TSG-RAN Working Group1 meeting #3 TSGR1#3(99)217

Nynashamn, Sweden 22-26, March 1999

Agenda Item:

4 (Ad Hoc 5)

Source:

NTT DoCoMo

Title:

A Study on merge Interleaver for the Turbo codes
Document for:

Discussion

1. Introduction

This document describes a revised merger scheme [5] of the turbo-internal interleaver candidates, i.e., GF [1], one-dimensional AL [2], two-dimensional AL [3] and MIL interleaver [4]. The target of the merger is selection of excellent schemes from the candidate interleavers and combination of them in order to achieve high performance with reasonable implementation complexity. In the following section of the document, the merger interleaver scheme is described in detail and the performance is evaluated in terms of BER and FER. Note that the merger is not the final version, and it is now under development. So suggestions and comments are welcome.
 2. Merge Turbo-interleaver

Fig. 1 depicted the block diagram of the merger interleaver assuming the length of 5120 bits. The interleaver consists of three stages. In the first stage, the input sequence of the interleaver is written into the rectangular buffer row by row where the number of the rows is 20 and the number of bits in a row is 128 (= 5120 bit / 20) bit. The number of bits in a frame should be either a prime, (prime-1), or (prime+1). In the second stage, both a mapping based on Logarithm function of Galois-Field and a permutaion based on complete residual system are used to permute each row. The mapping based on Logarithm function of GF is already used in GF-interleaver. The permutation based on complete residual system is already used in AL-interleaver. So, it can be said that the schemes included in GF and AL interleavres are merged in the second stage of the merger interleaver. Furthermore, the merger interleaver consist of multistage as MIL interleaver. Therefore, the interleaver can be stated to be a merger of GF, AL, and MIL interleaver.
[image: image1.wmf]128

bits

20

Input data for interleaving (5120 bits)

128

Output data after interleaving (5120 bits)

20

128

Permutation; (GF,g=3)

･･････

…

…

Permutation; (GF)

Mod (

ｐ

19

); (

AL)

Read out

First stage

（

Write into 20

x 641buffer)

Second stage; (GF & AL)

(Intra-row permutation

）

Third stage; (Optimization)

(Inter-row permutation

）

Permutation; (GF)

Mod (

ｐ

1

); (

AL)

Ｐ

1

=7

ｐ

19

Fig.1 Block diagram of the merger interleaver

[image: image2.wmf]Interleaver

Source

Coded sequence

K bit

(

K +

 l

) bit

(3

K+T

1

+T

2

) bit

K +

l

 = 0 (mod 10 [20])

Prime-2 < (K +

l

) / 10[20] < Prime+2

RSC2

RSC1

Pruning

K bit

Fig.2 Block diagram of turbo encoder
Followings are detailed description of the three stage permutations.

2.1 Stage-1: Variable row number depending on the frame is adopted. For frame size of 320 to 1600, row number is 10, and row number is 20 for frame size from 1601 to 8192.

2.2 Stage-2: Each row is permuted based on GF and AL operations. Following is an explanation of the permutation scheme for the second stage, where length of the column is assumed to be 83.

1. Select primitive roots of GF(83) from Appendix table. In this case, the primitive root is 2.
2. Make an index table of GF(83) using the primitive root.

20, 21, 22 (=4), 23 (=8), 24(=16), 25(=32), 26 (=64), 27(=128mod(83)=45), 28 (=7), 29 (= 14), 28, 56, 29, 58, 33, 66, 49, 15, 30, 60, 37, …..,280 (=21), 281 (=42)
3. Add 0 to the end of the table. This is the permutation table for the 1st column.

20, 21, 22 (=4), 23 (=8), 24(=16), 25(=32), 26 (=64), 27(=128mod(83)=45), 28 (=7), 29 (= 14), 28, 56, 29, 58, 33, 66, 49, 15, 30, 60, 37…..,280 (=21), 281 (=42), 0
4. We select prime integers Ii (i = 2 to r, r: number of the row), which meet the following conditions.

