TSG-RAN Working Group1 meeting #6 Espoo, Finland 13-16, July 1999 TSGR1#6(99)929

Agenda Item:	
Source:	NTT DoCoMo
Title:	Modified Multistage InterLeaver (MIL) fit for 15-slot frame
Document for:	Decision

1. Introduction

In the last WG1 meeting #5, the modified MIL [1] was approved for the channel interleaving of both 1st interleaving and 2nd interleaving and also a further indication on the solution used if the number of slots per frame is changed to 15 was requested [2]. Accordingly, NTT DoCoMo investigated about the optimisation of the modified MIL scheme fit for the new frame structure with 15-slot. We then found the reasonable solution under maintaining BER/FER performance. In this document, such fitting modified MIL scheme for 15-slot frame and its text for TS 25.212 and TS 25.222 are proposed.

2. Proposed modified MIL scheme fit for 15-slot frame

In the solution for 15-slot frame, the only modification of 2^{nd} (intra-frame) interleaving part is done and the 1^{st} (inter-frame) interleaving is not changed at all (this means the channel interleaving modification would not affect the uplink puncturing scheme [3] basically). The modifications of 2^{nd} interleaving are as follows:

(1) The number of column was changed from 32 to 30.

(2) Inter-column permutation pattern which is optimised for 30-column was introduced.

Regarding (1), the 2^{nd} interleaving with 30-column could allow easily performing the uniform DTX placement for all slot in a downlink frame if DTX indication bits are inserted before 2^{nd} interleaving. This is an advantage for total processing load in multiplexing/coding chain because no extra processing is needed for the determination of the uniform DTX placement in the physical channel mapping. Regarding (2), there are some possibilities that the 30-column pattern is made by some partial transformation e.g. bit deleting for the original 32-column pattern. However, this kind of transformed pattern would not be the optimum pattern. Therefore, we introduced a new pattern that is a most optimum pattern for 30-column (see Table 1). Note that the hardware complexity is not different between both cases of using a partial transformed (non-optimum) pattern and an optimum pattern.

Table 1. Inter-column permutation pattern for 2nd interleaving

Number of columns	Inter-column permutation pattern
30	{0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28, 1, 11, 21, 6, 16, 26, 4, 14, 24, 19, 9, 29, 12, 2, 7, 22, 27, 17}

3. Text proposal for 25.212 (and 25.222)

4.2.10 (6.2.8) 2nd interleaving

The 2^{nd} interleaving of channel interleaving consists of two stage operations. In first stage, the input sequence is written into rectangular matrix row by row. The second stage is inter-column permutation. The two-stage operations are described as follows, the input block length is assumed to be K₂.

First Stage:

(1) Set a column number $C_2 = \frac{3230}{32}$.

(2) Determine a row number R_2 by finding minimum integer R_2 such that,

$$\mathbf{K}_2 <= \mathbf{R}_2 \times \mathbf{C}_2.$$

(3) The input sequence of the 2^{nd} interleaving is written into the $R_2 \times C_2$ rectangular matrix row by row.

Second Stage:

(1) Perform the inter-column permutation based on the pattern $\{P_2(j)\}$ (*j*=0,1, ..., C-1) that is shown in Table 4-4 (Table 6.2.8-1), where $P_2(j)$ is the original column position of the *j*-th permuted column.

(2) The output of the 2^{nd} interleaving is the sequence read out column by column from the inter-column permuted $R_2 \times C_2$ matrix and the output is pruned by deleting the non-existence bits in the input sequence, where the deleting bits number l_2 is defined as:

$$l_2 = \mathbf{R}_2 \times \mathbf{C}_2 - \mathbf{K}_2.$$

Table 4-4 (Table 6.2.8-1)

Column number C ₂	Inter-column permutation pattern
<u>30</u>	<u>{0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28, 1, 11, 21, 6, 16, 26, 4, 14, 24, 19, 9, 29, 12, 2, 7, 22, 27, 17}</u>
Column number C	Inter column permutation patterns

	inter column permutation patients
32	{0, 16, 8, 24, 4, 20, 12, 28, 18, 2, 26, 10, 22, 6, 30, 14, 17, 1, 25, 9, 21, 5, 29, 13, 3, 19, 11, 27, 7, 23, 15, 31}

References

[1] NTT DoCoMo, "Modified Multistage InterLeaver (MIL) for Channel Interleaving", TSGR1#5(99)662

[2] Ad hoc #4 chair, "Ad hoc #4 report", TSGR1#5(99)693

[3] Siemens, "Text proposal for optimised puncturing", TSGR1#5(99)703