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A Deterministic Digital Simulation Model for
Suzuki Processes with Application to a Shadowed
Rayleigh Land Mobile Radio Channel

Matthias Pitzold, Ulrich Killat, Member, IEEE, and Frank Laue

Abstract— We present a novel computer simulation model for
a land mobile radio channel. The underlying channel model
takes for granted non-frequency-selective fading but considers the
effects caused by shadowing. For such a channel model we design
a simulation model that is based on an efficient approximation
of filtered white Gaussian noise processes by finite sums of
properly weighted sinusoids with uniformly distributed phases.
In all, four completely different methods for the computation
of the coefficients of the simulation model will be introduced.
Furthermore, the performance of each procedure will be inves-
tigated on the basis of two quality criteria. All the presented
methods have in common that the resulting simulation model has
a completely determined fading behavior for all time. Therefore,
the simulation model can be interpreted as a deterministic model
that approximates stochastic processes such as Rayleigh, log-
normal, and Suzuki processes.

I. INTRODUCTION

P to the present day, a number of computer simulation

models have been proposed for the simulation of the fad-
ing characteristics of cellular mobile radio channels. Mostly,
the computer simulation models are based on the shaping
of the power spectral density of at least two or more white
Gaussian noise processes by using recursive digital filters. In
general, the bandwidth of the shaping filters are extremely
small in comparison with the sampling frequency. In order to
circumvent numerical difficulties encountered with the design
of recursive digital filters having a small bandwidth, one
usually uses linear interpolation techniques for the required
sampling rate conversion. But in this way, the numerical effort
and the transient behavior increases. Recently, generative
channel models based on finite state models, which need lower
numerical effort than those using digital filters, have been
proposed [1].

In this paper, a novel computer simulation model for a land
mobile radio fading channel that avoids digital filtering as well
as linear interpolation is proposed. Our model is based on
the approximation of filtered white Gaussian noise processes
by finite sums of properly weighted sinusoids with equally
distributed phases. Although the principle of the method
presented here can immediately be applied to the design of
frequency-selective channels [2], [3], we restrict—for reasons
of simplification—our attention to systems, where the signal
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bandwidth is much smaller than the coherence bandwidth
of the channel, so that a non-frequency-selective channel
model is appropriate. Hence, the received signal is simply -
the transmitted signal multiplied by an appropriate stochastic
process, which represents the time-variant characteristics of
the channel. ‘

Furthermore, we will restrict our attention to urban areas,
where the direct-line-of-sight component between the mobile
vehicle and the base station is for most of the time completely
obstructed by high buildings. In such cases, the signal at the
receiver is composed of many independent reflected signal
components coming from all directions in the horizontal plane.
These signal components can constructively or destructively
add to give a received signal that varies randomly in amplitude
and phase. The envelope of the received signal is then Rayleigh
distributed and the phase is uniformly distributed over the
interval 0-27.

If the vehicle moves a small distance, the environment
characteristics can be considered as approximately constant,
and therefore, the power of the Rayleigh process can also be
considered as approximately constant. But for larger distances,
the environment characteristics are slowly varying, and the
power of the Rayleigh process can vary considerably. In this
case, a Suzuki process [4] models the stochastic process more
precisely. The Suzuki process is obtained by the multiplication
of a Rayleigh process with a log-normal process. The average
duration of fades and the level crossing rateé of Suzuki pro-
cesses are of great importance and have been investigated in
[5HT1

This paper is organized as follows. First, we will describe
the Suzuki model in Section II. For this statistical model we
will present in Section III an efficient computer simulation
model that can consequently be used for the simulation of
a land mobile radio channel. Afterwards in Section IV, we
describe four completely different methods for the derivation
of the simulation model parameters, and we compare in
Section V the performance of these procedures on the basis
of two quality criteria. Finally, we present in Section VI some
examples and simulation results in order to demonstrate the
power of the methods derived in this paper.

II. THE SUZUKI MODEL

The Suzuki model is a statistical model that has been
developed for the land mobile radio channel on the assumption
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that the local mean of the Rayleigh process follows a log-
normal statistic and accounts therefore for the effects caused
by shadowing. According to [4], a stationary Suzuki process
n(t) is a product process of a Rayleigh process £(t) and a
log-normal process ((%), i.e.

n(t) =£(@) - (). (1

The Rayleigh process £(t) is per definition [8] obtained from
the envelope of a narrow-band complex Gaussian (normal)
random process

p(t) = pa(t) + jp2(t) )

where ;1 (t) and po(t) are uncorrelated real normal processes
with zero means E{p;(t)} = m; = 0 and identical variances
Var{p;(t)} = 02, = o2, i = 1,2. Therefore

() = |u®)| = /13 () + 13(t) 3)

is a Rayleigh-distributed random process. The assumption of
statistical independence between p1(t) and po(t) does not
always meet the real conditions encountered in multipath wave
propagation. For that reason, modified Rayleigh processes
and thus modified Suzuki processes with a nonzero cross
correlation between 1 (t) and p2(t) have been introduced in
[6]. For spectral shaping of the real normal processes (%),
i = 1,2, the Jakes power spectral density function [9]

T
S#i(f) = {‘“’fmuxm I-ﬂ < fmax @
0 If| > famax

has widely been accepted for cellular land mobile channels,
where fmayx is called the maximum Doppler frequency. The
mean power of y;(t) is given by [~ S, (f)df = o2,. The
inverse Fourier transform of (4) gives us for ¢ = 1,2 the
following identical autocorrelation functions (acf)

T, (t) = 0';240 Jo(27 fmaxt) &)

where Jo(-) denotes the zeroth order Bessel function of the
first kind.

