## Agenda Item:

Source: NTT DoCoMo, Nortel Networks and SAMSUNG Electronics Co.
Title: Updated text proposal for Turbo code internal interleaver
Document for: Decision

## Introduction

This document proposes an updated text for the approved Turbo code internal interleaver [1], [2], [3] of documents TS 25.212 and TS 25.222 . In this update, the editorial changes are made to exactly reflect that the maximum Turbo-coding block size was changed from 8192-bit to 5120-bit [4] (this has been approved in RAN WG1 meeting \#5).

## Text proposal for TS $\mathbf{2 5 . 2 1 2}$ (and TS 25.222)

### 4.2.3.2.3 (6.2.3.2.3) Turbo code internal interleaver

Figure 4-6 (Figure 6-5) depicts the overall 8-state PCCC Turbo coding scheme including Turbo code internal interleaver. The Turbo code internal interleaver consists of mother interleaver generation and pruning. For arbitrary given block length K , one mother interleaver is selected from the $207 \mathbf{1 3 4}$ mother interleavers set. The generation scheme of mother interleaver is described in section 4.2.3.2.3.1 (section 6.2.3.2.3). After the mother interleaver generation, $l$-bits are pruned in order to adjust the mother interleaver to the block length K . The definition of $l$ is shown in section 4.2.3.2.3.2 (section 6.2.3.2.3.2).


Figure 4-6 (Figure 6-5). Overall 8-state PCCC Turbo Coding

### 4.2.3.2.3.1 (6.2.3.2.3.1) Mother interleaver generation

The interleaving consists of three stages. In first stage, the input sequence is written into the rectangular matrix row by row. The second stage is intra-row permutation. The third stage is inter-row permutation. The three-stage permutations are described as follows, the input block length is assumed to be K ( 320 to 5120 bits).

## First Stage:

(1) Determine a row number R such that
$\mathrm{R}=10$ ( $\mathrm{K}=481$ to 530 bits; Case-1)
$R=20$ ( $K=$ any other block length except 481 to 530 bits; Case-2)
(2) Determine a column number C such that

Case-1; $\mathrm{C}=p=53$
Csae-2;
(i) find minimum prime $p$ such that, $0=<(p+1)-K / R$,
(ii) if ( $0=<p-\mathrm{K} / \mathrm{R}$ ) then go to (iii), else $\mathrm{C}=p+1$.
(iii) if $(0=<p-1-\mathrm{K} / \mathrm{R})$ then $\mathrm{C}=p-1$, else $\mathrm{C}=p$.
(3) The input sequence of the interleaver is written into the RxC rectangular matrix row by row.

## Second Stage:

A. If $\mathrm{C}=p$
(A-1) Select a primitive root $g_{0}$ from Table 4-2 (Table 6.2.3-2).
(A-2) Construct the base sequence $c(i)$ for intra-row permutation as:

$$
c(i)=\left[g_{0} \times c(i-1)\right] \bmod p, i=1,2, \ldots,(p-2) ., c(0)=1
$$

(A-3) Select the minimum prime integer set $\left\{q_{j}\right\}(j=1,2, \ldots \mathrm{R}-1)$ such that g.c.d $\left\{q_{j}, p-1\right\}=1$
$q_{j}>6$

$$
q_{j}>q_{(j-1)}
$$

where g.c.d. is greatest common divider. And $q_{0}=1$.
(A-4) The set $\left\{q_{\mathrm{j}}\right\}$ is permuted to make a new set $\left\{p_{j}\right\}$ such that

$$
p_{\mathrm{P}(j)}=q_{j}, j=0,1, \ldots . \mathrm{R}-1
$$

where $\mathrm{P}(j)$ is the inter-row permutation pattern defined in the third stage.
(A-5) Perform the $j$-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., \text { and } c_{j}(p-1)=0
$$

where $c_{j}(i)$ is the input bit position of $i$-th output after the permutation of $j$-th row.

