
3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 1/8

TSG-RAN Working Group 1(Radio) meeting #6 TSGR1#6(99) 946
Espoo, Finland 13-16th , July 1999

Source: LGIC

Title: Alternative Uplink Puncturing Algorithm

1. Introduction
Samsung proposed a new universal puncturing algorithm in this meeting. But to our knowledge, the uplink part of this
algorithm is ambiguous. Therefore, we propose an alternative puncturing algorithm for uplink. The basic idea is similar
to that of the previously presented algorithm[7]. In other words, we can divide the column sequence into the ‘y’
sequence of 1st RSC encoder and ‘z’ sequence of 2nd RSC encoder then, apply the similar procedure to the previously
presented algorithm to calculate the shifting parameter S for each column sequences.

2. Design of Alternative Uplink Puncturing Algorithm for Turbo Code

The design rules imposed on the uplink puncturing algorithm for turbo code are as below.

Preventing puncturing of systematic bits
Systematic bits of turbo code are more important than parity bits which means that puncturing of one systematic bit
results in more performance degradation than a parity bit.

Equal amount and uniform puncturing of parity bits of two encoders
In order to maximise the BER performance of turbo code, the coding strength of each RSC code must be balanced.
Balanced puncturing of parity bits between the two encoders means balanced puncturing of each RSC code.

Equal amount of puncturing for each 1st MIL interleaved column sequence
For the uplink, rate matching algorithm is performed over 1st MIL interleaved sequence and therefore, rate matching
must be performed in a way that every column sequence has an equal amount of puncturing. The purpose of uplink rate
matching for turbo code is to satisfy the original property of turbo puncturing algorithm in the view point of “before the
1st MIL original code sequence” while applying the equal amount of puncturing over each interleaved sequence.

Providing a unified rate matching algorithm for uplink and downlink
For the simplicity of implementation, it is desirable to use a unified rate matching algorithm for uplink and downlink.

3. The Description of Alternative Uplink Puncturing Algorithm
Figure 1 shows the example of writing the 1st MIL of K=8. In figure 1, In the figure, ‘x’ means the systematic code bit,
‘y’ the parity bit from 1st RSC encoder and ‘z’ from the 2nd RSC encoder. The subscript of each bit is the order of code
symbol. This example is the case of totally 96 code symbol so 288 code bits.

The basic idea of this proposal is that we can use two rate matching algorithm in independent and parallel manner. In
other words, rate matching algorithm 1 for ‘y’ sequences for each column and rate matching algorithm 2 for ‘z’
sequences for each column operate simultaneously.

For this purpose, we can divide the each column sequence of figure 1 into two groups. One is the group of ‘y’ bit
sequence and the other is the group of ‘z’ bit sequence.

Then, we can obtain the virtual interleaver memory as shown in figure 2. Figure 2-(a) is an example of virtual interleaver
for ‘y’ bit sequence and figure 2-(b) is an example of virtual interleaver for ‘z’ bit sequence.

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 2/8

The bold number of the 1st row for each virtual interleaver represents the actual column number of original interleaver.
That is, the 1st column of the left interleaver represents the 1st column of the original MIL interleaver and the 2nd column
represents the 7th column of the original MIL interleaver, and vice versa. The mapping of virtual interleaver column
index to the original interleaver column index can be simply described by the next equation

KkkQ mod)13()(+= : 1,2,1,0 −= Kk L (mapping rule for ‘y’ bit sequence)

KkkQ mod)23()(+= : 1,2,1,0 −= Kk L (mapping rule for ‘z’ bit sequence)