The log-normal process ((t) is generated from a further
real Gaussian process p3(t) with zero mean ms = 0 and unit
variance o2, = 1 according to

H3
¢(t) = emtens(t) (6)

where the parameters m and s are used to transform mg
and aﬁs to the actual mean and variance, respectively. The
real Gaussian process p3(t) is uncorrelated with the complex
Gaussian process p(t) as defined by (2). For the spectral
shaping of the real normal process ps(t), we have assumed

the following Gaussian power spectral density function
S, L @

= e 29¢

H3 (f ) \/ﬂoc )

where o is related to the 3-dB cutoff frequency f. according
to f. = 0.v/2In2. In general, the 3-dB cutoff frequency f.
is much smaller than the maximum Doppler frequency fmax,
say fo = fuax/K, where & > 1. For values of « larger than
10, the parameter & itself as well as the shape of the power

spectral density function S, (f) is of no great influence on the
statistical properties of the Suzuki process [7]. By applying the
inverse Fourier transform on (7), we obtain the autocorrelation
function r, (t) of the Gaussian process p3(t)

s () = €727, ®

Other classes of spectral shaping filters, such as 3-pole But-
terworth filters and RC-lowpass filters, have been used in [10]
and [5], [6], respectively.

III. THE SIMULATION MODEL

In the previous section, we have seen that the realization of a
Suzuki process is based on the generation of three uncorrelated
filtered white Gaussian noise processes u;(t),i = 1,2,3. As
already mentioned, our simulation model presented in this
paper avoids digital filtering, as well as linear interpolation,
for the realization of the Gaussian processes u;(t),¢ = 1,2, 3.
Instead of this, we make use of the fact that each Gaussian
process u;(t) can be approximated by a finite sum of properly
weighted sinusoids with uniformly distributed phases [11].
In the following, we denote the corresponding approximated
versions of f;(t) by fi;(t), and we write

N;
ai(t) = Z Cincos(2m fint+©in), =123 (9)

n=1

where N; designates the number of sinusoids of the ith
process, ¢;n is named the Doppler coefficient, which rep-
resents a real weighting factor of the nth sinusoid, f;, is
called the discrete Doppler frequency, and ©; ,, designates a
uniformly distributed random phase variable in the interval
[0,27) that will be denoted as Doppler phase. To make our
formulas less bulky, we have dropped an index d for all of
these quantities, which would remind one that they refer to
Doppler frequencies, phases, and coefficients. For a further
understanding of the contents of the paper, it is important
to realize that a simulation of the approximated Gaussian
processes fi;(t), 4 = 1,2,3, requires a computation of the
model parameters c; ,, fin, and ©; ,, during the simulation set
up phase. Afterwards—during the simulation run phase—these
parameters are kept constant. Often, diverse simulation runs
are desired without changing the statistics of fi;(t). Then,
only the parameters c; ,, and f; , have to be precomputed and
kept constant, while the random phases ©; , are generated
for each simulation run. Let us assume that the parameters
of the simulation model are determined by one of the four
methods described in the next séction. Hence, all the model
parameters introduced in (9) are known quantities, and we can
consider fi;(t) as a deterministic function that approximates
the stochastic process p;(t) for ¢ = 1,2,3. Consequently,
the overall simulation model is also a deterministic model
that can be used for the approximation and simulation of sto-
chastic processes such as Rayleigh processes £(t), log-normal
processes ((t), and Suzuki processes 7(t). Fig. 1 shows the
structure of the resulting deterministic continuous-time model
for a non-frequency-selective but shadowed Rayleigh land
mobile radio channel. The corresponding discrete-time fading



320 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 45, NO. 2, MAY 1996
Rayleigh Process
Cia
cos(@nf, t +8,,) o——e@—e
1.2
cos@f,t+8,,) O—>Q—> + B0
. c-m, :
cos(2nf,y t+8,,) :
‘ a® N PR
Ca1 :
cos(2nf, 1 +6,,) o—eg——a
cos(2xf,,t +0,,) 0—9(2 ) + B0
. Cang
cos(2nty, 140, ) o—>K—>
______________________________________________________________ §§—> i0=§0-o
Log - normal Process
Cs :
i cos(2nf,t+8,,) oﬁ@% :
; a al 2 pa(t) -(t)
| cos(eaf,t48,)  o——>R—> & : &
cos(2nty, 1+6,,) >R —> s m
Fig. 1. Structure of the simulation system.

channel model is predestinated for computer simulations and
can easily be obtained by substituting the time variable ¢ by
t = kT, where T denotes the sampling interval and k is a
natural number. If the parameters of the simulation system
are known quantities, analytical expressions can be stated for
the autocorrelation function 7, (¢) of (9), as well as for the
corresponding power spectral density function 5’,‘1. (f), which
are given by

N; 0-2 .

