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There has been around a question what kind of long codes should be used for uplink. In the Yokohoma meeting on 22– 25 February 1999  the length of long codes for uplink was set to 10ms, at a 4.096M chip rate the length is 40960 chips. On the other hand, the degree of polynomials in uplink is 41 resulting in codes of 241– 1= 2 199 023 255 551 chips but only 40960 chips are used per code which means that there are a bit overdesign here. This document proposes a couple of changes for long codes for uplink in order to improve uplink code allocation and to simplify implementation. The three main proposals are as follows:

· use two polynomials of degree 31;

· use two dimensional code parametrization;

· use two different Gold codes for an in phase and a quandrature component.

1 Polynomials

The polynomial x 41 + x 3 + 1 is replaced by x 31 + x 3 + 1 and the polynomial x 41 + x 20 + 1 by x 31 + x 3 + x 2 + x  + 1. The advantage of  the replacement is that 31 degree polynomials are more handy in connection with mircoprocessors of a 32 bit word. Moreover, nothing is lost because there are plenty of long codes for 31 degree polynomials.

2 Code parametrization

The code parametrization is two dimensional, denoted by ( m , n ), the parameter m runs thru even numbered Gold codes and the parameter n runs along two Gold codes by step of the frame length. In this way the entire Gold code family generated by the two polynomials can be used as spreading codes for uplink and there is no fear of going short of long codes.

The parameter m takes integral values from 0 to ( 231 – 4 )/2 = 1 073 741 822 and at a 4.096M chip rate n takes values from 0 to 52 427. So the total number available complex long codes of a 40960 chip frame is 1 073 741 823 times 52 428 = 56 294 136 296 244, about 9000 long codes for every human being on the earth.  How the pair ( m , n ) is connected to shift registers is explained in the next section. The list of parameters:

· ( m , n )  ---- main parameters;

· c ---- this parameter depends upon a chip rate;

· e ---- a constant, set a value for B (below) when m=n=k=0, could be any number from 0 to 2 147 483 647, a recommended value 0 (zero).

3 Shift registers for long codes

Let us denote by A an m-sequence generated by the polynomial x 31 + x 3 + 1 and by B that one by x 31 + x 3 + x 2 + x + 1. The initial conditions of both m-sequence are set in the same way: A( 0 ) = 1 and A( k ) = 0 for all k = 1, 2 , …, 30, and the same initialization for B, B( 0 ) = 1 and B( k ) = 0 for all k = 1, 2, …, 30.  The in phase component and  the quadrature component for  a ( m , n ) -long code are given by

I m ,  n ( k ) = A( k + 2*m + n*c ) XOR B( k + n*c + e ) and

Q m , n ( k ) = A( k + 1 + 2*m + n*c ) XOR B( k + n*c + e ),

where k = 0,1,2, …, c – 1 and the constant c is the length of a 10ms frame in chips, now c = 40960. The parameter e shifts a phase of B away from the initial state, the proper values are from 0 to 2 147 483 647. It follows from the theory of Gold codes that both I m , n and Q m ,  n  are Gold sequences and they belong to the same family of Gold codes, for further details see [1].

The use of this appraoch to long codes for uplink stimulates a question how to figure out states for two shift registers corresponding to a beginning of a desired long code. Namely, by setting k = 0 it is seen that the state of the shift register of the m-sequence A has to be known at 2*m + n*c shifts away from the initial state which is 00000000001 ( in octal ) and the state of the shift register of the m-sequence B has to be known at n*c + e shifts away from the initial state.  This problem can be solved by an algorithm provided by Nokia and it takes about 1e-6 to 1e-3 seconds to get both states for each m and n using a microposessor to execute the algorithm. Nevertheless, it is pointed out that there exist another algorithms for this purpose as well.

Next an illustration for a new long code generation unit is given:
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This structure for long code units decreases hardware complexity by factor 2 compared to the present solution. Moreover, polynomials of degree 31 are compactible with DSP-processors of a 32 bit word length. Note that this is not only the way to implement the proposed long code unit for uplink and there are other options available too.

4 Remarks

The two dimensional parametrization can be applied to the present definition with minor changes if desired. To this end, let A m be an m-sequence with an initianl condition determined by m = m30 m29 m28 m27 m26 … m5 m4 m3 m2 m1 m0 , that is,   A m ( k ) = m k for all k = 0, 1, 2, …, 30, and let B be an m-sequence with the constant initial condition, B ( k ) = 1 for all k = 0, 1, 2, …, 30. Then an in phase component I m , n is given by

I m , n ( k ) = A m ( k + n*c ) XOR B( k + n*c )

and a quadrature component has a phase shift of 3584 chips with respect to an in phase component. Here the parameter k runs from 0 to 40959, m runs from 1 to 2 147 483 647, and n runs from 0 to 52 427, and c = 40960. Hence the total number of long codes for uplink in this case is 2 147 483 647 times 52 428 = 112 588 272 644 916, definitely large enough for 3GPP activities.

The modified present definition of long codes for uplink with the two dimensional parametrization gives rise to the same question as the new definition earlier: how to find out two states of shift registers for A m and B at k = 0 for I m , n ( k ) which are n*c chips away from initail states ? The answer is the same, and Nokia has a proper algorithm to this purpose.

Of course, the two dimensional parametrization is available for downlink to prevent codes to fall short or for multiple codes. The definition for downlink is similar to that of uplink word by word with obvious changes in some details.
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