Corrected text proposal for secondary synchronization codes (SSC)

Texas Instruments

As pointed out by Ericsson and Nortel on the 3Gpp reflector, there is a typo in the current secondary synchronization codes in [1, 2]. In this submission we correct for the typo.
-Begin text proposal for TS 25.213-

5.2.3 Synchronisation codes

5.2.3.1 Code Generation

The Primary code sequence, C_{p} is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.
Letting $\mathrm{a}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}\right\rangle=\langle 0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0\rangle$ and $\mathrm{b}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{8}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{8}\right\rangle$.
The PSC code is generated by repeating sequence ' a ' modulated by a Golay complementary sequence.
Letting $y=<a, a, a, \bar{a}, \bar{a}, a, \bar{a}, \bar{a}, a, a, a, \bar{a}, a, \bar{a}, a, a>$
The definition of the PSC code word C_{p} follows (the left most index corresponds to the chip transmitted first in each time slot):
$\mathrm{C}_{\mathrm{p}}=\langle\mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \ldots, \mathrm{y}(255)\rangle$.
Let the sequence $\mathrm{z}=\langle b, b\rangle$. Then the Secondary Synchronization code words, $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{17}\right\}$ are constructed as the position wise addition modulo 2 of a Hadamard sequence and the sequence z.
The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed recursively by:
$H_{0}=(0)$
$H_{k}=\left(\begin{array}{ll}H_{k-1} & \frac{H_{k-1}}{H_{k-1}}\end{array}\right), \quad k \geq 1$
The rows are numbered from the top starting with row 0 (the all zeros sequence).
The Hadamard sequence h depends on the chosen code number n and is denoted h_{n} in the sequel.
This code word is chosen from every $8^{\text {th }}$ row starting with row 2 of the matrix H_{8}.-Therefore, there are 32 possible code words out of which $n=1,2, \ldots, 17 \underline{\mathrm{n}=0,1,2, \ldots, 16 \text { are used. The rows of the matrix } H_{\underline{8}}}$ chosen are thus $2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122$ and row 130.
Furthermore, let $h_{n}(i)$ and $z(i)$ denote the i :th symbol of the sequence h_{n} and z, respectively.
Then h_{n} is equal to the row of H_{8} numbered by the bit reverse of the 8 bit binary representation of n.
The definition of the n :th SCH code word follows (the left most index correspond to the chip transmitted first in each slot):
$\mathrm{C}_{\mathrm{SCH}, \mathrm{n}}=\left\langle h_{n}(0)+z(0), h_{n}(1)+z(1), h_{n}(2)+z(2), \ldots, h_{n}(255)+z(255)\right\rangle$,
All sums of symbols are taken modulo 2.
These PSC and SSC binary code words are converted to real valued sequences by the transformation ' 0 ' -> '+1', ' 1 ' -> '- 1 '.
The Secondary SCH code words are defined in terms of $\mathrm{C}_{\mathrm{SCH}, \mathrm{n}}$ and the definition of $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{17}\right\}$ now follows as:
$\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}, \mathrm{i}=1, \ldots, 17$
[1] TS 25.213, $3^{\text {rd }}$ Generation Partnership Project (3GPP), Technical Specification Group (TSG), Radio Access Network (RAN), Working Group 1 (WG1), Spreading and Modulation (FDD).
[2] Texas Instruments, "Secondary synchronization codes (SSC) corresponding to the Generalised Hierarchical Golay (GHG) PSC", Tdoc R1-99574, Cheju, Korea, June1-4, 1999.