T, (t) = ;’n cos(2x f; nt) (10a)
n=1

- Ni o2

Suif) =3 T8 = Fom) +8(F + o)) (10B)

1

n

for all 4 = 1,2, 3, respectively. In the next section, we will
show that the set of discrete Doppler frequencies {f; ,} and
the corresponding set of Doppler coefficients {c;,} can be
actually determined in such a way that the power spectral
densities S*W (f) of the approximated Gaussian processes ji;(t)
are approximated versions of the ideal power spectral density
functions S, (f), as defined by (4) for ¢ = 1,2 and (7) for
i = 3.

With regard to (9), we see that for 7 # j, the approximated
Gaussian processes fi;(t) and [i;(¢) are uncorrelated (as re-

quired) if fi n # fjm, but they are correlated if f;,, = f;
foralln =1,2,--- N; and m = 1,2,---, N;.

One special case is of interest, where the Gaussian processes
w1 () and s (t) are correlated and a cross-correlation function
Tyy 2 (t) meeting the real conditions can be established [6],
[7]. For such cases, a cross correlation between the approxi-
mated Gaussian processes fi1(t) and fi2(t) of the simulation
model can easily be obtained by considering ¢,, = Clyn = C2on,y
fn = fl,n = f2,n7 and ®n = 81,71 = @)2,7'7, + % for all
n=12,---,N = Ny = N,. Hence, the complex process
i(t) = f1(¢) + jjao(t) can be written as

N
A(t) = Z C e BT fnt+6n) an

n=1

and the cross-correlation function of i1 (¢) and fia(t), denoted
by Fuhug (t)) is given by
- 2
fﬂu#z (t) = Z 777, Sin(Qant)
n=1

with 7y, ., (0) = 0 and fﬂ'l,uz(—t) = =Ty, ®).

We remark that methods for the computation of {cin}
and {f;n} can be derived such that 7, (t) and #,, ,.(t) are
simultaneously approximated versions of the desired functions
7u;(t) and 7y, ,, (t), respectively. But this problem is beyond

12)
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the scope of the paper. Here, we neglect the influence of a
correlation between y;(t) and p;(t) on the channel statistics,
and we restrict our investigations only to an approximation
of the autocorrelation function r,,(t) and the corresponding
power spectral density function S, (f).

IV. COMPUTATION METHODS FOR THE
PARAMETERS OF THE SIMULATION MODEL

In this section, we consider the computation of the simu-
lation model parameters {¢; .}, {fi»}, and {©;,} as intro-
duced by (9). Altogether, we present four different methods
for the determination of the Doppler coefficients {c; ,} and the
corresponding discrete Doppler frequencies {f;,}. The pro-
cedures will be named by method of equal distances, method
of equal areas, Monte Carlo method, and mean-square-error
method. All the methods are quite different, but nevertheless
they have~in'common that the resulting power spectral density
function S, (f) [see (10b)] is always an approximated version
of the desired power spectral density function S,,(f) as
given by (4) and (7) for ¢ = 1,2 and 7 = 3, respectively.
The computation of the Doppler phase variables {©;,} is
independent of the procedures described below and has to be
ensued by means of a random generator having a uniform
distribution over [0,27). We notice that in this case {©;,}
has no influence on the statistical properties (level crossing rate
and average duration of fades) of the approximated processes
Bi(t), i = 1,2,3, but various realizations of ji;(t), and
therefore various processes £(¢) and ¢(¢) can be obtained for
the same sets of {f; »} and {c; »} by computing different sets
of the Doppler phase variables {©; ,,}.

A. Method of Equal Distances (MED)

The characteristic of the method of equal distances (MED) is
such that the difference between two adjacent discrete Doppler
frequencies is equidistant [12]. This property is achieved by
defining the discrete Doppler frequencies f; ,, as follows

l\ﬁ

n=12-.--,N; 13)

fin = —2(2n - 1),

where

A¢ = fin— fin-1, n=2,3,---,N; (14)

specifies the difference between two adjacent discrete Doppler
frequencies of the ith process fi;(¢),i = 1,2,3.

The Doppler coefficients c; , are computed by considering
the interval

Aj,

A
I'i,n = fi,n - “2_17 fz n ki

)7 n=1’27"'1Ni

(15)
and demanding that the mean power (within the interval I; )
obtained from the power spectral density S, (f) has the same
value as the mean power (within the same interval ;)
obtained from the corresponding power spectral density of the
simulation model 5',“( f) [see (10b)], i.e.

/ Sy, (f)df = S, (fdf (16)
f€lin fe€lin

forall n = 1,2,---,N; and i = 1,2,3. In view of the two
different types of power spectral densities considered in this
paper, we adopt the MED to the Jakes power spectral density
and the Gaussian power spectral density.

1) Jakes Power Spectral Density: The frequency regions of
the Jakes power spectral density functions S, (f) and S,,,(f)
[see (4)] are limited to | f] < fmax. Therefore, a suitable quan-
tity of the difference between two adjacent discrete Doppler
frequencies Ay, is given by Ay = fmax/N;, and thus it
follows from (13) for the discrete Doppler frequencies f;
the relation

Srmax
fin = 9N, S (2n—1) a7
forn =1,2,---,N; and i = 1,2.