(i) (83-1, Ii) = 1 (82 and Ii are primitive each other)

(ii) Ii > 6

 If we assume r=10, Ii = 7, 11, 13, 17, 19, 23, 29, 31, 37.
5. The permutation table of the ith column is skipped (by Ii) and rotationally shifted table of the 1st column table except only the last element (= 0). The rotate shift scheme is the same as AL interleavers. For example, the second permutation table is

1, 45, 33, 74, 10,…., 0. (0 is added at the end of the table)

The above permutation scheme is applicable to cases of column length of (Prime-1) and (Prime +1) by following modifications.

(1) For the case of column length of (Prime-1)

The procedures of “adding 0” are removed. There we have permutation table of length of (Prime –1). For example, the permutation table for the 1st column is

20, 21, 22 (=4), 23 (=8), 24(=16), 25(=32), 26 (=64), 27(=128mod(83)=45), 28 (=7), 29 (= 14), 28, 56, 29, 58, 33, 66, 49, 15, 30, 60, 37…..,280 (=21), 281 (=42).
(2) For the case of column length of (Prime+1)

The modifications are adding the “Prime number” at the end of the each table of column permutations. In the example, the “Prime number” is 83, so the permutation table for the 1st column is

20, 21, 22 (=4), 23 (=8), 24(=16), 25(=32), 26 (=64), 27(=128mod(83)=45), 28 (=7), 29 (= 14), 28, 56, 29, 58, 33, 66, 49, 15, 30, 60, 37…..,280 (=21), 281 (=42), 0, 83.

 These modifications reduce the pruning number.
2.3 Stage-3: The permutation patterns of the third stage is designed in order to avoid the critical patterns those introduce smaller free distances. The resulting permutation patterns are

PIP[10] = {9,8,7,6,5,4,3,2,1,0}, PIP[20] = {19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10}.

3. Performance of the merge interleaver

3.1 Hamming weight asymptote

We use “hamming weight asymptote” [6] for the evaluation of the error-floor performance instead of BER simulation. Because it is required too much computation time to simulate BER performance of all the frame sizes from 320 to 8192 bits at the moderate and high Eb/N0 region (error-floor region). Hamming weight asymptote is an estimate for the error-floor of turbo codes based on the union bound. And its estimation error and computational complexity are both small.

Figures 2 show HWA of merger interleaver. There are also shown HWA of MIL and GF2 as a reference. We calculated the number of the codewords in cases those the information weight per code word are 2 to 8 and obtained the HWA from Eq. (1) of [6].

3.2 BER and FER performance

Figures 3 show the BER and FER curves of the proposed interleavers assuming AWGN channel with MIL as reference. Interleaver bit length of Fig. 3 (a), (b) and (c) are 320, 640, and 5120 respectively.
4. Implementation complexity

The following are estimations for ASIC implementation complexity of proposed Turbo-interleaver. Table 1 shows estimation results of relative gate count for ASIC-implementation of proposed Turbo-interleaver. This estimation focused on intra-row permutation circuit in 2nd stage, which is main operation circuit in the proposed scheme. The interleaving bit size of maximum 8192 (i.e. intra-row permutation is including a multiplication with 9-bit * 5-bit) is assumed. The relative gate count of a multiplier (9-bit * 5-bit) is also estimated for the reference.

Table 1 ASIC implementation complexity of proposed Turbo-interleaver

Turbo decoder

Without interleaver
Multiplier

(9-bit * 5-bit)t
Proposed interleaver

(Intra-row permutation operation circuit)

Random logic
(relative gate count)
1.00
0.05
0.07

5. Conclusion

A merger interleaver was proposed for turbo-internal interleaver.

(1) Performance (HWA, BER, and FER) of merger interleaver is as good as MIL.

(2) Implementation complexity is estimated to be less than MIL.

(3) The merger interleaver is based on GF, AL, and MIL interleavers.

References
[1] “Description of the GF Interleaver for Turbo codes”, Hughes Network Systems, Tdoc SMG2 UMTS L1 765/98
[2] “Algebraic interleavers for turbo codes”, CANON CRF, Tdoc SMG2 UMTS L1 571/98

[3] “Low complexity algebraic interleaver for UTRA turbo codes”, Nortel Nteworks, Tdoc SMG2 UMTS L1 051/99
[4] “Description of Multi-stage InterLeaver (MIL) for 8-state Turbo codes”, NTT DoCoMo, Tdoc SMG2 UMTS L1 027/99
[5] “A Study on Merging the Turbo-interleaver Candidates”, NTT DoCoMo, TSGR1#2(99)097

