1. Introduction

Samsung proposed a new universal puncturing algorithm in this meeting. But to our knowledge, the uplink part of this algorithm is ambiguous. Therefore, we propose an alternative puncturing algorithm for uplink. The basic idea is similar to that of the previously presented algorithm[7]. In other words, we can divide the column sequence into the ' y ' sequence of $1^{\text {st }}$ RSC encoder and ' z ' sequence of $2^{\text {nd }}$ RSC encoder then, apply the similar procedure to the previously presented algorithm to calculate the shifting parameter S for each column sequences.

2. Design of Alternative Uplink Puncturing Algorithm for Turbo Code

The design rules imposed on the uplink puncturing algorithm for turbo code are as below.

Preventing puncturing of systematic bits

Systematic bits of turbo code are more important than parity bits which means that puncturing of one systematic bit results in more performance degradation than a parity bit.

Equal amount and uniform puncturing of parity bits of two encoders

In order to maximise the BER performance of turbo code, the coding strength of each RSC code must be balanced. Balanced puncturing of parity bits between the two encoders means balanced puncturing of each RSC code.
Equal amount of puncturing for each $1^{\text {st }}$ MIL interleaved column sequence
For the uplink, rate matching algorithm is performed over $1^{\text {st }}$ MIL interleaved sequence and therefore, rate matching must be performed in a way that every column sequence has an equal amount of puncturing. The purpose of uplink rate matching for turbo code is to satisfy the original property of turbo puncturing algorithm in the view point of "before the $1^{\text {st }}$ MIL original code sequence" while applying the equal amount of puncturing over each interleaved sequence.

Providing a unified rate matching algorithm for uplink and downlink
For the simplicity of implementation, it is desirable to use a unified rate matching algorithm for uplink and downlink.

3. The Description of Alternative Uplink Puncturing Algorithm

Figure 1 shows the example of writing the $1^{\text {st }} \mathrm{MIL}$ of $\mathrm{K}=8$. In figure 1 , In the figure, ' x ' means the systematic code bit, ' y ' the parity bit from $1^{\text {st }}$ RSC encoder and ' z ' from the $2^{\text {nd }}$ RSC encoder. The subscript of each bit is the order of code symbol. This example is the case of totally 96 code symbol so 288 code bits.

The basic idea of this proposal is that we can use two rate matching algorithm in independent and parallel manner. In other words, rate matching algorithm 1 for ' y ' sequences for each column and rate matching algorithm 2 for ' z ' sequences for each column operate simultaneously.

For this purpose, we can divide the each column sequence of figure 1 into two groups. One is the group of ' y ' bit sequence and the other is the group of ' z ' bit sequence.
Then, we can obtain the virtual interleaver memory as shown in figure 2. Figure 2-(a) is an example of virtual interleaver for ' y ' bit sequence and figure 2-(b) is an example of virtual interleaver for ' z ' bit sequence.

The bold number of the $1^{\text {st }}$ row for each virtual interleaver represents the actual column number of original interleaver. That is, the $1^{\text {st }}$ column of the left interleaver represents the $1^{\text {st }}$ column of the original MIL interleaver and the $2^{\text {nd }}$ column represents the $7^{\text {th }}$ column of the original MIL interleaver, and vice versa. The mapping of virtual interleaver column index to the original interleaver column index can be simply described by the next equation
$Q(k)=(3 k+1) \bmod \quad K: k=0,1,2, \cdots K-1 \quad$ (mapping rule for ' y ' bit sequence)
$Q(k)=(3 k+2) \bmod \quad K: k=0,1,2, \cdots K-1 \quad$ (mapping rule for ' z ' bit sequence)