## B. If $\mathrm{C}=p+1$

(B-1) Same as case A-1.
(B-2) Same as case A-2.
(B-3) Same as case A-3.
(B-4) Same as case A-4.
(B-5) Perform the $j$-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., c_{j}(p-1)=0, \text { and } c_{j}(p)=p
$$

(B-6) If ( $\mathrm{K}=\mathrm{C} \times \mathrm{R}$ ) then exchange $c_{\mathrm{R}-1}(p)$ with $c_{\mathrm{R}-1}(0)$.
where $c_{j}(i)$ is the input bit position of $i$-th output after the permutation of $j$-th row.

## C. If $\mathrm{C}=p-1$

(C-1) Same as case A-1.
(C-2) Same as case A-2.
(C-3) Same as case A-3.
(C-4) Same as case A-4.
(C-5) Perform the $j$-th $(j=0,1,2, \ldots, \mathrm{R}-1)$ intra-row permutation as:

$$
c_{j}(i)=c\left(\left[i \times p_{j}\right] \bmod (p-1)\right)-1, \quad i=0,1,2, \ldots,(p-2),
$$

where $c_{j}(i)$ is the input bit position of $i$-th output after the permutation of $j$-th row.

## Third Stage:

(1) Perform the inter-row permutation based on the following $\mathrm{P}(j)(j=0,1, \ldots, \mathrm{R}-1)$ patterns, where $\mathrm{P}(j)$ is the original row position of the $j$-th permuted row.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\} \text { for } \mathrm{R}=20 \\
& \mathrm{P}_{\mathrm{B}}:\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\} \text { for } \mathrm{R}=20 \\
& \mathrm{P}_{\mathrm{C}}:\{9,8,7,6,5,4,3,2,1,0\} \text { for } \mathrm{R}=10
\end{aligned}
$$

The usage of these patterns is as follows:

$$
\begin{aligned}
& \text { Block length K: } \mathrm{P}(j) \\
& 320 \text { to } 480 \text {-bit: } \mathrm{P}_{\mathrm{A}} \\
& 481 \text { to } 530 \text {-bit: } \mathrm{P}_{\mathrm{C}} \\
& 531 \text { to } 2280 \text {-bit: } \mathrm{P}_{\mathrm{A}} \\
& 2281 \text { to } 2480 \text {-bit: } \mathrm{P}_{\mathrm{B}} \\
& 2481 \text { to } 3160 \text {-bit: } \mathrm{P}_{\mathrm{A}} \\
& 3161 \text { to } 3210 \text {-bit: } \mathrm{P}_{\mathrm{B}} \\
& 3211 \text { to } 5120 \text {-bit: } \mathrm{P}_{\mathrm{A}}
\end{aligned}
$$

(2) The output of the mother interleaver is the sequence read out column by column from the permuted $\mathrm{R} \times \mathrm{C}$ matrix.

Table 4-2 (Table 6.2.3-2). Table of prime $p$ and associated primitive root

| $\underline{p}$ | $\mathrm{g}_{0}$ | $\underline{\underline{P}}$ | $\mathrm{g}_{0}$ | $\underline{p}$ | $\mathrm{g}_{0}$ | $\underline{\underline{P}}$ | $\mathrm{g}_{0}$ | $\underline{p}$ | $\mathrm{g}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 3 | 59 | 2 | 103 | 5 | 157 | 5 | 211 | $\underline{2}$ |
| 19 | $\underline{2}$ | 61 | $\underline{2}$ | 107 | $\underline{2}$ | 163 | $\underline{2}$ | $\underline{223}$ | $\underline{3}$ |
| $\underline{23}$ | 5 | $\underline{67}$ | $\underline{2}$ | $\underline{109}$ | $\underline{6}$ | $\underline{167}$ | $\underline{5}$ | $\underline{227}$ | $\underline{2}$ |
| $\underline{\underline{29}}$ | $\underline{2}$ | $\underline{71}$ | $\underline{7}$ | $\underline{113}$ | $\underline{3}$ | $\underline{173}$ | $\underline{2}$ | $\underline{229}$ | $\underline{6}$ |
| $\underline{31}$ | $\underline{\underline{3}}$ | $\underline{73}$ | $\underline{5}$ | $\underline{127}$ | $\underline{3}$ | $\underline{179}$ | $\underline{2}$ | $\underline{233}$ | $\underline{3}$ |
| $\underline{37}$ | $\underline{2}$ | $\underline{79}$ | $\underline{3}$ | $\underline{131}$ | $\underline{2}$ | $\underline{181}$ | $\underline{2}$ | $\underline{239}$ | 7 |
| $\underline{41}$ | $\underline{6}$ | $\underline{83}$ | $\underline{2}$ | $\underline{137}$ | $\underline{3}$ | $\underline{191}$ | $\underline{19}$ | $\underline{241}$ | $\underline{7}$ |
| 43 | $\underline{3}$ | $\underline{89}$ | $\underline{\underline{3}}$ | $\underline{139}$ | $\underline{2}$ | 193 | $\underline{5}$ | $\underline{251}$ | $\underline{6}$ |
| 47 | 5 | $\underline{97}$ | $\underline{5}$ | $\underline{149}$ | $\underline{2}$ | $\underline{197}$ | $\underline{2}$ | $\underline{\underline{257}}$ | $\underline{3}$ |
| $\underline{53}$ | $\underline{2}$ | $\underline{101}$ | $\underline{2}$ | $\underline{151}$ | $\underline{6}$ | $\underline{199}$ | $\underline{3}$ |  |  |