The corresponding Doppler coefficients c; , can be obtained
by using (4), (10b), and (15)-(17). After some computation,

we obtain
1/2
i 2 ar i csi n—1 /
. = — ar
Cin - csin N arcsin N,
(18)
forn=1,2,---,N; and ¢ = 1,2. By referring to (9), (10a),

(17), and (18), we see that the mean value of the approximated
process fi;(t) is zero, and hence the variance of fi;(t), 62, is
equal to the mean power, i.e.

o iirl"i(o)‘z 2 Ho’

f1(t) + jjaz(t) is then given by

Tpss

i=1,2 (19

and the variance of a(t) =
&Z = m +U - 20#0

2) Gaussian Power Spectral Density: For the Gaussian
power spectral density function S, (f) as given by (7),
we have to limit the unbounded frequency variable f to
the frequency region |f| < Ao, where A, determines the
length of the relevant frequency interval from which discrete
Doppler frequencies f3, are chosen. This frequency interval
will be sufficiently large if A, is equal to A, = 4. By
that means, a suitable quantity of the difference between
two adjacent discrete Doppler frequencies Ay, is given by

Ay, = Aco./N3, and hence—by using (13)—we can write
the discrete Doppler frequencies fs,, as follows
Ao,
=—°‘@2n-1 20
f3,n 9 N3 ( n ) ( )

forn = 1,2,---, Ns. From (7), (10b), (15), (16), and (20) the
Doppler coefficients c3 , can be determined, and we finally
find the resulting expression

Jlia

Can = {2[erf( Acn ) ~erf(é§(—n——1—
= V2N; V2N3

for n = 1,2,---,N3. Obviously, the mean value of the
process fi3(t) is zero and the variance (mean power) &33 is
approximately equal to the unit variance (as required), i.e.

b = s 0) = Z = et(35)

= 0.9999366 =1 ifA. =4

2D

22)
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A detailed investigation of (10a) reveals that the MED re-
sults always in a periodic autocorrelation function 7, (¢) that
complies with

P+ mTy,) = {

if m is even
if m is odd

7:#»1' (t)7
_%Hi (t)a

where T}, denotes the period, which is given by Tp, = 1/Ay,
for all 4 = 1, 2, 3. Hence, the process fi;(¢) itself is a periodic
function, and we have to assure that the simulation time Ty
does not exceed half the period T, (see, therefore, Section
VI).

23)

B. Method of Equal Areas (MEA)

The characteristic of the method of equal areas (MEA) is
that the set of discrete Doppler frequencies {f;,} will be
selected in such a manner that in the range of f;,—1 < f <
fim, the area A, under the power spectral density function
Sui(f) s equal to o7, /(2N;), Le.

firm o2
A, = S, (fdf = £
Hi /i’n_1 223 (f) f 2N
forall n = 1,2,---,N; and ¢ = 1,2,3 where f; o = 0 [12].
As we will see, the introduction of the function

Eu(fim) = /j;:

will be of advantage in order to obtain the discrete Doppler
frequencies f;, so that (24) is fulfilled. It can be verified
immediately by considering (4) and (7) that S,,(f) is a
symmetrical function, ie., S,,(f) = S.,(—f). Therefore,
the preceding equation can be written by using (24) in the
following manner

Fu(fin) = it +Z/w 1

0'2 n
—Zmpp L),
2(+Ni>

On the assumption that the inverse function F 1of F,, exists,
the discrete Doppler frequencies are given by

0'2 n
Hi 1 e
(14 %)

forall n = 1,2,--- ,N; and ¢ = 1,2, 3.
An investigation of the Doppler coefficients ¢; ,, shows us
2
that <42 is equivalent to the mean power of S J(f) in the
frequency interval I; , = [fi n—1, fi.n). Hence, by referring to
(24) we obtain for the Doppler coefficients

i = VI A = 0y

forn = 1,2,---,N; and ¢ = 1,2, 3. The preceding equation
shows us that the MEA results in identical Doppler coeffi-
cients.

Next, we apply the MEA first to the Jakes and thereupon to
the Gaussian power spectral density.

(24)

Su(F)df (25)

Su:(f)df

(26)

_ -1
fim = F, Q27

(28)

1) Jakes Power Spectral Density: For the Jakes power
spectral density S,,(f) [see (4)], we obtain for (25) the
expression

2 .
Fulfin) = :ﬂ [1 ¥ %arcsin (%)] (29)
where 0 < fin < famax foralln =1,2,--- N, and 5 = 1,2.

Obviously, the inverse function F,.' of F,, exists and the
discrete Doppler frequencies f;,, are given by solving (27).
The result is

wn
i,;n = Jmax Si 30
fi, Simax sin (2Ni) (30)
foralln =1,2,--- N; and 7 = 1,2.
The corresponding Doppler coefficients ¢; ,, -can-easily be
obtained from (28); one merely has to replace oy, by oy, as
required for the Jakes power spectral density, i.e.

