TSG-RAN Working Group 1(Radio) meeting \#8
TSGR1\#8(99)f35
New York, USA, 12-15 October 1999

Agenda Item:

Source: Nokia

Title: \quad Text proposal for 4.3.2.2 of TS25.213v2.3.0
Document for: Discussion in AH10

Introduction

Nokia proposes the following changes for 4.3.2.2. of TS25.213 v2.3.0 in oder to make the section less misleading.

4.3.2.2 Long scrambling code

The long scrambling codes are formed as described in Section 4.3.2, where c_{1} and c_{2} are constructed as the position wise modulo 2 sum of 38400 chip segments of two binary m-sequences generated by means of two generator polynomials of degree 25 . Let x, and y be the two m-sequences respectively. The x sequence is constructed using the primitive (over GF(2)) polynomial $X^{25}+X^{3}+1$. The y sequence is constructed using the polynomial $X^{25}+X^{3}+X^{2}+X+1$. The resulting sequences thus constitute segments of a set of Gold sequences.

The code, c_{2}, used in generating the quadrature component of the complex spreading code is a $16,777,232$ chip shifted version of the code, c_{1}, used in generating the in phase component.

The uplink scrambling code word has a period of one radio frame.
Let $n_{23} \ldots n_{0}$ be the 24 bit binary representation of the scrambling code number n (decimal) with n_{0} being the least significant bit. The x sequence depends on the chosen scrambling code number n and is denoted x_{n}, in the sequel. Furthermore, let $x_{n}(i)$ and $y(i)$ denote the i :th symbol of the sequence x_{n} and y, respectively

The m-sequences x_{n} and y are constructed as:
Initial conditions:
$x_{n}(0)=n_{0}, x_{n}(1)=n_{1}, \ldots=x_{n}(22)=n_{22}, x_{n}(23)=n_{23}, x_{n}(24)=1$
$y(0)=y(1)=\ldots=y(23)=y(24)=1$
Recursive definition of subsequent symbols:
$x_{n}(i+25)=x_{n}(i+3)+x_{n}(i)$ modulo $2, i=0, \ldots, 2^{25}-27$,
$y(i+25)=y(i+3)+y(i+2)+y(i+1)+y(i)$ modulo $2, i=0, \ldots, 2^{25}-27$.
The definition of the n :th scrambling code word for the in phase and quadrature components follows as (the left most index correspond to the chip serambled first in each radio frame):

Define

$z_{l, n}(i)=x_{n}(i)+y(i), i=0,1,2, \ldots, 2^{25}-2$,
$z_{2, n}(i)=x_{n}\left((i+M)\right.$ modulo $\left.\left(2^{25}-1\right)\right)+y(i), i=0,1,2, \ldots, 2^{25}-2$,
$\mathrm{\epsilon}_{1, \mathrm{n}}=\left\langle x_{H}(0)+y(0), x_{H}(1)+y(1), \ldots, x_{H}(\mathrm{~N}-1)+y(\mathrm{~N}-1)\right\rangle$,
$\mathrm{e}_{2, \mathrm{n}}=\left\langle x_{H}(M)+y(M), x_{H}(M+1)+y(M+1), \ldots, x_{H}(M+N 1)+y(M+N 1)\right\rangle$,
again all sums of symbols being modulo 2 additions.
Where N is the period in chips and $\mathrm{M}=16,777,232$.
Now, the real valued codes $\mathrm{c}_{1, n}$ and $\mathrm{c}_{2, \mathrm{n}}$ are defined as follows:
$c_{k, n}(i)=\left\{\begin{array}{cc}1 & \text { if } z_{k, n}(i)=0 \\ -1 & \text { if } z_{k, n}(i)=1\end{array} \quad k=1,2 \quad i=0,1, \ldots, 2^{25}-1\right.$.