x0 y0 z0 x1 y1 z1 x2 y2

z2 x3 y3 z3 x4 y4 z4 x5

y5 z5 x6 y6 z6 x7 y7 z7

x8 y8 z8 x9 y9 z9 x10 y10

z10 x11 y11 z11 x12 y13 z12 x13

y13 z13 x14 y14 z14 x15 y15 z15

x16 y16 z16 x17 y17 z17 x18 y18

z18 x19 y19 z19 x20 y20 z20 x21

y21 z21 x22 y22 z22 x23 y23 z23

x24 y24 z24 x25 y25 z25 x26 y26

z26 x27 y27 z27 x28 y28 z28 x29

y29 z29 x30 y30 z30 x31 y31 z31

x32 y32 z32 x33 y33 z33 x34 y34

z34 x35 y35 z35 x36 y36 z36 x37

y37 z37 x38 y38 z38 x39 y39 z39

x40 y40 z40 x41 y41 z41 x42 y42

z42 x43 y43 z43 x44 y44 z44 x45

y45 z45 x46 y46 z46 x47 y47 z47

x48 y48 z48 x49 y49 z49 x50 y50

z50 x51 y51 z51 x52 y52 z52 x53

y53 z53 x54 y54 z54 x55 y55 z55

x56 y56 z57 x57 y57 z57 x58 y58

z58 x59 y59 z59 x60 y60 z60 x61

y61 z61 x62 y62 z62 x63 y63 z63

x64 y64 z64 x65 y65 z65 x66 y66

z66 x67 y67 z67 x68 y68 z68 x69

y69 z69 x70 y70 z70 x71 y71 z71

x72 y72 z72 x73 y73 z73 x74 y74

z74 x75 y75 z75 x76 y76 z76 x77

y77 z77 x78 y78 z78 x79 y79 z79

x80 y80 z80 x81 y81 z81 x82 y82

z82 x83 y83 z83 x84 y84 z84 x85

y85 z85 x86 y86 z86 x87 y87 z87

x88 y88 z88 x89 y89 z89 x90 y90

z90 x91 y91 z91 x92 y92 z92 x93

y93 z93 x94 y94 z94 x95 y95 z95

Figure 1. example of writing the interleaver memory

1 4 7 2 5 0 3 6
y0 y1 y2 y3 y4 y5 y6 y7

y8 y9 y10 y11 y12 y13 y14 y15

y16 y17 y18 y19 y20 y21 y22 y23

y24 y25 y26 y27 y28 y29 y30 y31

y32 y33 y34 y35 y36 y37 y38 y39

y40 y41 y42 y43 y44 y45 y46 y47

y48 y49 y50 y51 y52 y53 y54 y55

y56 y57 y58 y59 y60 y61 y62 y63

y64 y65 y66 y67 y68 y69 y70 y71

y72 y73 y74 y75 y76 y77 y78 y79

y80 y81 y82 y83 y84 y85 y86 y87

y88 y89 y90 y91 y92 y93 y94 y95

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 3/8

Figure 2-(a). virtual interleaver for ‘y’ sequence

2 5 0 3 6 1 4 7
z0 z1 z2 z3 z4 z5 z6 z7

z8 z9 z10 z11 z12 z13 z14 z15

z16 z17 z18 z19 z20 z21 z22 z23

z24 z25 z26 z27 z28 z29 z30 z31

z32 z33 z34 z35 z36 z37 z38 z39

z40 z41 z42 z43 z44 z45 z46 z47

z48 z49 z50 z51 z52 z53 z54 z55

z56 z57 z58 z59 z60 z61 z62 z63

z64 z65 z66 z67 z68 z69 z70 z71

z72 z73 z74 z75 z76 z77 z78 z79

z80 z81 z82 z83 z84 z85 z86 z87

z88 z89 z90 z91 z92 z93 z94 z95

Figure 2-(b). virtual interleaver for ‘z’ sequence

Let’s assume that among total number of 36 code bits for each column, 4 bits are to be punctured. In this case, cN is 96

and P is 4. Then, we can use two rate matching procedure for each ‘y’ and ‘z’ sequence in figure 2-(a) and figure 2-(b).

All we need to do is to calculate the shifting parameter for each column of 1st interleaver for each rate matching
algorithm.

The shifting parameter for each column is calculated in the similar procedure.

1) Calculation of Shifting Parameter for ‘y’ sequence

N = 







3

cN
 :  x is the largest integer which does not exceed the value of ‘x’





−=

2

P
NN i :  x is the smallest integer which exceeds the value of ‘x’









−

=
|| NN

N
q

i

 : q means the average puncturing distance of ‘y’ sequence

From the value of q, we can find the shifting parameter S guaranteeing the overall uniformity over “before the 1st

interleaved ‘y’ sequence” as follows.

if(q ≤ 2){

 for(k=0; k<K; k++) {

if((k%2)=0)

S[R[(3k+1) mod K]] = 0;

else

S[R[(3k+1) mod K]] = 1;

}

}

else{

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 4/8

if((q%2)=1)

q’ = q -
K

KqDCG),(..
; to avoid hitting the same column

else q’ = q

for(i=0; i< K ; i++) {

k =  '*qi % K ;

S[R[(3k+1) mod K]] =  '*qi div K ;

}

}

In the above procedure, R [] means the mapping pattern of the 1st MIL interleaver.