[6] “A Study on Turbo-interleaver Flexibility”, NTT DoCoMo, TSGR1#2(99)095
Appendix

root_of_primenumber[2] = 1;

root_of_primenumber[3] = 2;

root_of_primenumber[5] = 2;

root_of_primenumber[7] = 3;

root_of_primenumber[11] = 2;

root_of_primenumber[13] = 2;

root_of_primenumber[17] = 3;

root_of_primenumber[19] = 2;

root_of_primenumber[23] = 5;

root_of_primenumber[29] = 2;

root_of_primenumber[31] = 3;

root_of_primenumber[37] = 2;

root_of_primenumber[41] = 6;

root_of_primenumber[43] = 3;

root_of_primenumber[47] = 5;

root_of_primenumber[53] = 2;

root_of_primenumber[59] = 2;

root_of_primenumber[61] = 2;

root_of_primenumber[67] = 2;

root_of_primenumber[71] = 7;

root_of_primenumber[73] = 5;

root_of_primenumber[79] = 3;

root_of_primenumber[83] = 2;

root_of_primenumber[89] = 3;

root_of_primenumber[97] = 5;

root_of_primenumber[101] = 2;

root_of_primenumber[103] = 5;

root_of_primenumber[107] = 2;

root_of_primenumber[109] = 6;

root_of_primenumber[113] = 3;

root_of_primenumber[127] = 3;

root_of_primenumber[131] = 2;

root_of_primenumber[137] = 3;

root_of_primenumber[139] = 2;

root_of_primenumber[149] = 2;

root_of_primenumber[151] = 6;

root_of_primenumber[157] = 5;

root_of_primenumber[163] = 2;

root_of_primenumber[167] = 5;

root_of_primenumber[173] = 2;

root_of_primenumber[179] = 2;

root_of_primenumber[181] = 2;

root_of_primenumber[191] = 19;

root_of_primenumber[193] = 5;

root_of_primenumber[197] = 2;

root_of_primenumber[199] = 3;

root_of_primenumber[211] = 2;

root_of_primenumber[223] = 3;

root_of_primenumber[227] = 2;

root_of_primenumber[229] = 6;

root_of_primenumber[233] = 3;

root_of_primenumber[239] = 7;

root_of_primenumber[241] = 7;

root_of_primenumber[251] = 6;

root_of_primenumber[257] = 3;

root_of_primenumber[263] = 5;

root_of_primenumber[269] = 2;

root_of_primenumber[271] = 6;

root_of_primenumber[277] = 5;

root_of_primenumber[281] = 3;

root_of_primenumber[283] = 3;

root_of_primenumber[293] = 2;

root_of_primenumber[307] = 5;

root_of_primenumber[311] = 17;

root_of_primenumber[313] = 10;

root_of_primenumber[317] = 2;

root_of_primenumber[331] = 3;

root_of_primenumber[337] = 10;

root_of_primenumber[347] = 2;

root_of_primenumber[349] = 2;

root_of_primenumber[353] = 3;

root_of_primenumber[359] = 7;

root_of_primenumber[367] = 6;

root_of_primenumber[373] = 2;

root_of_primenumber[379] = 2;

root_of_primenumber[383] = 5;

root_of_primenumber[389] = 2;

root_of_primenumber[397] = 5;

root_of_primenumber[401] = 3;

root_of_primenumber[409] = 21;

root_of_primenumber[419] = 2;

root_of_primenumber[421] = 2;

root_of_primenumber[431] = 7;

root_of_primenumber[433] = 5;

root_of_primenumber[439] = 15;

root_of_primenumber[443] = 2;

root_of_primenumber[449] = 3;

root_of_primenumber[457] = 13;

root_of_primenumber[461] = 2;

root_of_primenumber[463] = 3;

root_of_primenumber[467] = 2;

root_of_primenumber[479] = 13;

root_of_primenumber[487] = 3;

root_of_primenumber[491] = 2;

root_of_primenumber[499] = 7;

root_of_primenumber[503] = 5;

root_of_primenumber[509] = 2;

root_of_primenumber[521] = 3;

root_of_primenumber[523] = 2;

root_of_primenumber[541] = 2;

root_of_primenumber[547] = 2;

root_of_primenumber[557] = 2;