2
Cin = Opuyg E (31)

foralln =1,2,---,N; and ¢ = 1, 2.
2) Gaussian Power Spectral Density: For the Gaussian

power spectral density S3(f) [see (7)], we find for F,,,
as introduced by (25)

F %[y gy S 32
M3 (fS,n) - 2 +er \/_(Tc ( )
for n = 1,2,---,N3. The problem that arises is-that the

inverse of the error function does not exist. Therefore, no
explicit expression for the discrete Doppler frequencies f3 ,,
can be derived, and we must calculate f3, numerically by
finding the zeros of

. —erf< J3.n ) =0, Yn=1,2,---,N5s.  (33)

Here, we also obtain equal Doppler coefficients cj ,,, which
are given (with regard to o2, = 1) by

[ 2
C3n = F) Vn = 1727”'aN3'
3

We observe by considering (31), (34), and (10a), that the

(34)

variance a . of the approximated process fi;(t) is equal to
i L2 .
Lo . Cim _ [ol,, fori=1,2 (Jakes)
O =Tus(0) = —~2 { 1, fori=3  (Gauss).
(35)

The solution of (30) and (33) gives us a set of. discrete
frequencies { f;  } where the f;,,’s are such that the difference
between two adjacent discrete Doppler frequencies, A fim

fi,n— fin—1, depends on the index number n and is in general
not equidistant. Consequently, the MEA does not result in a
periodic autocorrelation function 7, (¢).
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C. Monte Carlo Method (MCM)

The principle of the Monte Carlo method (MCM) is the
generation of the discrete Doppler frequencies f,, according to
a given probability density function (pdf), which describes the
distribution of the Doppler frequencies f of a filtered Gaussian
process (t). For that pdf, we use in this paper the notation
pu(f). It is easy to show that the pdf p,(f) is proportional to
the power spectral density S,(f) of the process u(t), i.e.

pul(f) = cuSu(f)

where c,, is an appropriate normalization constant that ensures
ffooo pu(f)df = 1.

For the MCM, we follow the ideas presented in [2] and
establish a uniform random generator u,, with outputs u, €
(0,1], as well as a function g, (u,) such that the distribution
of the discrete Doppler frequencies f,, = g.(un) is equal to
a specified cumulative distribution

fn
Pu(f) = /_ pulf)df

According to [8], g.(u,) is the inverse of the function
P,(fn) = un, and hence the f,’s are given by

fn:gu(un)zpu—l(un), ’n:l’Z,...’N'

In general, the application of the MCM as presented above
results in positive and negative discrete Doppler frequencies
fn- In cases where the pdf p,(f) is an even function, ie.,
pu(f) = pu(—f), we can restrict (without loss of generality)
the computation of the f,,’s to positive quantities. This can be
achieved by substituting in (38) the uniform random generator
un € (0,1] by (1 + u,)/2 € (1/2,1]. By keeping this in

(36)

(37

(38)

mind, we apply the MCM in the following to the Jakes and '

the Gaussian power spectral density.
1) Jakes Power Spectral Density: The application of the
MCM as presented above to the Jakes power spectral density
Su;(f) [see (4)] results in the following expressions for
the discrete Doppler frequenmes fin and the corresponding
Doppler factors c;

fin = famaxsin (Zun)
2 (39b)

Ciin = Tpe N
%

(39a)

where u, € (0,1] for all n = 1,2,---,N; and 4 = 1,2. The
Doppler factors c; ,, are deﬁned such that the variance (mean
power) of ji;(t) is equal to &3, = 7,,(0) = o2, fori=1,2.

2) Gaussian Power Spectral Density: For the Gaussian
power spectral density Sy, (f) [see (7)], no explicit expression
for the discrete Doppler frequencies fs, can be derived by
applying the MCM. In this connection, the f3,’s must be
calculated numerically by finding the zeros of

f 3,n )
U, — erf : =0 (40a)
( V20,
whereas the Doppler coefficients cs , are given by
2
e 40b
cs, N (40b)

for all » = 1,2,---, N3 and u,, € (0,1]. Here, the Doppler
factors c3,, are deﬁned such that the vanance (mean power)
of fiz(t) is equal to the unit variance, i.e., 77, = 7y, (0) = L.

In general, the MCM results in discrete Doppler frequencies
fin, which are such that Ay, =~ = fim — fin—1 is not
equidistant for all » = 1,2,---,N; and ¢ = 1,2,3. Hence,
7u,(t) and fi;(t) are both not periodic functions.

Let us consider the specific case where the outputs of
the uniform random generator u, are given by n/N; for
n=12--,N;4=1,2,3. In such a case, the MCM and the
MEA are yielding the same set of discrete Doppler frequencies
{fin}- This can immediately be seen by comparing (30) and
(33) with (39a) and (40a), respectively.

D. Mean Square Error Method (MSEM)

The fundamental idea of this method is the object to
minimize the mean-square-error (MSE) e,, that is defined as

1 T
ey = —/ (ru(t) — 7u(t))dt @1
TN 0

where T}, designates a proper time interval that will be defined
below, r,,(t) is any specified acf, and 7,(t) is given by

wl:w

(2 fut). 42)

N
Fut) = Z

Indeed, a simple solution exists on condition that the discrete
Doppler frequencies f,, are equidistant, i.e., they are such that
{fulfn = %(Z'n —1),n=1,2,---, N} Thus, by inserting
(42) in (41) and taking the partial derivatives of e, with respect
to each Doppler coefficient ¢,, and setting these derivatives

equal to zero, i.e., %’i = 0, we find the solution

g [

foralln =1,2,.--,
T, is given by one half on the period T, =
T = T, _ 1

v T 2T T ZAY

It can be shown that for Ay — 0, (43) can be expressed by

en = Alilgo%/AfSu(fn)

) cos (27 fnt)dt 43)

N, where the length of the time interval

1 .
A—f’ 1.€.,

(44a)

‘and numerical investigations have revealed that even for Ay >

0, the simple expression

Cn =20/ AfSu(fn)

gives us a good approximation of the exact solution (43) even
for moderate values of N.

