
TSG-RAN Working Group 1 meeting #4 3GPP/TSGR.1#4(99)-446
Tokyo, Japan
April 18-20, 1999

rfor-

-

TITLE:

Motorola Turbo Code Interleaver Ad Hoc 5 Work Plan Performance

SOURCE:

Motorola

ABSTRACT:

This contribution provides an analysis of the Motorola turbo code interleaver based on the Ad Hoc 5 Work
Plan. Complexities of the proposed turbo code interleavers from Motorola, Hughes/Nortel, Canon, and the
NTT DoCoMo merged proposal are also considered.

1.0  Key Points to Consider

• AWGN performance is very similar for the Motorola, Hughes/Nortel, and the
NTT merged interleavers.  BER differences are approximately 0.1 dB

• Performance in the more realistic mobile fading channels is virtually identical
for all interleavers simulated.

• Hamming weight asymptote and free distance do not accurately predict pe
mance.

• Complexity is a very important consideration in the choice of interleaver.

• The chosen interleaver should be of low complexity and capable of completely
operating in hardware without the need for interfacing with a programmable
DSP.

• The Motorola interleaver is the best choice considering performance and com
plexity.



izes
sults
/
t com-
dure of
er.
2.0  Static Performance

AWGN simulations down to 1E-6 BER are shown in Figure 1 for the five random block s
(720, 933, 1158, 7087, and 7686) chosen according to the Ad Hoc 5 work plan [7]. The re
show very similar performance (within 0.1 dB) for Motorola, NTT Merged and the Hughes
Nortel interleavers. We have attempted to simulate the Canon interleaver also, but we are no
pletely confident in our results because we are not certain we exactly understand the proce
matching the selected information data rates to the interleaver size for the Canon interleav

Figure 1:  AWGN comparison of turbo interleavers with 8 states 8 iterations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Eb/No dB

10-6

10-4

10-2

100

err
or 

rat
e

Block size 720

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER prunable
FER prunable
BER canon
FER canon

0.4 0.6 0.8 1.0 1.2
Eb/No dB

10-6

10-4

10-2

100

err
or 

rat
e

Block size 933

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER prunable
FER prunable
BER canon
FER canon

0.4 0.6 0.8 1.0 1.2 1.4
Eb/No dB

10-8

10-6

10-4

10-2

100

err
or 

rat
e

Block size 1158

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER prunable
FER prunable
BER canon
FER canon

0.20 0.30 0.40
Eb/No dB

10-8

10-6

10-4

10-2

100

err
or 

rat
e

Block size 7087

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER prunable
FER prunable
BER canon
FER canon

0.20 0.30 0.40 0.50 0.60
Eb/No dB

10-8

10-6

10-4

10-2

100

err
or 

rat
e

Block size 7686

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER prunable
FER prunable
BER canon
FER canon



ase II

r all
3.0 ETSI Phase II

As required in the work plan, fading simulations have also been done according to ETSI ph
parameters. These are shown in Figures 2 -7. We consider these simulations to bemuch more
realistic for mobile channels than the static simulations. It is very important to note that fo
interleavers simulated,the performance is virtually identical.

Figure 2:  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate
64kbps, 10 ms interleaving interval, 3 kmph mobile speed

Figure 3:  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate
64kbps, 10 ms interleaving interval, 30 kmph mobile speed

2.80 3.00 3.20 3.40 3.60 3.80
average Eb/No dB

1e-06

1e-05

1e-04

1e-03

1e-02

err
or 

rat
e

BER NTT merged
FER NTT merged
FER MOT
FER MOT
FER GF
FER GF

3.5 4.0 4.5
average Eb/No dB

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

erro
r ra

te

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER GF
FER GF



Figure 4  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 32
kbps, 10 ms interleaving interval, 3 kmph mobile speed

Figure 5  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 32
kbps, 10 ms interleaving interval, 30 kmph mobile speed