2) Calculation of Shifting Parameter for ‘z’ sequence

N = 







3

cN
 :  x is the largest integer which does not exceed the value of ‘x’





−=

2

P
NN i :  x is the smallest integer which exceeds the value of ‘x’









−

=
|| NN

N
q

i

 : q means the average puncturing distance of ‘z’ sequence

From the value of q, we can find the shifting parameter S guaranteeing the overall uniformity over “before the 1st

interleaved ‘z’ sequence” as follows.

if(q ≤ 2){

 for(k=0; k<K; k++) {

if((k%2)=0)

S[R[(3k+2) mod K]] = 0;

else

S[R[(3k+2) mod K]] = 1;

}

}

else{

if((q%2)=1)

q’ = q -
K

KqDCG),(..
; to avoid hitting the same column

else q’ = q

for(i=0; i< K ; i++) {

k =  '*qi % K ;

S[R[(3k+2) mod K]] =  '*qi div K ;

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 5/8

}

}

Then using the shifting parameter obtained through the procedure of (1) and (2), the two rate matching block operates
simultaneously. The rate matching procedure can be described as follows.

(3) Rate Matching Procedure

},,{
210 cNNN dddS L= : set of NC data bits for each column

Ni : symbol number after puncturing

N =  3/cN

k : column index k=0,1,2,3,….,K-1 (K : Column number of 1st MIL)

if puncturing is to be performed

 y = N - Ni

e = (2*S (k) * y + N) mod 2N -- initial error offsete

– S(k) from procedure 1 if ‘y’ sequence puncturing and from procedure 2 if ‘z’ sequence puncturing

if(e=0) e = 2N

 m = 1 -- index for current symbol

do while m <= N

e = e – 2 * y -- update error

if e <= 0 then -- check if symbol number m should be punctured

puncture bit m from set S0

e = e + 2*N -- update error

end if

m = m + 1 -- index for next symbol

end do

end if

else if repetition is to be performed

y = N - Ni

e = (2*S (k) * y + N) mod 2N -- initial error offsete

– S(k) from procedure 1 if ‘y’ sequence repetition and from procedure 2 if ‘z’ sequence repetition

if(e=0) e = 2N

 m = 1 -- index for current symbol

do while m <= N

e = e – 2 * y -- update error

if e <= 0 then -- check if symbol number m should be repeated

repeat bit m from set S0

e = e + 2*N -- update error

end if

m = m + 1 -- index for next symbol

end do

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 6/8

end if

Using the above procedure, we can obtain the puncturing pattern which satisfies almost all of the requirements for turbo
code puncturing.

4. Example of Puncturing Pattern of the Alternative Algorithm
Let’s assume the case when among the 36 code bits for each column, 4 bits are to be punctured.

Then, by applying the above procedure, we can obtain the puncturing pattern for each virtual interleaver as shown in
figure 3-(a) and figure 3-(b)

1 4 7 2 5 0 3 6
y0 y1 y2 y3 y4 y5 y6 y7

y8 y9 y10 y11 y12 y13 y14 y15

y16 y17 y18 y19 y20 y21 y22 y23

y24 y25 y26 y27 y28 y29 y30 y31

y32 y33 y34 y35 y36 y37 y38 y39

y40 y41 y42 y43 y44 y45 y46 y47

y48 y49 y50 y51 y52 y53 y54 y55

y56 y57 y58 y59 y60 y61 y62 y63

y64 y65 y66 y67 y68 y69 y70 y71

y72 y73 y74 y75 y76 y77 y78 y79

y80 y81 y82 y83 y84 y85 y86 y87

y88 y89 y90 y91 y92 y93 y94 y95

Figure 3-(a). puncturing pattern for ‘y’ sequences

2 5 0 3 6 1 4 7
z0 z1 z2 z3 z4 z5 z6 z7

z8 z9 z10 z11 z12 z13 z14 z15

z16 z17 z18 z19 z20 z21 z22 z23

z24 z25 z26 z27 z28 z29 z30 z31

z32 z33 z34 z35 z36 z37 z38 z39

z40 z41 z42 z43 z44 z45 z46 z47

z48 z49 z50 z51 z52 z53 z54 z55

z56 z57 z58 z59 z60 z61 z62 z63

z64 z65 z66 z67 z68 z69 z70 z71

z72 z73 z74 z75 z76 z77 z78 z79

z80 z81 z82 z83 z84 z85 z86 z87

z88 z89 z90 z91 z92 z93 z94 z95

Figure 3-(b). puncturing pattern for ‘z’ sequences

Then we can obtain the resulting puncturing pattern as shown in figure 4. As can be seen in figure 4, puncturing of ‘y’
sequence and ‘z’ sequence occurs simultaneously. But if the initial offsets for each sequences are calculated in a
different manner, then another pattern can be obtained.