Next, we apply the mean square error method (MSEM) to
the Jakes and the Gaussian power spectral density.

(44b)
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1) Jakes Power Spectral Density: Although the discrete
Doppler frequencies of the MSEM are exactly the same as for
the MED [see (17)], we obtain different expressions for the
Doppler coefficients. By making use of (5) and (43), we find

C’LTL—\/

where T),, is defined by T),, = :TS i=1,2.

2) Gausszan Power Spectral Densny The discrete Doppler
frequencies f3, are given by (20), and for the Doppler
coefficients c¢3 ,, we find by substituting (8) in (43) the result

/ Jo(27 frmaxt) cos (27 f; nt) dt (45)

4 Ty
C3n = / e=2(mot)? cos (27 f5 nt) dt (46)
Tﬂa 0

where Ty, is defined by Ty, = 55~ = 535
The MSEM gives us for ﬁmte numbers of N; for the

variance (mean power) of fi;(t) the value 62, = 7,,(0) & o2, .

V. EVALUATION OF THE PERFORMANCE

In this section, we will evaluate the performance of the
parameter computation methods that have been described in
the previous section. The evaluation of the performance will
be carried out on the basis of two different quality criteria.
The first is based on the computation of the mean Doppler
shift as well as the Doppler spread, and the second standard of
comparison is based on the computation of the mean-square-
error.

A. Average Doppler Shift and Doppler Spread

The mean Doppler shift B(l) and the Doppler spread
B(2) are characteristic quantities of a given Doppler power
spectral density function S,(f), and therefore, they are of
great importance [13], [14]. The mean Doppler shift B,(f) is
the first central moment (mean) of S,(f) and is, therefore,
defined as

g I
B =

= u(f)df @7

whereas the Doppler spread B, @ is the square root of the sec-
ond central moment (varlance) of S,(f) and is consequently
defined by

I (7 - B) sutprar
%S

2) .
B® .=

(48)

From the above, it follows for the Jakes and the Gaussian
power spectral density [see (4) and (7)] that
1)
B;(u) =0 for

1=1,2,3 (49a)

and
o) _ [1= =0.007. fry for i=1,2 (Jakes)
B Yo, = 0.849 - £, for i=3  (Gauss).
(49b)

Next we consider the simulation model and compute the
corresponding mean Doppler shift B,(h) and the Doppler spread
B( ) of the approximated Doppler power spectral density

sz (f)
By substituting (10b) in (47) and (48), we obtain

BV=0 for i=1,2,3 (50a)
and
5(2) _ .
B;(ti) = 202 Z 2 for i=1,2,3 (50b)
Hi p=1
where
52 =7,,(0) = %
n=1

It turns out by a comparison of (49) and (50) that the mean
Doppler shift B;(M) will always be reproduced exactly by the
simulation model, i.e., Bfllz) = B,(i) = 0, but this is in
general not true for the Doppler spreads B<2) and Bff.). The
Doppler spread of the simulation model B( ) depends on the
number of sinusoids NV; as well as on the selected method for
the computation of the discrete Doppler frequencies f; ,, and
Doppler factors ¢; ,,. Therefore, B,(h) can differ widely from
the desired Doppler spread B (2 ) as defined by (49b).

During the discussion of the MCM, we have seen that the
discrete Doppler frequencies f;,, are random variables, and
thus B,(Ll) itself is a random variable. Consequently, for a
given number of sinusoids IV;, a one and only realization
of a set of discrete Doppler frequencies {f;,} results in a
random value for B(i), which can vary considerably from
the exact Doppler spread BP,), as can be seen in Fig. 2(a)
and (b) for the Jakes and Gaussian power spectral density
function S, (f), respectively. As we have discussed the other
parameter computation methods (MED, MEA, and MSEM),
we have seen that for each procedure the discrete Doppler fre-
quencies f; ,, and the Doppler coefficients c; ,, are determined
quantities, which depend only on the number of sinusoids IV;
and the prescribed power spectral density S, (). Hence, for
a given number of sinusoids IV; and a given power spectral
density S, (f), the Doppler spread Bﬁf) is also completely
determined. By applying these procedures (MED, MEA, and
MSEM), we obtain the Doppler spread B,(f.) as function of
N;, as shown in Fig. 2(a) and (b) for the Jakes and Gaussian
power spectral density function S, (f), respectively.

In order to emphasize the 51gn1ﬁcance of the Doppler
spreads B,(Lz) and th), we consider the following facts. The
level crossing rate and the average duration of fading time
intervals of Suzuki processes are dependent on #,,(0), i.c.,
the second derivative of the autocorrelation function 7, (t) at
t = 0 [6], [7]. It can be shown by using (5), (8), and (49b) that
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Fig. 2. Doppler spreads BY.) and B{) of (a) the Jakes (i = 1, 2) and (b) the
Gaussian (7 = 3) power spectral densities S, (f)and Sy, (f), respectively.