| P | $\mathrm{g}_{\theta}$ | P | $\mathrm{g}_{*}$ | $\nrightarrow$ | $\mathrm{G}_{\text {e }}$ | P | $\mathrm{g}_{\theta}$ | $P$ | $\mathrm{g}_{\ominus}$ | P | $\mathrm{g}_{\theta}$ | $P$ | $\mathrm{g}_{\theta}$ | P | $\mathrm{g}_{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 3 | 59 | $z$ | 103 | 5 | 157 | 5 | 214 | $z$ | 269 | z | 331 | 3 | 389 | $z$ |
| 19 | $z$ | 64 | $z$ | 107 | $z$ | 163 | $z$ | 223 | 3 | 271 | 6 | 337 | 10 | 397 | 5 |
| 23 | 5 | 67 | z | 109 | 6 | 167 | 5 | 227 | $z$ | 277 | 5 | 347 | z | 401 | 3 |
| 29 | $z$ | 71 | 7 | 113 | 3 | 173 | $z$ | 229 | 6 | 281 | 3 | 349 | z | 409 | 24 |
| 31 | 3 | 73 | 5 | 127 | 3 | 179 | $z$ | 233 | 3 | 283 | 3 | 353 | 3 |  |  |
| 37 | z | 79 | 3 | 134 | $z$ | 181 | $z$ | 239 | 7 | 293 | z | 359 | 7 |  |  |
| 44 | 6 | 83 | $z$ | 137 | 3 | 194 | 19 | 241 | 7 | 307 | 5 | 367 | 6 |  |  |
| 43 | 3 | 89 | 3 | 139 | $z$ | 193 | 5 | 251 | 6 | 311 | 17 | 373 | $z$ |  |  |
| 47 | 5 | 97 | 5 | 149 | $z$ | 197 | z | 257 | 3 | 313 | 10 | 379 | z |  |  |
| 53 | $z$ | 101 | z | 151 | 6 | 199 | 3 | 263 | 5 | 317 | $z$ | 383 | 5 |  |  |

### 4.2.3.2.3.2 (6.2.3.2.3.2) Definition of number of pruning bits

The output of the mother interleaver is pruned by deleting the $l$-bits in order to adjust the mother interleaver to the block length K , where the deleted bits are non-existent bits in the input sequence. The pruning bits number $l$ is defined as:

$$
l=\mathrm{R} \times \mathrm{C}-\mathrm{K},
$$

where R is the row number and C is the column number defined in section 4.2.3.2.3.1 (section 6.2.3.2.3.1).

## References

[1] NTT DoCoMo and Nortel Networks, "Text proposal for Turbo code internal interleaver of S1.12, S1.22", TSGR1\#4(99)471
[2] NTT DoCoMo and Nortel Networks, "Updated text for Turbo code internal interleaver of 25.212, 25.222", TSGR1\#5(99)540
[3] SAMSUNG electronics Co., NTT DoCoMo and Nortel Networks, "Agreement of incorporating PIL modification into 25.212, 25.222", TSGR1\#5(99)735
[4] Nokia, "Maximum turbo coding block size: text proposal", TSGR1\#5(99)549