The problem occurs if the puncturing number for each column is an odd number. Then, in the extreme case, 8 more ‘y’
bits can be punctured than ‘z’ bits or 8 more ‘z’ bits than ‘y’ bits. If it is preferred to avoid this problem, the number of

puncturing for each sequence can be calculated by 





2

P
. Using this number, shifting parameters for each sequence are

calculated. Then two rate matching algorithm operates simultaneously, knowing that for example, for odd numbered
column in the 1st interleaver, the last puncturing of ‘y’ must be avoided and for even numbered column, the last
puncturing of ‘z’ must be avoided.

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 7/8

x0 y0 z0 x1 y1 z1 x2 y2

z2 x3 y3 z3 x4 y4 z4 x5

y5 z5 x6 y6 z6 x7 y7 z7

x8 y8 z8 x9 y9 z9 x10 y10

z10 x11 y11 z11 x12 y13 z12 x13

y13 z13 x14 y14 z14 x15 y15 z15

x16 y16 z16 x17 y17 z17 x18 y18

z18 x19 y19 z19 x20 y20 z20 x21

y21 z21 x22 y22 z22 x23 y23 z23

x24 y24 z24 x25 y25 z25 x26 y26

z26 x27 y27 z27 x28 y28 z28 x29

y29 z29 x30 y30 z30 x31 y31 z31

x32 y32 z32 x33 y33 z33 x34 y34

z34 x35 y35 z35 x36 y36 z36 x37

y37 z37 x38 y38 z38 x39 y39 z39

x40 y40 z40 x41 y41 z41 x42 y42

z42 x43 y43 z43 x44 y44 z44 x45

y45 z45 x46 y46 z46 x47 y47 z47

x48 y48 z48 x49 y49 z49 x50 y50

z50 x51 y51 z51 x52 y52 z52 x53

y53 z53 x54 y54 z54 x55 y55 z55

x56 y56 z57 x57 y57 z57 x58 y58

z58 x59 y59 z59 x60 y60 z60 x61

y61 z61 x62 y62 z62 x63 y63 z63

x64 y64 z64 x65 y65 z65 x66 y66

z66 x67 y67 z67 x68 y68 z68 x69

y69 z69 x70 y70 z70 x71 y71 z71

x72 y72 z72 x73 y73 z73 x74 y74

z74 x75 y75 z75 x76 y76 z76 x77

y77 z77 x78 y78 z78 x79 y79 z79

x80 y80 z80 x81 y81 z81 x82 y82

z82 x83 y83 z83 x84 y84 z84 x85

y85 z85 x86 y86 z86 x87 y87 z87

x88 y88 z88 x89 y89 z89 x90 y90

z90 x91 y91 z91 x92 y92 z92 x93

y93 z93 x94 y94 z94 x95 y95 z95

Figure 4. resulting puncturing pattern

5. Conclusion
In this contribution, we propose an alternative puncturing algorithm for uplink using similar idea of [7]. This algorithm
can satisfy all the requirements for turbo code puncturing without changing the conventional rate matching appraoch.

6. Reference
[1] 3GPP TSG RAN WG1 Multiplexing and Channel Coding(FDD) TS 25.212 V1.1.0 (1996. 06)

[2] 3GPP TSG RAN WG1 R1-99203 Optimised Rate Matching After Interleaving, Siemens.

[3] 3GPP TSG RAN WG1 R1-99703 Text Proposal for Optimised Puncturing, Siemens.

[4] 3GPP TSG RAN WG1 R1-99338 Puncturing Algorithm for Turbo Code, LGIC.

[5] 3GPP TSG RAN WG1 R1-99654 Comparison of Downlink Puncturing Algorithms, LGIC.

[6] 3GPP TSG RAN WG1 R1-99388 Optimised Puncturing Scheme for Turbo Coding, Fujitsu.

3GPP/TSG/RAN/WG1#6 TDOC 946/99 page 8/8

[7] 3GPP TSG RAN WG1 R1-99908 Code Symbol Based Uplink Puncturing Algorithm, LGIC

