TSG-RAN Working Group1 meeting #2 **TSGR1#2(99)0XX** Yokohama 22-25, February 1999

Agenda Item:

Source: Lucent Technologies

Title: A final comparison among the 4-state SCCC, 4-state PCCC, and 8-state PCCC

Document for: Discussion

Introduction

In this document we present, in a schematic tabular form, the main positive and negative characteristics of the three considered codes, 4-state SCCC, 4-state PCCC, and 8-state PCCC, in the areas of performance, implementation complexity, and system aspects.

The tables have been constructed making use of extensive simulation results presented in previous document by all companies, and in particular the following documents by Lucent Technologies:

Tdoc SMG2 UMTS-L1 655/98
Tdoc SMG2 UMTS-L1 656/98
Tdoc SMG2 UMTS-L1 2x99-031
Tdoc SMG2 UMTS-L1 2x99-032
Tdoc SMG2 UMTS-L1 2x99-033
Tdoc SMG2 UMTS-L1 2x99-034
Tdoc SMG2 UMTS-L1 2x99-034
Tdoc SMG2 UMTS-L1 2x99-035
TSGR1#2(99)036
TSGR1#2(99)038
TSGR1#2(99)039

	4-state SCCC		4-state PCCC		8-state PCCC	
	Pros	Cons	Pros	Cons	Pros	Cons
P e r f o r m a n c	Interleaving gain for both FER (N^1) and BER (N^2)			No interleaving gain for FER and <i>N</i> ¹ for BER		No interleaving gain for FER and <i>N</i> ¹ for BER
	Large free distances for all block sizes			Very small free distances for all block sizes		Small free distances for all block sizes
	Small sensitivity to the choice of the interleaver			Large sensitivity to the choice of the interleaver		Large sensitivity to the choice of the interleaver
	Robust to puncturing for rate compatibility and to decoding algorithm suboptimalities			Sensitive to puncturing and to decoding algorithm suboptimalities		Sensitive to puncturing and to decoding algorithm suboptimalitiesVery small free distances for all block sizes
	No apparent error floor for both BER and FER			Evident error floor for both BER and FER very close to the performance measures		Evident error floor for BER slightly below 10 ⁻⁶ and FER below 10 ⁻⁴

Significant gain @ FER=10 ⁻⁵	Looses from 0.1 to 0.3 dB @ BER=10 ⁻⁶	Significant loss at both $FER=10^{-5}$ and $BER=10^{-6}$	Gain from 0.1 to 0.3 dB against 4-state SCCC @ BER=10 ⁶	
Steep BER and FER curves versus E_b/N_0				
Parallel behavior of FER and BER curves for all E_b/N_0 and block sizes		Diverging FER and BER curves for increasing <i>E_b/N₀</i> and block sizes		Diverging FER and BER curves for increasing E_b/N_0 and block sizes

	4-state SCCC		4-state PCCC		8-state PCCC	
	Pros	Cons	Pros	Cons	Pros	Cons
I m p I e m e n t a ti o n C o m p I e	Lowest arithmetic complexity		Lowest arithmetic complexity		Pros	Highest arithmetic complexity (~100 %)
x it y		Highest (~10%) memory requirements for all block sizes.	Lowest memory requirements for all block sizes		Lowest memory requirements for all block sizes	

Overall implementation complexity lower than 8 state PCCC. The differences reduces with increasing block sizes	Overall implementation complexity lower than 4 state PCCC.	Lowest overall implementation complexity for all block sizes		Highest overall implementation complexity for all block sizes
Overall power consumption lower than 8 state PCCC. (~60% for the arithmetic part). The differences reduces with increasing block sizes	Overall power consumption higher than 4 state PCCC (~20% for the arithmetic part).	Lowest power consumption.		Highest power consumption

	4-state SCCC		4-state PCCC		8-state PCCC	
	Pros	Cons	Pros	Cons	Pros	Cons
O t h e r s	A unique, simple, highly performing and versatile code for low- high data rates and service qualities					
	Suitable to very high- quality services (BER<10 ⁻⁶ , FER < 10 ⁻⁵), like ISDN			Unsuitable to very high-quality services (BER<10 ⁻⁶ , FER < 10 ⁻⁵), like ISDN		Unsuitable to very high-quality services (BER<10 ⁻⁶ , FER < 10 ⁻⁵), like ISDN
	Highly suitable to ARQ (e.g., for data packet services) because of low achievable FER			Unsuitable to ARQ (e.g., for data packet services) because of high FER error floor		Less suitable to ARQ (e.g., for data packet services) because of relatively high FER error floor
	Published in open literature without patents			Patents on the coding and decoding schemes		Patents on the coding and decoding schemes