X_{0}	y_{0}	Z_{0}	X_{1}	y_{1}	Z_{1}	X_{2}	y_{2}
Z_{2}	X_{3}	y_{3}	Z_{3}	X_{4}	y_{4}	Z_{4}	X_{5}
y_{5}	Z_{5}	X_{6}	y_{6}	Z_{6}	X_{7}	y_{7}	Z_{7}
X_{8}	y_{8}	Z_{8}	X_{9}	Y9	Z9	X_{10}	y_{10}
Z_{10}	X_{11}	y_{11}	Z_{11}	X_{12}	y_{13}	Z_{12}	X13
y_{13}	Z_{13}	X_{14}	y_{14}	Z_{14}	X_{15}	y_{15}	Z_{15}
X_{16}	y_{16}	Z_{16}	X_{17}	y_{17}	Z_{17}	X_{18}	y_{18}
Z_{18}	X_{19}	y_{19}	Z_{19}	X_{20}	y_{20}	Z_{20}	X_{21}
y_{21}	Z_{21}	X_{22}	y_{22}	Z_{22}	X_{23}	y_{23}	Z23
X_{24}	y_{24}	Z_{24}	X_{25}	y_{25}	Z_{25}	X_{26}	y_{26}
Z26	X_{27}	y_{27}	Z_{27}	X_{28}	y_{28}	Z_{28}	X_{29}
y_{29}	Z_{29}	X 30	y30	Z_{30}	X_{31}	Y31	Z_{31}
X_{32}	y_{32}	Z_{32}	X_{33}	y_{33}	Z_{33}	X_{34}	y_{34}
Z34	X 35	Y35	Z_{35}	X_{36}	Y36	Z36	X37
Y37	Z37	X_{38}	y_{38}	Z_{38}	X_{39}	y_{39}	Z_{39}
X40	y_{40}	Z40	X41	y_{41}	Z41	X_{42}	y_{42}
Z42	X43	y_{43}	Z43	X44	y44	Z44	X45
y_{45}	Z_{45}	X_{46}	y_{46}	Z_{46}	X47	y_{47}	Z_{47}
X48	Y48	Z48	X49	Y49	Z49	X 50	Y50
Z_{50}	X_{51}	Y_{51}	Z_{51}	X_{52}	y_{52}	Z_{52}	X S_{5}
Y53	Z53	X 54	Y54	Z_{54}	X 55	Y_{55}	Z55
X 56	Y56	Z57	X 57	Y57	Z57	X 58	Y58
Z58	X59	y_{59}	Z59	X_{60}	y_{60}	Z_{60}	X_{61}
Y_{61}	Z_{61}	X_{62}	y_{62}	Z_{62}	X63	y_{63}	Z63
X_{64}	y_{64}	Z_{64}	X_{65}	y_{65}	Z_{65}	X_{66}	y_{66}
Z66	X67	y_{67}	Z_{67}	X_{68}	y_{68}	Z_{68}	X_{69}
Y_{69}	Z_{69}	X 70	y_{70}	Z_{70}	X_{71}	Y_{71}	Z_{71}
X72	Y_{72}	Z_{72}	X73	Y73	Z73	X74	Y74
Z_{74}	X_{75}	Y75	Z75	X76	y_{76}	Z76	X77
Y_{77}	Z_{77}	X_{78}	y_{78}	Z_{78}	X_{79}	Y_{79}	Z_{79}
X80	Y_{80}	Z_{80}	X_{81}	Y_{81}	Z_{81}	X_{82}	Y_{82}
Z_{82}	X_{83}	Y_{83}	Z_{83}	X_{84}	y_{84}	Z_{84}	X_{85}
Y_{85}	Z85	X_{86}	y_{86}	Z86	X87	Y_{87}	Z87
X88	Y_{88}	Z88	X89	Y_{89}	Z89	X90	Y90
Z_{90}	X_{91}	Y91	Z91	X92	Y92	Z92	X93
Y93	Z93	X94	Y94	Z94	X95	Y95	Z95

Figure 1. example of writing the interleaver memory

$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{6}$
y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}
y_{8}	y_{9}	y_{10}	y_{11}	y_{12}	y_{13}	y_{14}	y_{15}
y_{16}	y_{17}	y_{18}	y_{19}	y_{20}	y_{21}	y_{22}	y_{23}
y_{24}	y_{25}	y_{26}	y_{27}	y_{28}	y_{29}	y_{30}	y_{31}
y_{32}	y_{33}	y_{34}	y_{35}	y_{36}	y_{37}	y_{38}	y_{39}
y_{40}	y_{41}	y_{42}	y_{43}	y_{44}	y_{45}	y_{46}	y_{47}
y_{48}	y_{49}	y_{50}	y_{51}	y_{52}	y_{53}	y_{54}	y_{55}
y_{56}	y_{57}	y_{58}	y_{59}	y_{60}	y_{61}	y_{62}	y_{63}
y_{64}	y_{65}	y_{66}	y_{67}	y_{68}	y_{69}	y_{70}	y_{71}
y_{72}	y_{73}	y_{74}	y_{75}	y_{76}	y_{77}	y_{78}	y_{79}
y_{80}	y_{81}	y_{82}	y_{83}	y_{84}	y_{85}	y_{86}	y_{87}
y_{88}	y_{89}	y_{90}	y_{91}	y_{92}	y_{93}	y_{94}	y_{95}