3.0 3.5 4.0
average Eb/No dB

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

erro
r ra

te

BER NTT merged
FER NTT merged
BER NOT
FER MOT
BER GF
FER GF

3.5 4.0 4.5 5.0
average Eb/No dB

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

erro
r ra

te

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER GF
FER GF



Figure 6  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64
kbps, 80 ms interleaving interval, 3 kmph mobile speed

Figure 7  Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64
kbps, 80 ms interleaving interval, 30 kmph mobile speed

2.20 2.30 2.40 2.50 2.60 2.70
average Eb/No dB

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

err
or r

ate
BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER GF
FER GF

2.60 2.70 2.80 2.90
average Eb/No dB

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

erro
r ra

te

BER NTT merged
FER NTT merged
BER MOT
FER MOT
BER GF
FER GF



g an

e

o the
on the

tote,
es not
e dis-

t clear
true
eights

ngth
, the
am-
may

mple,
n, all

ce, it
e it is

ce,
aver;
turer’s
eed

It is
rola

roxi-

r. The

t 600
in the
4.0 Spectral Analysis

According to the work plan from the last Ad Hoc 5 meeting, the best method for choosin
interleaver is to consider three criteria:

1. Simulation performance
2. Hamming Weight and Free Distance analysis
3. Complexity

We do not feel that HWA and Free Distance should be considered before complexity becaus
these do not necessarily provide an accurate assessment of performance.

Because it is difficult to simulate all possible interleaver block lengths, two approximations t
actual bit error rate have been proposed. The first, free distance asymptote, is based only
terms of the union bound with minimum weight while the second, Hamming Weight Asymp
includes multiple terms of this bound. In either case this performance measure alone do
always give an accurate portrayal of the performance at the BER of interest. HWA and fre
tance only consider certain output weights corresponding to low input weight sequences.

At sufficiently high SNR the actual performance may approach these asymptotes but it is no
at what SNR and BER this occurs. Large multiplicities of higher weight terms can cause the
performance to be the opposite of what is predicted by the measures. There may be other w
with a high multiplicity which contribute significantly to BER at Eb/No levels of interest for typi-
cal mobile applications.

An example is shown in Figure 8 where the simulated performance for interleaver block le
625 is shown along with the Hamming Weight Asymptote. Even at a BER as low as 1E-6
Motorola interleaver is superior to the NTT merged proposal. This is in contrast to what the H
ming Weight Asymptote suggests. These tools may be useful in finding frame lengths which
have high floors but simulation must be done to confirm these predictions. As another exa
the Canon interleaver has excellent HWA (of the 25 random block sizes chosen for evaluatio
but one have an HWA of 0) but this is not indicative of simulated performance.

While these measures may ultimately give information about high SNR/low BER performan
is difficult to judge their importance relative to other measures such as complexity becaus
not clear at what BER levels they are accurate.

5.0 Complexity

In realistic mobile channel conditions (fading), all interleavers will perform identically. Hen
we feel that complexity should be considered of primary importance in selecting the interle
however, we are concerned that complexity is being ignored. From a subscriber manufac
point of view, we would like to implement the turbo code interleaver in hardware without the n
for DSP intervention.

To the best of our understanding, the NTT Merged would have to be implemented in DSP.
very algorithmic and control oriented rather than a simple data flow type routine like the Moto
interleaver.

The Hughes/Nortel routine can probably be implemented in hardware but we think it is app
mately 5 times larger and would require 2600 bits of memory compared to Motorola’s 40.

Where possible, the complexities are given in terms of percentage of the overall turbo code
gate count for the turbo coder was determined using the statement in [1] that a 9 by 5 bitmulti-
plier is 5% of the overall coder complexity, and the assumption that such a multiplier is abou
gates. This leads to a gate count of 12000 for the turbo coder, and this is the number used



exity
tion
ven for
relative complexity analysis. Please note that it is difficult to say specifically what the compl
of the implemented turbo coder will be, as it will vary greatly depending upon implementa
and clock speed. Thus, raw gate count estimates for each interleaver have also been gi
comparison.

