done using the well known puncturing algorithm from [1],[2], and the shift is realised by loading the initial offset in the variable einit with the proper value.

[image: image1.wmf]0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Figure 1: Principle of optimised puncturing

 EINBETTEN Word.Picture.8 [image: image2.wmf]0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Figure 2: Principle of optimised repetition

3 Objectives of a good repetition algorithm

The objective of a good puncturing algorithm is to distribute repeated bits as evenly as possible. As such the objective is identical for the puncturing algorithm. Therefore the same algorithm can be used both for puncturing and repetition, at least if rate matching is performed before first interleaving.

However, when we want to do rate matching after first interleaving, we cannot select the optimum pattern but have to accept a compromise to sometimes select a shorter puncturing distance as shown above. However, this compromise can be improved for the case of repetition:

This is based on the hypothesis, that some differences between puncturing and repetition can be exploited: For puncturing it is most disadvantageous to puncture adjacent bits. More general, it should be avoided that there are incidents where punctured pits are considerably closer together than the average puncturing distance. The reason is that a close puncturing will weaken the error correction code in this area which will cause a local BER increase which spoils the performance.

Repeating adjacent bits is not extremely harmful. More general, two repetitions which are much closer to each other than the average repetition distance will not seriously affect the performance. However, if locally the distance between repeated bits is increased considerably then the affected areas do not enjoy an improved decoding probability. This is equivalent to a local BER increase like mentioned above. It is better to accept a slightly increased distance between adjacent repeated bits more often than sometimes a more considerably increased distance. This is achieved by the following modification of the algorithm to obtain the shifting amount between columns:

- When the average puncturing distance q is calculated, the rounding is performed to the next higher integer, not the next lower integer.

- If q is even, it is not reduced, i.e. the puncturing distance is not decreased sometimes by one to avoid hitting the same column twice, but q and the distance are increased instead.

Only two minor changes are necessary to improve the repetition pattern, they both affect the calculation of the variable q' which is used to calculate the relative column-shifts. Basically rounding downwards is exchanged with rounding upwards and one subtraction is changed to one addition. The changes are highlighted, as revision marks would interfere with rounding signs:

q= (Nij /(((Nij() (
if q is even

then q' = q + gcd(q, Fi)/Fi -- where gcd (q, Fi) means greatest common divisor of q and Fi

-- note that q' is not an integer, but a multiple of 1/8
else

q' = q
endif
for x = 0 to Fi-1

S(IF ((x*q' (mod Fi)) =((x*q' (div Fi)
end for

This gives the puncturing pattern as shown in fig. 2. Clearly the very long distance between repeated bits (hollow arrow) is avoided.

4 Repetition of more than 50% of the bits

There is a further difference between puncturing and repetition. Puncturing can not possibly exceed 100% (every bit is punctured) and in reality the performance will be so seriously degraded when puncturing more than some 20% (maybe 50% for some special encoders), so that the range of puncturing will be restricted in real applications. For repetition however, such hard limits do not exist. It is perfectly viable to repeat 100% of the bits (i.e. doubling every bit) but also higher repetition rates are viable, every bit can be repeated several times. The more repetition is performed the better the decoding probability will be. Such high repetition rates should of course be avoided if instead a higher spreading factor could be used. However, for QOS balancing of services with very different BER requirements a high repetition rate may be necessary in some cases. If one service requires 6dB better SNR than the other one, this can be achieved by 300% repetition i.e. transmitting every bit 4 times.

A repetition rate of 75% (i.e. 75% of the bits are repeated and 25% are transmitted unrepeated) can also be interpreted as doubling every bit, but then puncturing 25% of the repeated bits (here 25% refers to the number of the original bits). Basically, 25% of the bits are transmitted with weaker reliability. This is similar, but not so extreme as the case where 25% of the bits are punctured. The only difference is the degree of unreliability: Punctured bits are completely unreliable, non repeated bits are half as reliable as the other bits.