Figure 2-(a). virtual interleaver for ' y ' sequence

2	5	0	3	6	1	4	7
z_{0}	z_{1}	Z_{2}	z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
Z_{8}	Z9	z_{10}	z_{11}	z_{12}	z_{13}	Z_{14}	Z_{15}
Z_{16}	z_{17}	Z_{18}	Z_{19}	Z_{20}	Z_{21}	Z_{22}	Z_{23}
z_{24}	Z_{25}	Z_{26}	Z_{27}	Z_{28}	Z_{29}	Z_{3}	z_{31}
Z_{32}	z_{33}	Z_{34}	Z_{35}	Z_{36}	Z_{37}	Z_{38}	Z_{39}
Z_{40}	z_{41}	Z_{42}	z_{43}	z_{44}	Z_{45}	Z_{46}	Z_{47}
Z_{48}	Z_{49}	Z_{50}	z_{51}	Z_{52}	Z_{53}	Z_{54}	Z_{55}
Z_{56}	z_{57}	z_{58}	z_{59}	Z_{60}	z_{61}	Z_{62}	Z_{63}
Z_{64}	Z_{65}	Z_{66}	z_{67}	z_{68}	Z_{69}	Z_{70}	z_{71}
z_{72}	z_{73}	z_{74}	Z_{75}	Z_{76}	Z_{77}	Z_{78}	Z79
Z_{80}	Z_{81}	Z_{82}	Z_{83}	z_{84}	Z_{85}	Z_{86}	Z_{87}
Z_{88}	Z_{89}	Z90	Z_{91}	Z_{92}	Z93	Z94	Z95

Figure 2-(b). virtual interleaver for ' z ' sequence

Let's assume that among total number of 36 code bits for each column, 4 bits are to be punctured. In this case, N_{c} is 96 and P is 4 . Then, we can use two rate matching procedure for each ' y ' and ' z ' sequence in figure 2-(a) and figure 2-(b). All we need to do is to calculate the shifting parameter for each column of $1^{\text {st }}$ interleaver for each rate matching algorithm.

The shifting parameter for each column is calculated in the similar procedure.

1) Calculation of Shifting Parameter for ' y ' sequence

$N=\left\lfloor\frac{N_{c}}{3}\right\rfloor:\lfloor x\rfloor$ is the largest integer which does not exceed the value of ' x '
$N_{i}=N-\left\lceil\frac{P}{2}\right\rceil:\lceil x\rceil$ is the smallest integer which exceeds the value of ' x '
$q=\left\lfloor\frac{N}{\left|N_{i}-N\right|}\right\rfloor: q$ means the average puncturing distance of ' y ' sequence

From the value of q, we can find the shifting parameter S guaranteeing the overall uniformity over "before the $1^{\text {st }}$ interleaved ' y ' sequence" as follows.

```
if(q\leq2){
            for(k=0;k<K;k++) {
            if((k%2)=0)
                S[R[(3k+1) mod K]]=0;
            else
\[
S[R[(3 k+1) \bmod K]]=1 ;
\]
    }
}
else{
```

```
    if((q%2)=1)
    q}=q-\frac{G.C.D(q,K)}{K};\mathrm{ to avoid hitting the same column
    else
    q' = q
    for(i=0; i<K;i++) {
    k=\lceili*q`\rceil%K;
    S[R[(3k+1) mod K]] = \lceili* q'\rceil div K;
    }
}
```

In the above procedure, $R[]$ means the mapping pattern of the $1^{\text {st }}$ MIL interleaver.

