TSG-_RAN WG-1 TSGW 1#5(99)672
Meeting # 5

Cheju, Korea

June 1-4, 1999

Title: Optimal Shuffling Multiplexing of Coded
QoS Blocks

Source: Nortel Networks?

0.0 Summary

In this contribution, we present optimal shuffling multiplexing algorithm to replace the
2" | nterleaver.

1 Contact Person: Catherine Gauthier, Nortel Networks

1 Place des Freres Montgolfier, 78042 Guyancourt, France
Tel:+33 1 39 44 57 47

Fax:+33 139 44 50 12

e_mail: gauth@nortel.com




1.0 Shuffling Multiplexing

1.1 Using the Rate M atching Algorithm as Shuffling

In TSGR1#3(99)466, we propose to use the uniform shuffling algorithm as the multiplex-

ing algorithm for the 2" interleaver, to combine the different QoS blocks. The basic idea
of the rate matching algorithm is to use a stair function to approximate a straight line, see
Figure 1. The intersection points is the rate matching points, such an algorithm will ensure
the uniform distributed intersections of these points. In light of the same principle, it can
be used for the optimal uniform multiplexing algorithm.

FIGURE 1. Principle of Shuffling

1.2 Recursive Shuffling of the M ultiple QoS Blocks

The straightforward approach to multiplex the several QoS block isto employ the shuffing
algorithm to multiplex the two QoS blocks together atime and recursively to multiplex all
the QoS blocks. This approach only need to compare the two block length size and per-
form memory read-write operation at each iteration. The complexity of such a multiplex-
ing N QoS blocksis as follows:

« N2 compare operations




* (N-1)(L1+Lo)+(N-2)Lg+...+2L .1 +Ly memory access (read & write)

where Lq,Lo,....Ly are the QoS block size and the total block sizeisL. T QoS block size

can be sorted and the shuffling is perform in the accenting order of block size, the memory
access operation can be reduced. Such a shuffling can achieve optimal shuffling.

In Figure 1, the multiplexing of typical 4 different QoS blocks are shown and compared.

FIGURE 2. Perfect Shuffling

25 30

25 30

1.3 FSMIL 2" |nterleaver as 2"d Multiplexing

The FS-MIL interleaver acts also as the multiplexing function different QoS blocks. How-
ever, such a shuffling multipeixng is non-optimum. See Figure 2.

1.4 Mitsubishi Shuffling Algorithm

In TSGR1#5(99)539, a shuffling multiplexing is proposed for multiplexing sevral QoS
blocks. The shuffling algorithm computes the following:

«d =L-N,¢g =d,x =0fori=12,..N
» while x<L do

findj suchthat ¢ = min{e,, e, ¥4, ey}




Y[x] = Xj[xj],x =x+1,x =x+1

if X = Nj then e =

]

+¥  dsee

]

= ej+2dj

FIGURE 3. FSMIL 2" |nterleaving Shuffling

1.4

1.2

15

20

10

15

20

25

25

30

Example: L, = 3L, =5L =8N=2,d, =5,d,=3,%x, =0,x, =0.

TABLE 1. Mitsubishi Shuffling Algorithm

X min

0 e={5,3} e,=3 e,=3+6=9 Xo=1 x=1 Y[0]=X,[0]
1 e={5,9} e;=5 e;=5+10=15 x1=1 x=2 Y [1]=X4[0]
2 e={15,9} e,=9 e,=9+6=15 Xp=2 x=3 Y[2]=X[1]
3 e={15,15} e=15 e,=15+6=21 X5=3 x=4 Y[3]=X4[2]
4 e={15,21} e,=15 e,=15+10=25 X1=2 x=5 Y[4]=X4[1]
5 e={25,21} e,=21 e,=21+6=27 Xo=4 x=6 Y[5]=X4[3]
6 e={25,27} e;=25 e,=25+10=35 X1=3 X=7 Y[6]=X4[2]
7 e={35,27} e,=27 e,=27+6=33 X5=5 x=8(stop) Y[7]=X[4]




The major complexity is sorting the set of e which is LN2, with L times memory access
time, where the Bubble sorting complexity is N2

1.5 One-Pass Stack Based Shuffling without Sorting

In order to reduce the complexity of the recursive perfect shuffling and Mitubishis shuf-
fling, we propse the One-Pass shuffling based on the stack operation.

Example: L, = 3,L, = 5,L; = 8L =16,N=3,¢e, = 0,e, = 0,¢e, = 0.