7, (0) can be expressed by the square of the Doppler spread,
i.e., the second central moment, as follows:

'Fuz‘(o) = )
20y T frna)? = —(27m,LOBf?,.)) . fori=1,2 (Jakes)
2
—-(27rac)2 = —(27rB,§23)) , for 1 = 3 (Gauss).

(5D
Now, we consider the simulation model and derive 7, (0), i.e.,

the second derivative of the autocorrelation function 7, (¢) at
t = 0. By making use of (10a) and (50b), we find

~ 2
—(%&uoBfﬁ)) , fori=1,2 (Jakes)

Ful0) = (ZwB(Z)) :

for : = 3 (Gauss)
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Fig. 3. Mean-square-error e,; in connection with (a) the Jakcs (z =1,2)

and (b) the Gaussian (i = 3) power spectral density (¢2, = 1/2 and
Tas = 1)

— 52 _ —
where the validities of om Gpy = O'NO and cr =1

have been assumed. The preceding two equatlons can be
interpreted by saying that if B,(L,) is a good approximation
of Bf,zi), then rm (0) consequently is a good approximation of
#,;(0), and thus, the simulation model is in good agreement

with theoretical results concerning the statistics of the channel
model.

B. Mean-Square-Error Criterion

In the preceding sections, we have considered the acf 7, (¥)
as the approximated version of the desired acf r,,(t), and we
have shown—by means of (10a)—that 7,,(t) depends only on
the number of sinusoids N;, the discrete Doppler frequencies
fin, and the Doppler coefficients c; n. Furthermore, we have
derived in Section IV four design techniques (MED, MEA,



326 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 45, NO. 2, MAY 1996

0.05 i iff)
0.041
0.03
0.02
““Wll HH””’
-100 50 0 50 100
f/Hz
(2) '
S0
001}
0.005F
Lo 50 0
£/Hz

©

$,,®
0.01}
0.005}
L -50 0 50 100
f/Hz
)
§ )
0.04 . al
0.03}
0.02}
) “HH ’ l IIII‘I
L% 50 ) 50 100
f/Hz
(@

Fig. 4. Jakes power spectral density S, (f) with N; = 25,5 = 1,2. (a) Method of equal distances. (b) Method of equal areas. (c) Monte Carlo

method. (d) Mean-square-error method.

MCM, MSEM) for the determination of f;,, and ¢;,,. In the
following, we will discuss the various methods with regard to
the approximation of r,, (t), as prescribed by (5) for ¢ = 1,2
(Jakes) and (8) for 7 = 3 (Gauss). Therefore, we consider the
mean-square-error

1 T

belh‘ = T— / (T/J'i (t) - fﬂi (t))zdt
i JO

(53)

where 7),, designates the time interval over which the mean-
square error will be evaluated. For an appropriate length of
the time interval, we use the relation

N;
Ty, = { 2{;{]““,

—a¥3
2A 0.0

for = 1,2 (Jakes)

for 1 = 3 (Gauss) S

which adapts T),, to the number of sinusoids N;. Note that
for the MED and the MSEM the expression of 7},, is equal to
T, = 3A, = %+ i, one-half the period Tj,. '
Clearly, the mean-square error (41), as introduced during the
discussion of the MSEM, is identical with (53), but remember

that this method was based on the condition that the discrete
Doppler frequencies are equidistant, and thus, the MSEM
yields not necessarily the smallest possible mean-square error.

The mean-square error e, expressed by (53), can be
regarded as a function of the discrete Doppler frequencies
fi,n and the Doppler coefficients ¢ n. Next we evaluate the
mean-square error for all presented methods concerning the
computation of f; , and ¢; ,,. The result is shown in Fig. 3(a)
and (b) for the Jakes and the Gaussian power spectral density,
respectively. In this connection, the mean-square error e,,, has
been averaged in the case of the MCM for each value of N;
over 1000 different realizations. Fig. 3(a) and (b) shows us
that the mean-square error e,, obtained by the MCM is for
appropriate values of IV; always greater than the mean-square
error e, obtained by the other methods. In all cases, we have

2 _ 2 _ 2 _ 2 _
used 0, =0, =0, =1/2and 05, = 1.

VI. EXAMPLES AND SIMULATION RESULTS

In this section, we apply the various methods for the com-
putation of the simulation model parameters, and we consider
some examples concerning the resulting power spectral density
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S,..(f) and the corresponding autocorrelation function 7, (t).
Finally, we will also consider some simulation results of
the approximated Rayleigh process E(t) and the log-normal
process ((t).

In all the examples presented below, we have chosen the
following values for the parameters of the Suzuki model
(fmax, 0c, S, M, Jﬁl_). A maximum Doppler frequency fmax
[see (4)] of fmax = 91.73 Hz has been selected, which
corresponds to a mobile speed of 110 km/h and a carrier
frequency of 900 MHz. For the parameter o. [see (7)], we
have selected the value o, = 0.7791 Hz, i.e., the 3-dB cutoff
frequency of the Gaussian power spectral density is equal to
fo = 0.9173 Hz (x = 100). Furthermore, we have restricted
the simulation of the log-normal process to the case where
the parameters s and m [see, therefore, (6)] are given by s =
0.161 and m = —s? = —0.0259. For the variances o7, we
have used the values 02 =02 =02 =1/2and o} = 1.