2) Calculation of Shifting Parameter for ' z ' sequence

$N=\left\lfloor\frac{N_{c}}{3}\right\rfloor:\lfloor x\rfloor$ is the largest integer which does not exceed the value of ' x ' $N_{i}=N-\left\lceil\frac{P}{2}\right\rceil:\lceil x\rceil$ is the smallest integer which exceeds the value of ' x '
$q=\left\lfloor\frac{N}{\left|N_{i}-N\right|}\right\rfloor: q$ means the average puncturing distance of ' z ' sequence

From the value of q, we can find the shifting parameter S guaranteeing the overall uniformity over "before the $1^{\text {st }}$ interleaved ' z ' sequence" as follows.

```
if(q\leq2){
    for(k=0; k<K;k++) {
        if((k%2)=0)
                        S[R[(3k+2) mod K]]=0;
            else
                S[R[(3k+2) mod K]]= 1;
    }
}
else{
```

$$
\begin{aligned}
& \operatorname{if}((q \% 2)=1) \\
& \qquad q^{\prime}=q-\frac{G \cdot C \cdot D(q, K)}{K} ; \text { to avoid hitting the same column } \\
& \text { else } \quad q^{\prime}=q \\
& \text { for }(i=0 ; i<K ; i++)\{ \\
& \quad k=\left\lceil i^{*} q^{\prime}\right\rceil \% K ; \\
& \\
& \quad S[R[(3 k+2) \bmod K]]=\left\lceil i^{*} q^{\prime}\right\rceil \operatorname{div} K ;
\end{aligned}
$$

\}
\}
Then using the shifting parameter obtained through the procedure of (1) and (2), the two rate matching block operates simultaneously. The rate matching procedure can be described as follows.

(3) Rate Matching Procedure

$S_{0}=\left\{d_{N_{1}}, d_{N_{2}}, \cdots d_{N_{c}}\right\}:$ set of N_{C} data bits for each column
N_{i} : symbol number after puncturing
$N=\left\lfloor N_{c} / 3\right\rfloor$
k : column index $k=0,1,2,3, \ldots, K-1$ (K : Column number of $1^{s t}$ MIL)
if puncturing is to be performed
$y=N-N_{i}$
$e=(2 * S(k) * y+N) \bmod 2 N \quad-$ initial error $e_{\text {offset }}$
$-S(k)$ from procedure 1 if ' y ' sequence puncturing and from procedure 2 if ' z ' sequence puncturing if $(e=0) \quad e=2 N$
$m=1 \quad-$ index for current symbol
do while $m<=N$

$e=e-2 * y$	-- update error
if $e<=0$ then	-- check if symbol number m should be punctured

$e=e+2 * N \quad-$ update error
end if
$m=m+1$
-- index for next symbol
end do
end if
else if repetition is to be performed

$$
\begin{aligned}
& y=N-N_{i} \\
& e=(2 * S(k) * y+N) \bmod 2 N \quad \text {-- initial error } e_{\text {offset }}
\end{aligned}
$$

$-S(k)$ from procedure 1 if ' y ' sequence repetition and from procedure 2 if ' z ' sequence repetition if $(e=0) \quad e=2 N$

$$
m=1 \quad-- \text { index for current symbol }
$$

do while $m<=N$
$e=e-2 * y$
if $e<=0$ then
-- update error
-- check if symbol number m should be repeated repeat bit m from set S_{O}

$$
e=e+2 * N \quad-- \text { update error }
$$

end if

$$
m=m+1 \quad \text {-- index for next symbol }
$$

end do
end if

Using the above procedure, we can obtain the puncturing pattern which satisfies almost all of the requirements for turbo code puncturing.

4. Example of Puncturing Pattern of the Alternative Algorithm

Let's assume the case when among the 36 code bits for each column, 4 bits are to be punctured.
Then, by applying the above procedure, we can obtain the puncturing pattern for each virtual interleaver as shown in figure 3-(a) and figure 3-(b)