5.1 Motorola

The gate count estimate for the Motorola interleaver is shown below in Table 1.

Figure 8:  BER comparison and HWA comparison for Motorola and NTT Merged
interleavers.  HWA does not predict BER performance.

Module
Gate

Equivalents
Comment

Counter 60 5-bit counter

Bit Reversal 0

LFSR 154 (10g FF + 3g XOR) per bit
* 8 bits + 50g
augmentation circuitry

Shift Left m
Bits

60 Muxes required to shift a
5 bit value from 4-12.
(3g/mux)*20 = 60g

Adder 155 15g per bit * 5 bits +
10g per bit * 8 bits

Comparator 130 10g per bit * 13 bits

Output
Address Latch

130 10g FF per bit * 13 bits

LUT 40 5x8 LUT (40g), 1g per bit

TOTAL 729

RELATIVE TO
CODER

6% 729g interleaver /
12000g coder = 6%

Table 1:  Motorola interleaver gate count / memory



ing a
ore

k size

need
ard-
d to be
ging

ity of
Note that this implementation can support any block size from 288 bits up to 8,224 bits us
look up table (LUT) which contains only 5, 8-bit values (this can be a very small ROM but m
likely would be synthesized into logic gates).No other parameters are required. If larger block
sizes are required, this interleaver could easily be modified. For example, to handle a bloc
of 81920 bits (1.024 Mbps, 80 ms block), this interleaver would only grow to 1050 gates.

The 729 gates are all that is required to implement the interleaver. No additional parameters
to be stored and no additional memory is required.  This interleaver is very well suited for h
ware implementation.  Interleaver addresses can be generated real-time.  They do not nee
generated prior to use and stored. The interleaver is very flexible and easily adapts to chan
block size.

5.2 NTT Merged
There are essentially 6 steps to the NTT DoCoMo Merged Interleaver:

1. Decide on number of rows, N, and assign appropriate PIP
2. Decide on number of columns, M, and set appropriate flags
3. Create pattern of N primes >=7 that are not factors of (M - 1)
4. Create index of (M - 1) multiples of the primitive root
5. Create interleaver pattern
6. Puncture interleaver pattern

Each of these steps can be broken down into pseudo-code to understand the high complex
this interleaver.

Step 1:  Decide on number of rows, N, and assign appropriate PIP

if size = 2281 - 2480 or 3161 - 3210
   N = 20
   Use PIP2
if size = 481 - 530
   N = 10
   Use PIP1
otherwise
   N = 20
   Use PIP3

Step 2:  Decide on number of columns, M, and set appropriate flags

M = size / N rounded up
find M, (M - 1), or next highest number > M that is prime
if M prime
   no action necessary
else if (M - 1) prime
   M = M - 1
   set flag plus1 = 1
else
   find first prime greater than M
   set M = to this prime
   set flag minus1 = 1
   size = (M - 1) * N
   if original size = 481 - 530



de for
d that
r. It

f the
een

od of
% of
re are

rleaver
formed
nged,
h the
ion of
ikely
      clear flag minus1 = 0
      size = M * N

Step 3:  Create pattern of N primes >= 7 that are not factors of (M - 1)

for i = 7 to 100
   if i is prime
      if (M - 1) % i <> 0
         pattern[count] = i;
         increment count

Step 4:  Create index of (M - 1) multiples of the primitive root

index[1] = 1 - minus1
for i = 2 to (M - 1)
   index[2] = (((index[i - 1] + minus1) * RPN[M]) % M) - minus1

Step 5:  Create interleaver pattern

initialize indexselect[1..N] to 0
for i = 1 to (M - minus1 + plus1)
   for j = 1 to N
      if i = M
         interleaver[j + i * N] = M + (M + 1) * PIP[j]
      else if i = (M - 1)
         interleaver[j + i * N] = (M + plus1) * PIP[j]
      else
         interleaver[j + i * N] = index[indexselect[j]] + (M - minus1 + plus1) * PIP[j]
         indexselect[j] = (indexselect[j] + pattern[j]) % (M - 1)