Therefore any puncturing pattern which is optimum for 25% puncturing will also be optimum for 75% repetition, when the following substitution is performed:

25 % puncturing
75% repetition

Punctured Bit
Not Repeated bit

Non punctured Bit
Repeated bit

Again for rate matching before first interleaving, the puncturing/repetition algorithm as presented in TS 25.212 will already generate the same pattern for the two cases (possibly shifted relative to each other by a constant offset). However, when applied after inter frame interleaving, this can be used to determine the optimum column shifting parameters.
We can express this in formulas by defining the repetition rate R as

R= ((Nij) / Nij
Where Nij is the number of bits before rate matching and (Nij is the number of bits to be punctured (if <0), or repeated (if >0). We define the equivalent rate Re for repetition (i.e. (Nij > 0)as

Re= (((Nij + Nij /2) mod Nij - Nij /2)/ Nij
So a puncturing rate of 25% is equivalent, as far as the optimum column shifting is concerned, with a repetition rate of 75%, 175%, 275% and so on. A repetition rate of 25% is equivalent to a repetition rate of 125%, 225%, 325% and so on.

The relative shift of the puncturing pattern can then be calculated based on this effective repetition rate rather than the real rate. Depending on whether Re is smaller or larger than 0, the formula for the corresponding puncturing rate (as in [1],[2]) or the corresponding repetition rate (as presented above) will have to be applied.

The quantities R and Re are only introduced here to point out the principle, a similar calculation can be done with the parameter q as will be shown in the next chapter. To simplify the calculation of Nij /2 one can multiply both divisor and dividend in the above formula for Re by 2. The sign of q carries the information, whether the column shifting is to be calculated for puncturing or repetition.

5 Calculation of the column shift in the general case

 In the two chapters above we have presented two modifications for the calculation of q and q' and in turn the column shifting values S(i). If we make q a signed quantity, indicating puncturing/repetition when it is smaller/larger than 0, then we can even avoid an if statement distinguishing between repetition and puncturing and the corresponding formulas. The formula can be formulated as follows. Here ((means round upwards to the next integer. Note that (1.5(= 2 and (-1.5(= -1 in this nomenclature, which is consistent with the definition in chapter 3.2 resp. 5.2 of [1] resp.[2]. We simplify the calculation of the modulo equation by multiplying both divisor and dividend by 2. The sign of q carries the information, whether the column shifting is to be calculated for puncturing or repetition.

if (Nij mod Nij (0 -- check for trivial puncturing, this replaces check for (Nij = 0.
then q = (2 Nij / ((2(Nij + Nij) mod 2 Nij - Nij) (-- note: q is now a signed quantity

else

q = 1 -- note: in this case every bit will be transmitted exactly (Nij / Nij +1 times which is an integer.

Therefore the value of the column shifting is irrelevant, q is set to 1 for simplicity.
endif
if q is even

then q' = q + gcd((q(, Fi)/Fi -- where gcd (q, Fi) means greatest common divisor of q and Fi
-- note that q' is not an integer, but a multiple of 1/8
else

q' = q
endif
for x = 0 to Fi-1

S(IF (((x*q' ((mod Fi)) =(((x*q' ((div Fi)
end for

6 Conclusion

Some bug-fixes are necessary for puncturing after first interleaving for repetition rates above 100% corresponding to q=0 (because the formulas were insufficient there) and even above 50% or q<2 (because a rather poor pattern was generated). We have shown that it is possible to remedy this situation, basically by introducing q as a signed quantity. Then all rounding operations automatically round in the proper direction, and by calculation an effective puncturing rate, subtracting a multiple of Nij from (Nij when necessary. A corresponding change request can be generated, once the reference version 3.0.0 of [1] and [2] are available.

7 References

[1] 3GPP TSG RAN WG1; Multiplexing and channel coding (FDD); TS 25.212 V2.3.0 (1999-10)

[2] 3GPP TSG RAN WG1; Multiplexing and channel coding (TDD); TS 25.222 V2.3.0 (1999-10)

[3] R1-99641; Siemens; Properties of optimised puncturing scheme; TSG-RAN WG1#5, June 1-4, Cheju, Korea

3GPP/TSG/RAN/WG1#8 TDOC G50/99

page 1/4

_1000918146.doc
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Figure 1: Principle of optimised puncturing

_1000918219.doc
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Figure 2: Principle of optimised repetition