$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{6}$
y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}
y_{8}	y_{9}	y_{10}	y_{11}	y_{12}	y_{13}	y_{14}	y_{15}
y_{16}	y_{17}	y_{18}	y_{19}	y_{20}	y_{21}	y_{22}	y_{23}
y_{24}	y_{25}	y_{26}	y_{27}	y_{28}	y_{29}	y_{30}	y_{31}
y_{32}	y_{33}	y_{34}	y_{35}	y_{36}	y_{37}	y_{38}	y_{39}
y_{40}	y_{41}	y_{42}	y_{43}	y_{44}	y_{45}	y_{46}	y_{47}
y_{48}	y_{49}	y_{50}	y_{51}	y_{52}	y_{53}	y_{54}	y_{55}
y_{56}	y_{57}	y_{58}	y_{59}	y_{60}	y_{61}	y_{62}	y_{63}
y_{64}	y_{65}	y_{66}	y_{67}	y_{68}	y_{69}	y_{70}	y_{71}
y_{72}	y_{73}	y_{74}	y_{75}	y_{76}	y_{77}	y_{78}	y_{79}
y_{80}	y_{81}	y_{82}	y_{83}	y_{84}	y_{85}	y_{86}	y_{87}
y_{88}	y_{89}	y_{90}	y_{91}	y_{92}	y_{93}	y_{94}	y_{95}

Figure 3-(a). puncturing pattern for ' y ' sequences

2	5	0	3	6	1	4	7
Z_{0}	z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
z_{8}	z_{9}	z_{10}	z_{11}	z_{12}	z_{13}	Z_{14}	Z_{15}
Z_{16}	Z_{17}	Z_{18}	Z_{19}	Z_{20}	Z_{21}	z_{22}	Z_{23}
Z_{24}	Z_{25}	z_{26}	Z_{27}	Z_{28}	Z_{29}	Z_{30}	Z_{31}
Z_{32}	z_{33}	Z_{34}	Z_{35}	Z36	Z_{37}	Z_{38}	Z_{39}
Z40	Z_{41}	Z_{42}	Z43	Z_{44}	Z45	Z_{46}	Z47
Z48	Z_{49}	Z_{50}	Z_{51}	Z_{52}	Z53	Z_{54}	Z_{55}
Z_{56}	z_{57}	z_{58}	Z_{59}	Z_{60}	Z_{61}	Z_{62}	Z_{63}
Z_{64}	z_{65}	Z_{66}	Z_{67}	Z_{68}	Z_{69}	Z_{70}	Z_{71}
Z_{72}	Z_{73}	z_{74}	Z_{75}	Z_{76}	Z_{77}	Z_{78}	Z_{79}
Z_{80}	z_{81}	z_{82}	Z_{83}	Z_{84}	Z_{85}	Z_{86}	Z_{87}
Z_{88}	Z_{89}	Z_{90}	Z_{91}	Z92	Z93	Z94	Z95

Figure 3-(b). puncturing pattern for ' z ' sequences

Then we can obtain the resulting puncturing pattern as shown in figure 4 . As can be seen in figure 4 , puncturing of ' y ' sequence and ' z ' sequence occurs simultaneously. But if the initial offsets for each sequences are calculated in a different manner, then another pattern can be obtained.
The problem occurs if the puncturing number for each column is an odd number. Then, in the extreme case, 8 more ' y ' bits can be punctured than ' z ' bits or 8 more ' z ' bits than ' y ' bits. If it is preferred to avoid this problem, the number of puncturing for each sequence can be calculated by $\left\lceil\frac{P}{2}\right\rceil$. Using this number, shifting parameters for each sequence are calculated. Then two rate matching algorithm operates simultaneously, knowing that for example, for odd numbered column in the $1^{\text {st }}$ interleaver, the last puncturing of ' y ' must be avoided and for even numbered column, the last puncturing of ' z ' must be avoided.

