Agenda Item:

Source: NTT DoCoMo

Title: Modified Multistage InterLeaver (MIL) fit for 15-slot frame
Document for: Decision

1. Introduction

In the last WG1 meeting \#5, the modified MIL [1] was approved for the channel interleaving of both $1^{\text {st }}$ interleaving and $2^{\text {nd }}$ interleaving and also a further indication on the solution used if the number of slots per frame is changed to 15 was requested [2]. Accordingly, NTT DoCoMo investigated about the optimisation of the modified MIL scheme fit for the new frame structure with 15 -slot. We then found the reasonable solution under maintaining BER/FER performance. In this document, such fitting modified MIL scheme for 15-slot frame and its text for TS 25.212 and TS 25.222 are proposed.

2. Proposed modified MIL scheme fit for 15-slot frame

In the solution for 15 -slot frame, the only modification of $2^{\text {nd }}$ (intra-frame) interleaving part is done and the $1^{\text {st }}$ (inter-frame) interleaving is not changed at all (this means the channel interleaving modification would not affect the uplink puncturing scheme [3] basically). The modifications of $2^{\text {nd }}$ interleaving are as follows:
(1) The number of column was changed from 32 to 30 .
(2) Inter-column permutation pattern which is optimised for 30-column was introduced.

Regarding (1), the $2^{\text {nd }}$ interleaving with 30 -column could allow easily performing the uniform DTX placement for all slot in a downlink frame if DTX indication bits are inserted before $2^{\text {nd }}$ interleaving. This is an advantage for total processing load in multiplexing/coding chain because no extra processing is needed for the determination of the uniform DTX placement in the physical channel mapping. Regarding (2), there are some possibilities that the 30 -column pattern is made by some partial transformation e.g. bit deleting for the original 32 -column pattern. However, this kind of transformed pattern would not be the optimum pattern. Therefore, we introduced a new pattern that is a most optimum pattern for 30 -column (see Table 1). Note that the hardware complexity is not different between both cases of using a partial transformed (nonoptimum) pattern and an optimum pattern.

Table 1. Inter-column permutation pattern for $2^{\text {nd }}$ interleaving

Number of columns	Inter-column permutation pattern
30	$\{0,20,10,5,15,25,3,13,23,8,18,28,1,11,21$,
	$6,16,26,4,14,24,19,9,29,12,2,7,22,27,17\}$

3. Text proposal for 25.212 (and 25.222)

4.2.10 (6.2.8) $2^{\text {nd }}$ interleaving

The $2^{\text {nd }}$ interleaving of channel interleaving consists of two stage operations. In first stage, the input sequence is written into rectangular matrix row by row. The second stage is inter-column permutation. The two-stage operations are described as follows, the input block length is assumed to be K_{2}.

First Stage:

(1) Set a column number $\mathrm{C}_{2}=3230$.
(2) Determine a row number R_{2} by finding minimum integer R_{2} such that,

$$
\mathrm{K}_{2}<=\mathrm{R}_{2} \times \mathrm{C}_{2} .
$$

(3) The input sequence of the $2^{\text {nd }}$ interleaving is written into the $\mathrm{R}_{2} \times \mathrm{C}_{2}$ rectangular matrix row by row.

Second Stage:

(1) Perform the inter-column permutation based on the pattern $\left\{\mathrm{P}_{2}(j)\right\}(j=0,1, \ldots, \mathrm{C}-1)$ that is shown in Table 4-4 (Table 6.2.8-1), where $\mathrm{P}_{2}(j)$ is the original column position of the j-th permuted column.
(2) The output of the $2^{\text {nd }}$ interleaving is the sequence read out column by column from the inter-column permuted $\mathrm{R}_{2} \times \mathrm{C}_{2}$ matrix and the output is pruned by deleting the non-existence bits in the input sequence, where the deleting bits number l_{2} is defined as:

$$
l_{2}=\mathrm{R}_{2} \times \mathrm{C}_{2}-\mathrm{K}_{2} .
$$

Table 4-4 (Table 6.2.8-1)

Column number C_{2}	Inter-column permutation pattern
$\underline{30}$	$\underline{\{0,20,10,5,15,25,3,13,23,8,18,28,1,11,21,}$
$6,16,26,4,14,24,19,9,29,12,2,7,22,27,17\}$	

Column number C_{2}	Inter column permutation patterns
32	$\{0,16,8,24,4,20,12,28,18,2,26,10,22,6,30,14$,
	$17,1,25,9,21,5,29,13,3,19,11,27,7,23,15,31\}$

References

[1] NTT DoCoMo, "Modified Multistage InterLeaver (MIL) for Channel Interleaving", TSGR1\#5(99)662
[2] Ad hoc \#4 chair, "Ad hoc \#4 report", TSGR1\#5(99)693
[3] Siemens, "Text proposal for optimised puncturing", TSGR1\#5(99)703