TABLE 2. Stack Based Shuffling Algorithm

Stack Flag Output
0 €,=-0-6=-6 €,=-0-10=-10 €;=0-16=-16 x;=1 xp=1 x3=1 Y[0]=X4[0]
e,=-6+32=26 €,=-10+32=22 e=-16+32=16
€,=26-6=20 €,=22-10=12 €;=16-16=0 X;=0 xp=1 x3=1 Y[1=X,[0]
2 €,=20-6=14 €,=12-10=2 €;=0-16=-16 X;=0 X,=0 X3=2 Y[2]=X4[0]
e;=-16+32=16
3 €,=14-6=8 €,=2-10=-8 €;=16-16=0 X;=0 xp=1 X3=2 Y[3]=X,[1]
6,=-8+32=24
4 €=8-6=2 €,=24-10=14 €;=0-16=-16 X;=0 Xp=0 x3=1 Y[4]=X4[1]
e;=-16+32=16
5 €=2-6=-4 e,=14-10=4 €;=16-16=0 x;=1 Xp=0 x3=0 Y([5]=X4[1]
€=-4+32=28
6 €,=28-6=22 €,=4-10=-6 €;=0-16=-16 X;=0 xp=1 x3=1 Y[6]=X,[2]
6=-6+32=26 e;=-16+32=16
7 €,=22-6=16 €,-26-10=16 €;=16-16=0 X;=0 Xp=0 X3=2 Y[7]=X4[2]
8 €,=16-6=10 €,=16-10=6 €;=0-16=-16 X;=0 X,=0 x3=1 Y[8]=X4[3]
e;=-16+32=16
9 €,=10-6=4 €,=6-10=-4 €;=16-16=0 X;=0 xp=1 x3=0 Y[9]=X[3]
e=-4+32=28
10 €,=4-6=-2 €,-28-10=18 €;=0-16=-16 x=1 X,=0 x3=1 Y[10]1=X4[2]
€=-2+32=30 e;=-16+32=16
11 €,=30-6=24 €,=18-10=8 €;=16-16=0 X;=0 Xp=0 x3=1 Y[11]=X4[4]
12 €,=24-6=18 €,=8-10=-2 €;=0-16=-16 X;=0 xp=1 x3=1 Y[12]=X[4]
€=-2+32=30 e;=-16+32=16
13 €,=18-6=12 €,-30-10=20 €;=16-16=0 X;=0 Xp=0 x3=1 Y[13]=X4[5]
14 €,=12-6=6 €,-20-10=10 €;=0-16=-16 X;=0 Xp=0 X3=2 Y[14]=X46]
e;=-16+32=16
15 €,=6-6=0 €,=10-10=0 €;=16-16=0 X;=0 X,=0 x3=1 Y[15]=X4[7]

The only complexity is 2 round-robbin FIFO buffer for the size of N.




2.0 Comparison of Shuffling M ultiplexing

Four shuffling algorithm are presented in Section 1.0. As far as the performance is con-
cerned. The Recursive/Nortel and Mitsubishi proposal can achieve the best shuffling

while the Stack Based shuffling is sub-optimum.

In terms of complexity, the comparison of the 4 algorithmsislisted in Table 3.

TABLE 3. Computing Complexity of Shuffling Algorithm

Memory Access Sorting RM Computing | Buffer Size
Recursive | (N-1)(Lq+Lo)+(N-2)Lst+.Ly N2 L 0
Mitsubishi L LN2 L 2N
Stack L 0 LN 2N
FS-MIL L 0 0 0

Example: Assume that we can N equal size QoS block and memory access, sorting, RM
computing are considered as equivalent operation. We have the total operation complexity

for 3 shuffling algorithm based on rate matching algorithm, see Figure 4.

FIGURE 4. Comparison of Shuffling Complexity

10

10

i

NN

=
(=)

No. of Operation
[EEN
Ob)

=
(@]
N

10

10

Comparison of Complexity of Shuffling Multiplexing

/‘

/“

Mitsubushi/2-Blocks

Mitsubushi/20-Blocks
Stack/2-Blocks
Stack/20-Blocks

Recursive/2-Blocks
Recursive/20-Blocks
FS-MIL

100

200 300

400 500 600 700 800 900
Size of QoS Block

1000




As we can see that the recursive shuffling is a better choice in as far as the performance
and complexity is concerned.