By that means, the power spectral density S, (f), i =
1,2, 3, is completely determined, as can be seen immediately
by considering (4) for ¢ = 1,2 (Jakes) and (7) for ¢ = 3
(Gauss), so that we are able to determine the simulation

model parameters (¢; n, fin, ©:n) by applying the methods
described in Section IV.

After the calculation of the simulation model parameters,
we can start with the computation of the approximated power
spectral density S'm( f) and the corresponding autocorrelation
function 7,, (t) by using (10b) and (10a), respectively. The
results obtained by applying the method of equal distances,
method of equal areas, Monte Carlo method, as well as the
mean-square-error method are presented for S'm( f),i=1,2
(Jakes), in Fig. 4 and for S'M,( f) (Gauss) in Fig. 6, whereas
the corresponding autocorrelation functions 7, (t) are shown
for 0 < t < N;/fmax in Figs. 5 and 7, respectively. In all
cases, the number of sinusoids IV; was equal to N;j = N =
N5 = 25. For the reason of comparison, we have also depicted
in Figs. 5 and 7 the ideal autocorrelation functions 7, (t) =
Tus(t) = 2Jo(27 frmaxt) and 7, (1) = exp [-2(ro.t)?],
respectively. Thus, one can realize that the autocorrelation
function of the simulation model 7, (t) is always an approxi-
mated version of the ideal autocorrelation function r,, (¢) for
all ¢ = 1,2,3. Apart from the number of sinusoids V;, the
quality of the approximation and the distinctive characteristics
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are predominantly influenced by the parameter design method.

A simulation example of the approximated Rayleigh process
é (t) is shown in Fig. 8(a). The parameters of the simulation
system have been designed according to the method of equal
areas with N1 = 25 and Ny = 24, i.e., without any correlation
between the real part fi1(¢) and the imaginary part jia(t).
The simulation time was limited to Ty = 0.327 s, which
is equivalent to a distance of 10 m covered by a mobile at a
speed of 110 km/h. Furthermore, a simulation example of the
approximated log-normal process ¢ (t) is shown in Fig. 8(b).
For that process, the parameters of the simulation system have
been designed by applying the method of equal distances with
N3 = 25. The simulation time was limited to twice the period,
i.e., Tsim = 2TM3 = Z/AVI3 = 2N3/(ACO'C) = 16.044 s.
Clearly, different processes £(t) and ((¢) can be realized for
the same sets of Doppler frequencies {f;,} and Doppler
coefficients {c; ,, } by computing different sets of the uniformly
distributed Doppler phases {©;,}. Note that the statistical
properties of £(t) and ((t) are not affected by the Doppler
phases.

Fig. 9(a) shows the corresponding probability density func-
tion (pdf) pe(x), which has been obtained from the approxi--
mated Rayleigh process &(t), as presented in Fig. 8(a), where
merely the simulation time has been increased up to 3 - 10 s
and altogether 5 - 10° signal samples have been used for
estimating the statistics of the approximated Rayleigh process
&(t). The pdf p¢(y) as shown in Fig. 9(b) corresponds to the
approximated log-normal process f (t) of Fig. 8(b), where 100
different realizations (obtained by computing 100 different sets
of Doppler phases) have been evaluated in order to overcome
the periodicity conditioned by the method of equal distances.
For the reason of comparison, we have also shown in Fig. 9(a)
and (b) the ‘ideal Rayleigh and log-normal pdf, which are
defined by

(z) = — @ >0 55
pelz) = = P\ TE (T2 (552)
i Hi

and
1 (lny —m)? }
= - >0 55b
() = o ew{ -, (55b)
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Fig. 8. Simulation results of (a) the Rayleigh process £ (t) (method of equal areas, N1 = 25, N2 = 24) and (b) the log-normal process ¢ (t) (method
of equal distances, N3 = 25, A = 4, s = 0.161, m = -0.0259).

respectively, where aii = 1/2 for 4 = 1,2. It can be seen the simulation model coincides very closely to the theoretical
that by a proper design of the simulation model parameters, model.
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VII. CONCLUSION

We have presented an efficient simulation model for the
approximation of Rayleigh, log-normal, and Suzuki processes.
Altogether, four fundamental methods have been described
for the computation of the simulation model parameters. All
four procedures result in simple equations for the model
coefficients, and it has turned out that the parameters of the
simulation model are closely connected with the parameters
defining the shape of the power spectral density of the un-
derlying filtered normal processes. Apart from the Monte
Carlo method—which is a statistical procedure—we have only
employed deterministic procedures for the determination of the
model coefficients. In view of the resulting Doppler spread and
the mean-square-error criterion, it has been demonstrated that
the deterministic procedures are superior to the Monte Carlo
method. On the basis of the following two facts, the simulation
system is a completely deterministic model. The first fact is
that all the coefficients of the simulation model have to be
computed during the simulation setup phase, i.c., before the
simulation starts, and the second fact is that all the coefficients
are kept constant after the simulation setup phase, i.e., during
the simulation run phase. Nevertheless, the simulation model
has the property that the resulting output signal approximates
a stochastic process, e.g., a Suzuki process, as has been
demonstrated in the presented paper by various simulation
results. Further results concerning the statistical properties—in
particular the average duration of fades and the level crossing
rate—of the output signal of the presented simulation model
will be published in a forthcoming paper.
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