X_{0}	y_{0}	Z_{0}	X_{1}	y_{1}	Z_{1}	X_{2}	y_{2}
Z_{2}	X3	y_{3}	Z_{3}	X_{4}	y_{4}	Z4	X_{5}
y_{5}	Z_{5}	X_{6}	y_{6}	Z_{6}	X_{7}	y_{7}	Z_{7}
X_{8}	Y8	Z_{8}	X9	Y9	Z9	X_{10}	y_{10}
Z_{10}	X_{11}	y_{11}	Z_{11}	X_{12}	y_{13}	Z_{12}	X_{13}
y_{13}	Z_{13}	X_{14}	y_{14}	Z_{14}	X_{15}	y_{15}	Z_{15}
X_{16}	y_{16}	Z_{16}	X_{17}	y_{17}	Z_{17}	X_{18}	y_{18}
Z_{18}	X_{19}	Y_{19}	Z_{19}	X_{20}	y_{20}	Z_{20}	X_{21}
y_{21}	Z_{21}	X_{22}	y_{22}	Z_{22}	X_{23}	y_{23}	Z23
X_{24}	y_{24}	Z_{24}	X_{25}	y_{25}	Z_{25}	X_{26}	y_{26}
Z_{26}	X27	y_{27}	Z_{27}	X_{28}	y_{28}	Z_{28}	X29
y_{29}	Z_{29}	X 30	y_{30}	Z_{30}	X 31	Y31	Z_{31}
X_{32}	y_{32}	Z_{32}	X 33	y_{33}	Z_{3}	X_{34}	y_{34}
Z_{34}	X 35	Y35	Z35	X36	Y36	Z36	X 37
y_{37}	Z_{37}	X 38	Y_{38}	Z_{38}	X 39	y_{39}	Z39
X40	y_{40}	Z40	X41	y_{41}	Z41	X42	y_{42}
Z42	X43	y_{4}	Z43	X44	y_{44}	Z44	X45
y_{45}	Z_{45}	X46	y_{46}	Z_{46}	X_{47}	y_{47}	Z_{47}
X48	Y48	Z48	X49	Y49	Z49	X 50	Y_{50}
Z_{50}	X 51	y_{51}	Z_{51}	X_{52}	Y_{52}	Z_{52}	X 53
Y53	Z53	X 54	Y54	Z54	X 55	Y55	Z55
X56	Y56	Z57	X 57	Y57	Z57	X 58	Y58
Z58	X 59	Y59	Z59	X_{60}	y_{60}	Z_{60}	X_{61}
Y61	Z_{61}	X_{62}	y_{62}	Z_{62}	X63	y_{63}	Z_{63}
X_{64}	y_{64}	Z_{64}	X_{65}	y_{65}	Z_{65}	X_{66}	y_{66}
Z_{66}	X67	Y67	Z_{67}	X68	y_{68}	Z_{68}	X69
y_{69}	Z_{69}	X70	У70	Z_{70}	X_{71}	Y71	Z_{71}
X72	Y72	Z72	X73	Y73	Z73	X74	Y74
Z74	X75	Y75	Z75	X76	Y76	Z76	X77
y_{77}	Z77	X_{78}	Y_{78}	Z_{78}	X_{79}	y_{79}	Z_{79}
X80	Y_{80}	Z80	X_{81}	Y_{81}	Z81	X_{82}	Y_{82}
Z_{82}	X_{83}	Y_{83}	Z_{83}	X_{84}	y_{84}	Z_{84}	X_{85}
Y_{85}	Z_{85}	X86	y_{86}	Z86	X_{87}	Y_{87}	Z87
X88	Y_{88}	Z88	X89	Y89	Z89	X90	Y90
Z90	X91	Y91	Z91	X92	Y92	Z92	X93
У93	Z93	X94	Y94	Z94	X95	Y95	Z95

Figure 4. resulting puncturing pattern

5. Conclusion

In this contribution, we propose an alternative puncturing algorithm for uplink using similar idea of [7]. This algorithm can satisfy all the requirements for turbo code puncturing without changing the conventional rate matching appraoch.

6. Reference

[1] 3GPP TSG RAN WG1 Multiplexing and Channel Coding(FDD) TS 25.212 V1.1.0 (1996. 06)
[2] 3GPP TSG RAN WG1 R1-99203 Optimised Rate Matching After Interleaving, Siemens.
[3] 3GPP TSG RAN WG1 R1-99703 Text Proposal for Optimised Puncturing, Siemens.
[4] 3GPP TSG RAN WG1 R1-99338 Puncturing Algorithm for Turbo Code, LGIC.
[5] 3GPP TSG RAN WG1 R1-99654 Comparison of Downlink Puncturing Algorithms, LGIC.
[6] 3GPP TSG RAN WG1 R1-99388 Optimised Puncturing Scheme for Turbo Coding, Fujitsu.
[7] 3GPP TSG RAN WG1 R1-99908 Code Symbol Based Uplink Puncturing Algorithm, LGIC