Step 6:  Puncture

for i = 1 to size
   if interleaver[i] > size
      puncture interleaver[i]

By breaking the interleaver down into sections like these, and examining the pseudo co
each, the high complexity of this interleaver becomes evident. In reference [1], it is explaine
the intra-row permutation circuit (step 5 above) is the main operation circuit for the interleave
is then concluded that the complexity of the interleaver is only 7% of the overall complexity o
turbo coder, with the 9 by 5 bit multiplier being the majority of that. However, as can be s
above, there is another 9 by 5 bit multiplier operation in step 4. Depending on the meth
implementation, these two multipliers alone could put the implementation complexity at 10
the turbo coder using the numbers given in the referenced document. In addition to this, the
numerous adders, modulo operators, and another multiplier used to determine the final inte
size once the number of columns M has been set. These operations would have be per
prior to using the interleaver. But this would have to be done every time the block size cha
possibly every frame. Furthermore, the algorithmic nature of this interleaver, coupled wit
high number of conditional branches, special cases, and reliance upon the determinat
primes, does not make it well-suited for hardware implementation. Implementation would l
be carried out in DSP.



 of the
d the

be
ble
o a

uld

nd a
gate
5.3 Hughes/Nortel Prunable
Based on Motorola’s understanding, Table 2 shows estimated gate counts for the elements
Prunable interleaver. Row permutation and the final address comparator (for puncturing) an
output latch are similar to the Motorola interleaver.  In addition a column permutation must 
done which requires a 9 x 9 bit addition and a modulo computation.  Furthermore the pruna
interleaver parameters must be stored.  This requires a minimum of 2608 bits of ROM.  Als
32x8 bit RAM must be used to store the Row state.

If larger block sizes were desired, the ROM table would grow significantly. The other logic wo
grow similarly to the Motorola interleaver.

5.4 Canon
The Canon algebraic interleaver is a low complexity solution, as it involves only an adder a
modulo operation. The table below shows the hardware implementation complexity, using a
count for the interleaver as given in [2].

Module
Gate

Equivalents
Comment

Counter 60 5-bit counter

Bit Reversal 0

Shift left m bits 60 Muxes required to
shift a 5 bit value
from 4-12.  (3g/
mux)*20 = 60g

Adder 225 15g per bit * 9 bits +
10g per bit * 9 bits

Comparator 130 10g per bit * 13 bits

Output
Address Latch

130 10g per bit * 13 bits

Multiplier 600 5 bit by 9 bit multi-
plier, ~600g

Sub-total 1205

LUT 2608 2608 bits, 1g per bit

RAM 1024 32x8 bit, 4g/bit
for row state storage

TOTAL 4837

RELATIVE TO
CODER

40.3% 4837g interleaver /
12000g coder

Table 2: Hughes/Nortel gate count / memory



r in
ter-
ticu-
e
 of

ter-
obile
free

ion in
le of

P.

er pro-
f the
NTT
inter-
the
nter-
two-
ould

clock.
ple-

poly-
iven
inter-
This analysis shows that this algebraic interleaver is comparable to the Motorola interleave
terms of complexity.  Canon recommends their interleaver for small block sizes [7].   This in
leaver suffers from a highly structured nature that seems to greatly affect performance, par
larly for large block sizes.  Specifically, Canon has stated that their interleaver’s performanc
suffers from 0.5 to 1.0 dB in comparison to a CDI interleaver implementation at a block size
5120 [3].