root_of_primenumber[563] = 2;

root_of_primenumber[569] = 3;

root_of_primenumber[571] = 3;

root_of_primenumber[577] = 5;

root_of_primenumber[587] = 2;

root_of_primenumber[593] = 3;

root_of_primenumber[599] = 7;

root_of_primenumber[601] = 7;

root_of_primenumber[607] = 3;

root_of_primenumber[613] = 2;

root_of_primenumber[617] = 3;

root_of_primenumber[619] = 2;

root_of_primenumber[631] = 3;

root_of_primenumber[641] = 3;

root_of_primenumber[643] = 11;

root_of_primenumber[647] = 5;

root_of_primenumber[653] = 2;

root_of_primenumber[659] = 2;

root_of_primenumber[661] = 2;

root_of_primenumber[673] = 5;

root_of_primenumber[677] = 2;

root_of_primenumber[683] = 5;

root_of_primenumber[691] = 3;

root_of_primenumber[701] = 2;

root_of_primenumber[709] = 2;

root_of_primenumber[719] = 11;

root_of_primenumber[727] = 5;

root_of_primenumber[733] = 6;

root_of_primenumber[739] = 3;

root_of_primenumber[743] = 5;

root_of_primenumber[751] = 3;

root_of_primenumber[757] = 2;

root_of_primenumber[761] = 6;

root_of_primenumber[769] = 11;

root_of_primenumber[773] = 2;

root_of_primenumber[787] = 2;

root_of_primenumber[797] = 2;

root_of_primenumber[809] = 3;

root_of_primenumber[811] = 3;

root_of_primenumber[821] = 2;

root_of_primenumber[823] = 3;

root_of_primenumber[827] = 2;

root_of_primenumber[829] = 2;

root_of_primenumber[839] = 11;

root_of_primenumber[853] = 2;

root_of_primenumber[857] = 3;

root_of_primenumber[859] = 2;

root_of_primenumber[863] = 5;

root_of_primenumber[877] = 2;

root_of_primenumber[881] = 3;

root_of_primenumber[883] = 2;

root_of_primenumber[887] = 5;

root_of_primenumber[907] = 2;

root_of_primenumber[911] = 17;

root_of_primenumber[919] = 7;

root_of_primenumber[929] = 3;

root_of_primenumber[937] = 5;

root_of_primenumber[941] = 2;

root_of_primenumber[947] = 2;

root_of_primenumber[953] = 3;

root_of_primenumber[967] = 5;

root_of_primenumber[971] = 6;

root_of_primenumber[977] = 3;

root_of_primenumber[983] = 5;

root_of_primenumber[991] = 6;

root_of_primenumber[997] = 7;

root_of_primenumber[1009] =11;

root_of_primenumber[1013] = 3;

root_of_primenumber[1019] = 2;

root_of_primenumber[1021]= 10;

root_of_primenumber[1031]= 14;

[image: image3.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

Merge(row10)

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

[image: image4.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

Merge(row20)

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

[image: image5.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

MIL(conv.)

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

[image: image6.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

Merge(row16)

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

[image: image7.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

Merge(row32)

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

[image: image8.wmf]10

-9

10

-8

10

-7

10

-6

10

-5

0

2000

4000

6000

8000

Ref.

GF2

Frame length (bits)

Hamming weight asymptote (E

b

/N

0

=1.0dB)

AWGN, K=4, Infomation weight 2-8

Maximum-likelihood decoding

Fig 3. HWA of merger and reference interleavers.

[image: image9.wmf]10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

0

1

2

MIL(conv.)

Merge(row10)

Average E

b

/N

0

 (dB)

Average BER/FER

AWGN, 320bits, K=4, 8th iteration

BER

FER

[image: image10.wmf]10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

0

1

2

MIL(conv.)

Merge(row20)

Average E

b

/N

0

 (dB)

Average BER/FER

AWGN, 5120bits, K=4, 8th iteration

BER

FER

 [image: image11.wmf]10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

0

1

2

MIL(conv.)

Merge(row10)

Average E

b

/N

0

 (dB)

Average BER/FER

AWGN, 640bits, K=4, 8th iteration

BER

FER

Fig. 4 The BER/FER performance comparison of the merger interleaver with MIL under AWGN.

1
1