6.0 Conclusion

AWGN performance is very similar for the Motorola, Hughes/Nortel, and the NTT merged in
leavers. BER differences are approximately 0.1 dB. Performance in the more realistic m
channels is virtually identical for all interleavers simulated. Hamming weight asymptote and
distance do not accurately predict performance. Complexity is a very important considerat
the choice of interleaver. The chosen interleaver should be of low complexity and capab
completely operating in hardware without the need for interfacing with a programmable DS

The preceding analysis has shown that the hardware complexity of the turbo code interleav
posed by Motorola is equivalent to the Canon Interleaver, approximately 1/6 the complexity o
Hughes/Nortel approach and appears to be of much lower complexity compared to the
merged proposal. Simulation results show the Motorola interleaver outperforms the Canon
leaver. The Motorola interleaver does not require any ROM or RAM thereby simplifying
implementation as well as any self-test circuitry. Furthermore, the latency of the Motorola i
leaver can be reduced to a single clock cycle with only a 20% increase in complexity over the
clock version. At the mobile, in order to reduce power consumption the turbo decoder w
most likely be implemented such that each decoder time step would require only a single
The ability to operate the turbo interleaver at the same clock frequency would simplify the im
mentation and further reduce power consumption.

Also note that since the Motorola turbo code interleaver has only one parameter (the LFSR
nomial) for each non-pruned interleaver length, it is much simpler to specify and verify. G
that all the proposed interleaver methods are very similar in performance, the turbo code
leaver should be chosen based on simplicity.

Module
Gate

Equivalents
Comment

Interleaver 220 As given in [2]

LUT 420 420 bits total
for e values

TOTAL 640

RELATIVE TO
CODER

5% 640g inter-
leaver /
12000g coder =
5%

Table 3: Canon gate count / memory



nd

-

ortel
7.0 References

[1] “A Study on Merge Interleaver for the Turbo Codes,”  NTT DoCoMo, TSGR1#3(99)217
[2] “1 Dimensional Algebraic Interleavers for Turbo Codes (AL-C): Description, Complexity, a
Summary of Performances,” CANNON CRF, TSGR1#2(99)069
[3] “Algebraic Interleavers for Turbo Codes,” CANNON CRF, Tdoc SMG2 UMTS-L1 674/98
[4] “A Low Complexity and Flexible Turbo Interleaver with Good Performance,” Hughes Net
work Systems and Nortel Networks, TSGW1#2(99)101
[5] “Description of a Class of Flexible Turbo Interleavers,” Hughes Network Systems and N
Networks
[6] “A Proposal for Turbo Code Interleaving,” Motorola, TSGR1#3(99)239
[7] “Report from Ad Hoc 5 (24 March 1999),” Ad Hoc 5, TSGW1#3(99)319
[8] “A study on Turbo Interleaver Flexibility,” NTT DoCoMo, TSGR1#2(99)095


	1.0 Key Points to Consider
	2.0 Static Performance
	Figure 1: AWGN comparison of turbo interleavers with 8 states 8 iterations

	3.0 ETSI Phase II
	Figure 2: Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64kbps, ...
	Figure 3: Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64kbps, ...
	Figure 4 Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 32 kbps, ...
	Figure 5 Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 32 kbps, ...
	Figure 6 Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64 kbps, ...
	Figure 7 Turbo interleaver comparison using 8 states 8 iterations turbo code, data rate 64 kbps, ...

	4.0 Spectral Analysis
	1. Simulation performance
	2. Hamming Weight and Free Distance analysis
	3. Complexity
	Figure 8: BER comparison and HWA comparison for Motorola and NTT Merged interleavers. HWA does no...

	5.0 Complexity
	5.1 Motorola
	Table 1: Motorola interleaver gate count / memory
	5.2 NTT Merged
	1. Decide on number of rows, N, and assign appropriate PIP
	2. Decide on number of columns, M, and set appropriate flags
	3. Create pattern of N primes >=7 that are not factors of (M - 1)
	4. Create index of (M - 1) multiples of the primitive root
	5. Create interleaver pattern
	6. Puncture interleaver pattern

	5.3 Hughes/Nortel Prunable
	Table 2: Hughes/Nortel gate count / memory
	5.4 Canon
	Table 3: Canon gate count / memory

	6.0 Conclusion
	7.0 References

